A. Hemminki, D. Markie, I. Tomlinson, E. Avizienyte, S. Roth et al., A serine/threonine kinase gene defective in Peutz?Jeghers syndrome, Nature, vol.391, issue.6663, pp.184-187, 1998.

S. A. Hawley, J. Boudeau, J. L. Reid, K. J. Mustard, L. Udd et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, J Biol, vol.2, issue.4, p.28, 2003.

A. Woods, S. R. Johnstone, K. Dickerson, F. C. Leiper, L. G. Fryer et al., LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade, Current Biology, vol.13, issue.22, pp.2004-2008, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00390855

M. Lee, J. T. Hwang, H. Lee, S. N. Jung, I. Kang et al., AMP-activated Protein Kinase Activity Is Critical for Hypoxia-inducible Factor-1 Transcriptional Activity and Its Target Gene Expression under Hypoxic Conditions in DU145 Cells, Journal of Biological Chemistry, vol.278, issue.41, pp.39653-39661, 2003.

D. R. Bolster, S. J. Crozier, S. R. Kimball, and L. S. Jefferson, AMP-activated Protein Kinase Suppresses Protein Synthesis in Rat Skeletal Muscle through Down-regulated Mammalian Target of Rapamycin (mTOR) Signaling, Journal of Biological Chemistry, vol.277, issue.27, pp.23977-23980, 2002.

R. J. Kishton, C. E. Barnes, A. G. Nichols, S. Cohen, V. A. Gerriets et al., AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival, Cell Metabolism, vol.23, issue.4, pp.649-662, 2016.

D. B. Shackelford, D. S. Vasquez, J. Corbeil, S. Wu, M. Leblanc et al., mTOR and HIF-1 -mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome, Proceedings of the National Academy of Sciences, vol.106, issue.27, pp.11137-11142, 2009.

B. Faubert, E. E. Vincent, T. Griss, B. Samborska, S. Izreig et al., Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1, Proceedings of the National Academy of Sciences, vol.111, issue.7, pp.2554-2559, 2014.

C. Cantó and J. Auwerx, PGC-1?, SIRT1 and AMPK, an energy sensing network that controls energy expenditure, Current Opinion in Lipidology, vol.20, issue.2, pp.98-105, 2009.

C. Cantó, Z. Gerhart-hines, J. N. Feige, M. Lagouge, L. Noriega et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.458, issue.7241, pp.1056-1060, 2009.

W. W. Winder, B. F. Holmes, D. S. Rubink, E. B. Jensen, M. Chen et al., Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle, Journal of Applied Physiology, vol.88, issue.6, pp.2219-2226, 2000.

R. J. Shaw, M. Kosmatka, N. Bardeesy, R. L. Hurley, L. A. Witters et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proceedings of the National Academy of Sciences, vol.101, issue.10, pp.3329-3335, 2004.

D. E. Jenne, H. Reomann, J. Nezu, W. Friedel, S. Loff. et al., Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase, Nature Genetics, vol.18, issue.1, pp.38-43, 1998.

M. Sanchez-cespedes, P. Parrella, M. Esteller, S. Nomoto, B. Trink et al., Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung, Cancer Res, vol.62, issue.13, pp.3659-62, 2002.

M. T. Mccabe, D. R. Powell, W. Zhou, and P. M. Vertino, Homozygous deletion of the STK11/LKB1 locus and the generation of novel fusion transcripts in cervical cancer cells, Cancer Genetics and Cytogenetics, vol.197, issue.2, pp.130-141, 2010.

H. B. Pearson, A. Mccarthy, C. M. Collins, A. Ashworth, and A. R. Clarke, Lkb1 Deficiency Causes Prostate Neoplasia in the Mouse, Cancer Research, vol.68, issue.7, pp.2223-2232, 2008.

M. Vázquez-chantada, U. Ariz, M. Varela-rey, N. Embade, N. Martínez-lopez et al., Evidence for LKB1/AMP-activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation, Hepatology, vol.49, issue.2, pp.608-617, 2008.

V. Maillet, N. Boussetta, J. Leclerc, V. Fauveau, M. Foretz et al., LKB1 as a Gatekeeper of Hepatocyte Proliferation and Genomic Integrity during Liver Regeneration, Cell Reports, vol.22, issue.8, pp.1994-2005, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02349915

L. Barbier-torres, T. C. Delgado, J. L. García-rodríguez, I. Zubiete-franco, D. Fernández-ramos et al., Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer, Oncotarget, vol.6, issue.4, pp.2509-2523, 2014.

