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Global evidence of positive biodiversity effects on
spatial ecosystem stability in natural grasslands
Yongfan Wang1, Marc W. Cadotte 2,3, Yuxin Chen1, Lauchlan H. Fraser4, Yuhua Zhang1,5, Fengmin Huang1,
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The effect of biodiversity on primary productivity has been a hot topic in ecology for over

20 years. Biodiversity–productivity relationships in natural ecosystems are highly variable,

although positive relationships are most common. Understanding the conditions under which

different relationships emerge is still a major challenge. Here, by analyzing HerbDivNet data,

a global survey of natural grasslands, we show that biodiversity stabilizes rather than

increases plant productivity in natural grasslands at the global scale. Our results suggest

that the effect of species richness on productivity shifts from strongly positive in low-

productivity communities to strongly negative in high-productivity communities. Thus,

plant richness maintains community productivity at intermediate levels. As a result, it

stabilizes plant productivity against environmental heterogeneity across space. Unifying

biodiversity–productivity and biodiversity–spatial stability relationships at the global scale

provides a new perspective on the functioning of natural ecosystems.
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The effect of plant biodiversity on primary productivity has
been a central research theme in ecology over recent dec-
ades1–6, but the variation in the strength and shape of

biodiversity–productivity relationships has led to debates about the
generality of these patterns and their causal mechanisms4,7–13.
Changes in biodiversity–ecosystem functioning relationships along
environmental gradients have been reported in both biodiversity
experiments14,15 and natural plant communities5,12,16–18, although
a positive relationship is the most common pattern1–5,12,19.

A number of mechanisms have been proposed to explain
why biodiversity–productivity relationships may be context-
dependent18. At the global extent, however, stress level might
be the most important factor in modulating biodiversity effects on
productivity, because: (1) stress is a broad concept that includes
light, water, and nutrient availability, suboptimal temperatures,
and disturbances20,21, and hence that encompasses most of the
factors that affect plant growth; and (2) the effects of biodiversity
on ecosystem functioning come from species interactions, the
magnitude and direction of interactions of which shift along
stress gradients14,22. A recent study showed that water availability
was the most important factor modulating the relationship
between species richness and forest functioning18. Although
stress is hard to measure precisely23,24, stressful environments
might be best defined as those in which plants are limited by
the environment in their ability to convert energy into
biomass20,24,25. Therefore, we can assume that high stress is
associated with low productivity. Changes in the sign and shape
of the biodiversity–productivity relationship along gradients of
stress or productivity have rarely been investigated16,26.

The stress-gradient hypothesis predicts that facilitative inter-
actions amongst plant species dominate under harsh conditions,
whereas competitive interactions dominate under more favorable
conditions16,21,22,27,28. The complementarity effect includes niche
partitioning and facilitative interactions between species29. For
example, complementarity between species is more important in
the more stressful environment of boreal forests than in tempe-
rate forests growing in a more stable and productive environment
where competition is more prevalent16. Community productivity
mainly depends on the yield of dominant species (competitively
superior species), but dominant species are not necessarily high-
yielding species30. As a result, the role of the selection effect in the
relationship between biodiversity and productivity is generally
variable, while the complementarity effect is the main source of
the positive effect of biodiversity on community productivity3,31.
A decrease in the complementarity effect should weaken the
positive correlation between biodiversity and productivity;
thus, we may expect the positive biodiversity–productivity rela-
tionship to vary along stress or productivity gradients in response
to changes in species interactions10,16,26. Complementarity in
stressful environments might enhance the positive effect of bio-
diversity on productivity where average productivity is low.
This positive biodiversity–productivity relationship should
gradually flatten out in more fertile environments, in which
complementarity is less important16. If this is the case,
biodiversity–productivity relationships should converge as plant
biodiversity increases (Fig. 1a), and thus the spatial variation in
primary productivity between different communities should be
smaller at high vs. low biodiversity. Therefore, our hypothesis is
that biodiversity reduces the spatial variability —i.e., increases the
spatial stability or predictability— in productivity at large spatial
scales (Fig. 1b).

Stability has many different definitions in ecology32,33. Here we
focus on spatial stability, S, which measures the similarity of
ecosystem properties such as productivity across different grass-
land communities worldwide. S is defined as 1/variability, where
variability is a measure of the magnitude of spatial changes in an

ecosystem property. Compared with the large number of studies
on the influence of biodiversity on the temporal stability of
ecosystems, i.e., the invariability of an ecosystem property
over time34–40, the potential impact of biodiversity on the
spatial stability of ecosystem properties has received little
attention39,41,42.

