C. Zipfel and G. E. Oldroyd, Plant signalling in symbiosis and immunity, Nature, vol.543, pp.328-336, 2017.

Y. Cao, M. K. Halane, W. Gassmann, and G. Stacey, The role of plant innate immunity in the legume-rhizobium symbiosis, Annu. Rev. Plant. Biol, vol.68, pp.535-561, 2017.

C. Gough and J. Cullimore, Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions, Mol. Plant Microbe Interact, vol.24, pp.867-878, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02646278

E. Limpens, A. Van-zeijl, and R. Geurts, Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses, Annu. Rev. Phytopathol, vol.53, pp.311-334, 2015.

S. Hacquard, S. Spaepen, R. Garrido-oter, and P. Schulze-lefert, Interplay between innate immunity and the plant microbiota, Annu. Rev. Phytopathol, vol.55, pp.565-589, 2017.

R. Zgadzaj, Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities, Proc. Natl Acad. Sci. USA, vol.113, pp.7996-8005, 2016.

Z. Bozsóki, Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception, Proc. Natl Acad. Sci. USA, vol.114, pp.8118-8127, 2017.

R. B. Day, Binding site for chitin oligosaccharides in the soybean plasma membrane, Plant Physiol, vol.126, pp.1162-1173, 2001.

Y. R. Cao, The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1, vol.3, p.3766, 2014.

M. Hayafune, Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization, Proc. Natl Acad. Sci. USA, vol.111, pp.404-413, 2014.

H. Kaku, Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor, Proc. Natl Acad. Sci. USA, vol.103, pp.11086-11091, 2006.

A. Miya, CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis, Proc. Natl Acad. Sci. USA, vol.104, pp.19613-19618, 2007.

T. T. Liu, Chitin-induced dimerization activates a plant immune receptor, Science, vol.336, pp.1160-1164, 2012.

T. Shimizu, Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice, Plant J, vol.64, pp.204-214, 2010.

T. Shinya, Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants, Plant Cell Physiol, vol.53, pp.1696-1706, 2012.

J. Wan, A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis, Plant Cell, vol.20, pp.471-481, 2008.

A. Genre, Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca 2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone, New Phytol, vol.198, pp.190-202, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651472

F. Maillet, Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, vol.469, pp.58-1501, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02649013

J. Denarie, F. Debelle, and J. C. Prome, Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis, Annu. Rev. Biochem, vol.65, pp.503-535, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02696165

J. Sun, Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice, Plant Cell, vol.27, pp.823-838, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02119231

G. Carotenuto, The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling, New Phytol, vol.214, pp.1440-1446, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606788

K. Miyata, The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice, Plant Cell Physiol, vol.55, pp.1864-1872, 2014.

X. W. Zhang, The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling, Plant J, vol.81, pp.258-267, 2015.

C. Gibelin-viala, The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis, New Phytol, vol.223, pp.1516-1529, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02366095

L. Zhang, The LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 1 protein of banana is required for perception of pathogenic and symbiotic signals, New Phytol, vol.223, pp.1530-1546, 2019.

B. Ben-amor, The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation, Plant J, vol.34, pp.495-506, 2003.

J. F. Arrighi, The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes, Plant Physiol, vol.142, pp.265-279, 2006.

A. Broghammer, Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding, Proc. Natl Acad. Sci. USA, vol.109, pp.13859-13864, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02137625

E. B. Madsen, A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals, Nature, vol.425, pp.637-640, 2003.

E. Limpens, LysM domain receptor kinases regulating rhizobial Nod factor-induced infection, Science, vol.302, pp.630-633, 2003.

S. Radutoiu, Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases, Nature, vol.425, pp.585-592, 2003.

P. Smit, Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling, Plant Physiol, vol.145, pp.183-191, 2007.

S. Moling, Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules, Plant Cell, vol.26, pp.4188-4199, 2014.

S. R. Rasmussen, Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor, Sci. Rep, vol.6, p.29733, 2016.

F. M. Martin, S. Uroz, and D. G. Barker, Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria, Science, vol.356, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606874

Y. Liang, Nonlegumes respond to rhizobial Nod Factors by suppressing the innate immune response, Science, vol.341, pp.1384-1387, 2013.

D. W. Ehrhardt, R. Wais, and S. R. Long, Calcium spiking in plant root hairs responding to Rhizobium nodulation signals, Cell, vol.85, pp.673-681, 1996.

S. Kosuta, Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes, Proc. Natl Acad. Sci. USA, vol.105, pp.9823-9828, 2008.

B. J. Sieberer, M. Chabaud, J. Fournier, A. C. Timmers, and D. G. Barker, A switch in Ca 2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula, Plant J, vol.69, pp.822-830, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02648401

G. Stacey and N. Shibuya, Chitin recognition in rice and legumes, Plant Soil, vol.194, pp.161-169, 1997.

A. W. Schuttelkopf, Acetazolamide-based fungal chitinase inhibitors, Bioorgan. Med. Chem, vol.18, pp.8334-8340, 2010.

G. Endre, A receptor kinase gene regulating symbiotic nodule development, Nature, vol.417, pp.962-966, 2002.

S. Stracke, A plant receptor-like kinase required for both bacterial and fungal symbiosis, Nature, vol.417, pp.959-962, 2002.