S. W. Lee, C. F. Li, G. Jin, Z. G. Cai, F. Han et al., Skp2-Dependent Ubiquitination and Activation of LKB1 Is Essential for Cancer Cell Survival under Energy Stress, Molecular Cell, vol.57, issue.6, pp.1022-1033, 2015.

A. Nakano and S. Takashima, LKB1 and AMP-activated protein kinase: regulators of cell polarity, Genes Cells, vol.17, issue.9, pp.737-784, 2012.

G. P. Sapkota, J. Boudeau, M. Deak, A. Kieloch, N. Morrice et al., Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome, Biochem J, vol.362, issue.2, pp.481-90, 2002.

A. F. Baas, J. Boudeau, G. P. Sapkota, L. Smit, R. Medema et al., Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD, EMBO J, vol.22, issue.12, pp.3062-72, 2003.

J. Boudeau, A. F. Baas, M. Deak, N. A. Morrice, A. Kieloch et al., MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm, EMBO J, vol.22, issue.19, pp.5102-5116, 2003.

J. Dorfman and I. G. Macara, STRAD? Regulates LKB1 Localization by Blocking Access to Importin-?, and by Association with Crm1 and Exportin-7, Molecular Biology of the Cell, vol.19, issue.4, pp.1614-1626, 2008.

K. A. Orlova, W. E. Parker, G. G. Heuer, V. Tsai, J. Yoon et al., STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice, J Clin Invest, vol.120, issue.5, pp.1591-602, 2010.

Y. Y. Zhan, Y. Chen, Q. Zhang, J. J. Zhuang, M. Tian et al., The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK, Nature Chemical Biology, vol.8, issue.11, pp.897-904, 2012.

V. P. Houde, M. S. Ritorto, R. Gourlay, J. Varghese, P. Davies et al., Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity, Biochem J, vol.458, issue.1, pp.41-56, 2014.

J. Ritho, S. T. Arold, and E. T. Yeh, A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress, Cell Reports, vol.12, issue.5, pp.734-742, 2015.

Q. Cai, S. C. Verma, P. Kumar, M. Ma, and E. S. Robertson, Hypoxia Inactivates the VHL Tumor Suppressor through PIASy-Mediated SUMO Modification, PLoS ONE, vol.5, issue.3, p.e9720, 2010.

L. Sun, H. Li, J. Chen, Y. Iwasaki, T. Kubota et al., PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells, Journal of Cell Science, vol.126, issue.17, pp.3939-3947, 2013.

A. Carbia-nagashima, J. Gerez, C. Perez-castro, M. Paez-pereda, S. Silberstein et al., RSUME, a Small RWD-Containing Protein, Enhances SUMO Conjugation and Stabilizes HIF-1? during Hypoxia, Cell, vol.131, issue.2, pp.309-323, 2007.

Y. Xu, Y. Zuo, H. Zhang, X. Kang, F. Yue et al., Induction of SENP1 in Endothelial Cells Contributes to Hypoxia-driven VEGF Expression and Angiogenesis, Journal of Biological Chemistry, vol.285, issue.47, pp.36682-36688, 2010.

A. Nunez-o'mara and E. Berra, Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade, Biol Chem, vol.394, issue.4, pp.459-69, 2013.

X. Z. Wu, G. R. Xie, and D. Chen, Hypoxia and hepatocellular carcinoma: The therapeutic target for hepatocellular carcinoma, Journal of Gastroenterology and Hepatology, vol.22, issue.8, pp.1178-1182, 2007.

D. Lin and J. Wu, Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target, World Journal of Gastroenterology, vol.21, issue.42, p.12171, 2015.

J. S. Seeler and A. Dejean, SUMO and the robustness of cancer, Nature Reviews Cancer, vol.17, issue.3, pp.184-197, 2017.

M. L. Tomasi, I. L. Tomasi, K. Ramani, R. M. Pascale, J. Xu et al., S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers, Hepatology, vol.56, issue.3, pp.982-993, 2012.

J. Li, Y. Xu, X. D. Long, W. Wang, H. K. Jiao et al., Cbx4 Governs HIF-1? to Potentiate Angiogenesis of Hepatocellular Carcinoma by Its SUMO E3 Ligase Activity, Cancer Cell, vol.25, issue.1, pp.118-131, 2014.

E. Villa, R. Critelli, B. Lei, G. Marzocchi, C. Cammà et al., Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study, Gut, vol.65, issue.5, pp.861-869, 2015.