Here, we use data from a global survey of natural grasslands,
the Herbaceous Diversity Network (HerbDivNet)43,44, to test the
following two hypotheses: (i) as productivity increases, the posi-
tive effect of biodiversity on plant productivity decreases (see
Fig. 1a); and (ii) the spatial stability of community productivity
increases with increasing biodiversity (see Fig. 1b). HerbDivNet
involves five grassland types: temperate, temperate wet meadow,
Mediterranean, tropical and subtropical, and alpine. The network
has 9640 plots (each 1m × 1m) distributed across 151 grids (each
8m × 8m) in 30 natural grasslands (sites) from 19 countries and
six continents (Fig. 3 and Supplementary Fig. 1). In each plot,
both species richness and aboveground live biomass at peak
biomass were measured. We use peak biomass as a surrogate
measure of annual primary productivity and use plant species
richness as the measure of biodiversity. Each grid was established
in a patch of relatively homogeneous area, which means that each
grid was small enough to exclude significant variations in abiotic
conditions, which allowed us to test the effects of biodiversity on
productivity. We show that as productivity increases, the positive
correlation between biodiversity and productivity decreases
gradually, and finally becomes negative. Our analysis further
indicates that at the global extent, the role of biodiversity is not so
much to promote productivity as to stabilize it against environ-
mental heterogeneity across space.

Results
Biodiversity and productivity. We first used structural equation
models to test the linkages among biodiversity, productivity, and
abiotic conditions. We found that the three climatic variables
(total amount of precipitation, average number of daylight hours,
and average temperature during the growing season) had sig-
nificant effects on both biodiversity and productivity, and there
was a partial negative effect of biodiversity on productivity
(Fig. 2). Only 10% of the variance in productivity could be
explained by number of daylight hours, temperature, precipita-
tion, and biodiversity, and only 5% of the variance in biodiversity
could be explained by the three climatic variables, suggesting that
soil factors may also have important effects on biodiversity and
productivity.

We then divided the 151 grids into three classes of mean
productivity (low, medium, and high) with equal numbers of
grids to form a productivity gradient, and repeated the structural
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Fig. 1 Hypothetical relationships between richness, productivity and
stability in natural ecosystems. a The local effect of species richness on
primary productivity is expected to vary along environmental gradients,
leading to a convergence of richness–productivity relationships with
increasing diversity. b As a result, the spatial stability of productivity
between communities that experience different environments should
increase as plant richness increases
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equation model analysis for the three groups separately (Fig. 3).
In this way, we were able to test how the partial effect r∂ð Þ of
biodiversity on productivity changed across the productivity
gradient. We found that r∂ differed more considerably among
productivity classes than our hypothesis predicts (see Fig. 1a).
There was a clear tendency for r∂ mean ± SDð Þ to shift
from strongly positive 0:247 ± 0:019ð Þ to weakly positive
0:089 ± 0:019ð Þ to strongly negative �0:307 ± 0:017ð Þ under
unproductive, moderate and highly productive conditions,
respectively (inset in Fig. 3). When we consider all three
productivity groups together by using a multi-group modeling,
the results were similar: r∂ ¼ 0:247 ± 0:005, r∂ ¼ 0:089 ± 0:006,
and r∂ ¼ �0:307 ± 0:022 for low, medium, and high productivity,
respectively. The effects of biodiversity on productivity also

showed large variations among the 151 grids and three grid
groups (grids were divided into low, medium, and high
productivity groups as above) in the Bayesian models. Grids
(Figs. 4a and 5) or grid groups (inset in Fig. 5) with a higher
productivity tended to have more negative biodiversity effects,
while grids or grid groups with a lower productivity tended to
have more positive biodiversity effects.

Biodiversity and spatial variability. The opposite
biodiversity–productivity relationships at low and high pro-
ductivity suggest that biodiversity does not increase plant pro-
ductivity universally but instead stabilizes it across space.
Therefore, we further investigated the global relationships
between biodiversity and the spatial variability of plant
productivity. Plots were grouped by species richness, and SD
(standard deviation) and CV (coefficient of variation) of pro-
ductivity across plots were then calculated within each richness
group. Using simple linear and quadratic regressions, we found
that increasing biodiversity significantly reduced productivity
variability (Fig. 6a, c). Also, the negative relationship between
biodiversity and productivity variability was not sensitive to the
statistical method used: we constructed hierarchical Bayesian
models to fit both the central tendency of productivity (i.e.,
biodiversity effect on mean productivity) and the variation
around the central tendency (i.e., biodiversity effect on pro-
ductivity variability) as a function of biodiversity, and SD and CV
of productivity all decreased with biodiversity (Figs. 4b and 6b, d
and Supplementary Table 1).