J. M. Ane, Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes, Science, vol.303, pp.1364-1367, 2004.

E. B. Madsen, Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5, Plant J, vol.65, pp.404-417, 2011.

M. K. Ried, M. Antolin-llovera, and M. Parniske, Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases, vol.3, pp.3891-03891, 2014.

R. Huisman, Haustorium formation in Medicago truncatula roots infected by Phytophthora palmivora does no involve the common endosymbiotic program shared by arbuscular mycorrhizal fungi and rhizobia, Mol. Plant Microbe Interact, vol.28, pp.1271-1280, 2015.

S. Marcel, R. Sawers, E. Oakeley, H. Angliker, and U. Paszkowski, Tissueadapted invasion strategies of the rice blast fungus Magnaporthe oryzae, Plant Cell, vol.22, pp.3177-3187, 2010.

T. Rey, A. Chatterjee, M. Buttay, J. Toulotte, and S. Schornack, Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen, New Phytol, vol.206, pp.497-500, 2015.

C. Ben, Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt, J. Exp. Bot, vol.64, pp.317-332, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01208602

C. T. Hjuler, Preparation of glycoconjugates from unprotected carbohydrates for protein-binding studies, Nat. Protoc, vol.12, pp.2411-2422, 2017.

T. Vernie, PUB1 interacts with the receptor kinase DMI2 and negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity in Medicago truncatula, Plant Physiol, vol.170, pp.2312-2324, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02631300

N. Takeda, S. Sato, E. Asamizu, S. Tabata, and M. Parniske, Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus, Plant J, vol.58, pp.766-777, 2009.

L. F. Czaja, Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP-and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides, Plant Physiol, vol.159, pp.1671-1685, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00743307

Y. Kawaharada, Receptor-mediated exopolysaccharide perception controls bacterial infection, Nature, vol.523, pp.308-312, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02137607

T. Rey, Lipo-chitooligosaccharide signalling blocks a rapid pathogeninduced ROS burst without impeding immunity, New Phytol, vol.221, pp.743-749, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02117308

T. Rey, NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens, New Phytol, vol.198, pp.875-886, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646356

A. A. Gust, Peptidoglycan perception in plants, PLoS Pathog, vol.11, p.1005275, 2015.

R. Willmann, Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection, Proc. Natl Acad. Sci. USA, vol.108, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02650746

B. Liu, Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity, Plant Cell, vol.24, pp.3406-3419, 2012.

G. E. Oldroyd, Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants, Nat. Rev. Microbiol, vol.11, pp.252-263, 2013.

K. Pawlowski and T. Bisseling, Rhizobial and actinorhizal symbioses: What are the shared features?, Plant Cell, vol.8, pp.1899-1913, 1996.

S. Svistoonoff, V. Hocher, and H. Gherbi, Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation?, Curr. Opin. Plant. Biol, vol.20, pp.11-18, 2014.

M. Griesmann, Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis, Science, vol.361, p.1743, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02479077

M. K. Ried, A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis, PLoS Pathog, vol.15, p.1007747, 2019.

M. Fernandez-aparicio, Parasitic plant infection is partially controlled through symbiotic pathways, Weed Res, vol.50, pp.76-82, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666549

J. Fliegmann, LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor, FEBS Lett, vol.590, pp.1477-1487, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02639689

L. Buendia, T. M. Wang, A. Girardin, and B. Lefebvre, The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato, New Phytol, vol.210, pp.184-195, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02638386

R. O. Den-camp, LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia, Science, vol.331, pp.909-912, 2011.

S. L. Shaw and S. R. Long, Nod factor inhibition of reactive oxygen efflux in a host legume, Plant Physiology, vol.132, pp.2196-2204, 2003.

C. Gutjahr, Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex, Science, vol.350, pp.1521-1524, 2015.

R. J. Wais, Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula, Proc. Natl Acad. Sci. USA, vol.97, pp.13407-13412, 2000.

R. Catoira, Four genes of controlling components of a nod factor transduction pathway, Plant Cell, vol.12, pp.1647-1665, 2000.

J. Levy, A putative Ca 2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses, Science, vol.303, pp.1361-1364, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02673940

M. Tadege, Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula, Plant J, vol.54, pp.335-347, 2008.

E. Weber, C. Engler, R. Gruetzner, S. Werner, and S. Marillonnet, A modular cloning system for standardized assembly of multigene constructs, PLoS One, vol.6, p.16765, 2011.

M. Giovanetti and B. Mosse, An evaluation of techniques for measuring vesicular arbuscule mycorrhizal infection in roots, New Phytol, vol.84, pp.489-500, 1980.

L. H. Luginbuehl, Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant, Science, vol.356, pp.1175-1178, 2017.