N. Embade, D. Fernández-ramos, M. Varela-rey, N. Beraza, M. Sini et al., Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation, Hepatology, vol.55, issue.4, pp.1237-1248, 2012.

M. S. Rodriguez, J. M. Desterro, S. Lain, C. A. Midgley, D. P. Lane et al., SUMO-1 modification activates the transcriptional response of p53, The EMBO Journal, vol.18, issue.22, pp.6455-6461, 1999.

E. Da-silva-ferrada, W. Xolalpa, V. Lang, F. Aillet, I. Martin-ruiz et al., Analysis of SUMOylated proteins using SUMO-traps, Scientific Reports, vol.3, issue.1, p.1690, 2013.

N. Eswar, D. Eramian, B. Webb, M. Y. Shen, and A. Sali, Protein Structure Modeling with MODELLER, Methods in Molecular Biology, vol.426, pp.145-159, 2008.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo et al., The Amber biomolecular simulation programs, Journal of Computational Chemistry, vol.26, issue.16, pp.1668-1688, 2005.

J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser et al., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, Journal of Chemical Theory and Computation, vol.11, issue.8, pp.3696-3713, 2015.

G. V. Papamokos, G. Tziatzos, D. G. Papageorgiou, S. D. Georgatos, A. S. Politou et al., Structural Role of RKS Motifs in Chromatin Interactions: A Molecular Dynamics Study of HP1 Bound to a Variably Modified Histone Tail, Biophysical Journal, vol.102, issue.8, pp.1926-1933, 2012.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, and J. Hermans, Interaction Models for Water in Relation to Protein Hydration, The Jerusalem Symposia on Quantum Chemistry and Biochemistry, pp.331-342, 1981.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, pp.3684-3690, 1984.

D. R. Roe and T. E. Cheatham, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data, Journal of Chemical Theory and Computation, vol.9, issue.7, pp.3084-3095, 2013.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.25, issue.13, pp.1605-1612, 2004.

N. Martinez-lopez, J. L. Garcia-rodriguez, M. Varela-rey, V. Gutierrez, D. Fernandez-ramos et al., Hepatoma cells from mice deficient in glycine Nmethyltransferase have increased RAS signaling and activation of liver kinase B1, Gastroenterology, vol.143, issue.3, pp.1-13, 2012.

N. Martínez-lópez, M. Varela-rey, D. Fernández-ramos, A. Woodhoo, M. Vázquez-chantada et al., Activation of LKB1-Akt pathway independent of phosphoinositide 3-kinase plays a critical role in the proliferation of hepatocellular carcinoma from nonalcoholic steatohepatitis, Hepatology, vol.52, issue.5, pp.1621-1631, 2010.

M. Vázquez?chantada, D. Fernández?ramos, N. Embade, N. Martínez?lopez, M. Varela?rey et al., HuR/Methyl-HuR and AUF1 Regulate the MAT Expressed During Liver Proliferation, Differentiation, and Carcinogenesis, Gastroenterology, vol.138, issue.5, pp.1943-1953.e3, 2010.

K. D. Sarge and O. K. Park-sarge, SUMO and Its Role in Human Diseases, International Review of Cell and Molecular Biology, vol.288, pp.167-183, 2011.

E. Da-silva-ferrada, F. Lopitz-otsoa, V. Lang, M. S. Rodríguez, and R. S. Matthiesen, Strategies to Identify Recognition Signals and Targets of SUMOylation, Biochemistry Research International, vol.2012, pp.1-16, 2012.

Y. C. Liang, C. C. Lee, Y. L. Yao, C. C. Lai, M. L. Schmitz et al., SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies, Scientific Reports, vol.6, issue.1, p.26509, 2016.

F. P. Zhang, L. Mikkonen, J. Toppari, J. J. Palvimo, I. Thesleff et al., Sumo-1 Function Is Dispensable in Normal Mouse Development, Molecular and Cellular Biology, vol.28, issue.17, pp.5381-5390, 2008.

Q. F. Jiang, Y. W. Tian, Q. Shen, H. Z. Xue, and K. Li, SENP2 regulated the stability of ?-catenin through WWOX in hepatocellular carcinoma cell, Tumor Biology, vol.35, issue.10, pp.9677-9682, 2014.

G. Beauclair, A. Bridier-nahmias, J. F. Zagury, A. Saïb, and A. Zamborlini, JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs, Bioinformatics, vol.31, issue.21, pp.3483-3491, 2015.

F. Lan, J. M. Cacicedo, N. Ruderman, and Y. Ido, SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1, Journal of Biological Chemistry, vol.283, issue.41, pp.27628-27635, 2008.

M. Gertz, F. Fischer, G. T. Nguyen, M. Lakshminarasimhan, M. Schutkowski et al., Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism, Proceedings of the National Academy of Sciences, vol.110, issue.30, pp.E2772-E2781, 2013.

Y. Lu, S. Ding, R. Zhou, and J. Wu, Structure of the complex of phosphorylated liver kinase B1 and 14-3-3zeta, Acta Crystallogr F Struct Biol Commun, vol.73, pp.196-201, 2017.

M. L. Martinez-chantar, M. Vazquez-chantada, U. Ariz, N. Martinez, M. Varela et al., Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice, Hepatology, vol.47, issue.4, pp.1191-1200, 2008.

B. L. Krock, N. Skuli, and M. C. Simon, Hypoxia-induced angiogenesis: good and evil, Genes Cancer, vol.2, issue.12, pp.1117-1150, 2011.

C. J. Kim, Y. G. Cho, J. Y. Park, T. Y. Kim, J. H. Lee et al., Genetic analysis of the LKB1/ STK11 gene in hepatocellular carcinomas, Eur J Cancer, vol.40, issue.1, pp.136-177, 2004.

L. V. Rhodes, C. R. Tate, V. T. Hoang, H. E. Burks, D. Gilliam et al., Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1, Oncogene, vol.4, p.168, 2015.

S. H. George, A. Milea, R. Sowamber, R. Chehade, A. Tone et al., Loss of LKB1 and p53 synergizes to alter fallopian tube epithelial phenotype and high-grade serous tumorigenesis, Oncogene, vol.35, issue.1, pp.59-68, 2016.

S. Sengupta, A. Nagalingam, N. Muniraj, M. Y. Bonner, P. Mistriotis et al., Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3, Oncogene, vol.36, issue.41, pp.5709-5730, 2017.

D. Zhong, X. Liu, F. R. Khuri, S. Y. Sun, P. M. Vertino et al., LKB1 is necessary for Aktmediated phosphorylation of proapoptotic proteins, Cancer Res, vol.68, issue.18, pp.7270-7277, 2008.

Z. Xie, Y. Dong, M. Zhang, M. Z. Cui, R. A. Cohen et al., Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells, J Biol Chem, vol.281, issue.10, pp.6366-75, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390882

Z. Xie, Y. Dong, R. Scholz, D. Neumann, and M. H. Zou, Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMPactivated protein kinase in endothelial cells, Circulation, vol.117, issue.7, pp.952-62, 2008.

B. Zheng, J. H. Jeong, J. M. Asara, Y. Y. Yuan, S. R. Granter et al., Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation, Mol Cell, vol.33, issue.2, pp.237-284, 2009.

I. Matic, M. Van-hagen, J. Schimmel, B. Macek, S. C. Ogg et al., In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy, Mol Cell Proteomics, vol.7, issue.1, pp.132-176, 2008.

R. S. Hilgarth, L. A. Murphy, H. S. Skaggs, D. C. Wilkerson, H. Xing et al., Regulation and function of SUMO modification, J Biol Chem, vol.279, issue.52, pp.53899-902, 2004.

C. M. Eggers, E. R. Kline, D. Zhong, W. Zhou, and A. I. Marcus, STE20-related kinase adaptor protein alpha (STRADalpha) regulates cell polarity and invasion through PAK1 signaling in LKB1-null cells, J Biol Chem, vol.287, issue.22, pp.18758-68, 2012.

P. Y. Zeng and S. L. Berger, LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation, Cancer Res, vol.66, issue.22, pp.10701-10709, 2006.

C. Unger, A. Buchmann, C. L. Bunemann, S. Kress, and M. Schwarz, Wild-type function of the p53 tumor suppressor protein is not required for apoptosis of mouse hepatoma cells, Cell Death Differ, vol.5, issue.1, pp.87-95, 1998.

Z. Nagy, I. Kovacs, M. Torok, D. Toth, G. Vereb et al., Function of RasGRP3 in the formation and progression of human breast cancer, Mol Cancer, vol.13, p.96, 2014.

E. Zeqiraj, B. M. Filippi, S. Goldie, I. S. Navratilova, J. Boudeau et al., ATP and MO25? Regulate the Conformational State of the STRAD? Pseudokinase and Activation of the LKB1 Tumour Suppressor, PLoS Biology, vol.7, issue.6, p.e1000126, 2009.