We then tested if the biodiversity–spatial variability relation-
ship depended on the level of productivity. The 151 grids were
divided into three equal groups (low, medium, and high)
depending on their mean productivity as in Fig. 3. We repeated
the simple regression analysis (Supplementary Fig. 2) and the
hierarchical Bayesian model (Supplementary Fig. 3) for the three
groups separately. The biodiversity–spatial variability relationship
shifted from slightly negative (or no correlation) at the low
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Fig. 2 Structural equation models showing the connections between
biodiversity and productivity at the plot level (N= 9640 plots). All retained
arrows are significant (P < 0.05). Solid and dashed one-way arrows
represent positive and negative effects, respectively. Solid and dashed two-
way arrows represent positive and negative correlations, respectively.
Standardized regression weights (along one-way arrows), correlations
(along two-way arrows) and squared multiple correlations (beside
Biodiversity and Productivity boxes) for the fitting model are shown. The
exogenous unobserved variable err1 and err2 account for the unexplained
errors in the estimation of biodiversity and productivity, respectively. Test
statistic= 0.761, with 1 model degree of freedom and P= 0.383 (indicating
close model-data fit). Source data are provided as a Source Data file
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Fig. 3 Global relationships between biodiversity and productivity in natural grasslands at the plot level. Marginal histograms show the frequency
distribution of biodiversity and productivity across plots (N= 9640 plots). The 151 grids were divided into three equal groups depending on their mean
productivity: low, medium, and high productivity (with 50–51 grids each), corresponding to different colors of the points (plots). Repeating the structural
equation model analysis for the three groups separately, the partial effects mean± SDð Þ of biodiversity on productivity along the productivity gradient are
shown in the inset. Each bar corresponds to points of the same color. Symbols are slightly displaced at x-axis to improve readability. Asterisks indicate a
significant difference from zero: *P < 0.05; **P < 0.01; ***P < 0.001. Source data are provided as a Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11191-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3207 | https://doi.org/10.1038/s41467-019-11191-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


productivity level to increasingly negative at the medium and
high productivity levels. In other words, the higher the
productivity level, the stronger stabilizing effects of biodiversity
across space. Although the trends were similar overall, the results
were slightly different depending on whether variability was
measured by SD or CV. The relationship between biodiversity
and spatial variability was fairly negative in the ‘high productivity’
group, weakly negative in the ‘medium productivity’ group, and
non-significant for the ‘low productivity’ group when using SD.
When using CV, all the relationships were significantly negative.

Structural equation models revealed that species richness had a
strong negative effect on productivity spatial variability
(r∂ ¼ �0:39, P � 0:05 for both SD and CV). More than 78% of
the variance in productivity spatial variability was explained by
the number of plots, species richness and mean productivity
(Fig. 7, Supplementary Fig. 4 and Supplementary Table 2; see

Methods). Similar results were obtained when we used grid-mean
data (Supplementary Fig. 5). We also tested if more diverse grids
were less variable in productivity across plots. Both SD and CV of
productivity across plots for each grid were negatively correlated
with grid-level mean richness (Supplementary Fig. 6). Thus, our
results show unambiguously that grassland productivity becomes
less variable or more predictable when species richness increases,
regardless of abiotic conditions.

Discussion
At the global extent, by analyzing HerbDivNet data across 30 sites
in 19 countries and six continents, our results reveal that the
shape of the biodiversity–productivity relationship depends
strongly on the level of productivity of natural grasslands. Under
low-productivity conditions (corresponding to stressful habitats),
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biodiversity promotes community productivity; while under high-
productivity conditions (corresponding to favorable environ-
ments), biodiversity inhibits community productivity. Our results
may be due to variations in the sign and strength of interspecific
interactions along the stress gradient. Because community pro-
ductivity was not separated by species and species productivity in
monocultures was not available44, we were unable to directly
analyze variations in species interactions along productivity gra-
dients. More detailed analyses of interspecific interactions would
be useful in future research.

Small-scale experiments using artificial grasslands have repeat-
edly found positive effects of biodiversity on productivity1,2,13,45.
We suggest that artificial grasslands rarely include low- and high-
productivity ecosystems. Ecologists often look for ‘suitable’ sites for
their experiments. The environment cannot be too fertile (leading
to overgrowth) or too harsh (making it difficult to establish
grassland vegetation in a short time). Thus, the range of environ-
mental conditions in experimental grasslands may be much nar-
rower than the range in natural grasslands. For example,
BIODEPTH is one of the most famous artificial grassland experi-
ments conducted in eight sites in seven European countries1. Like
‘grid’ in HerbDivNet, each ‘site’ in BIODEPTH was also established
in a patch of relatively homogeneous area. Using the mean peak
biomass of plots with eight species (the highest richness common
to all eight sites), as an approximation of the mean productivity of
the site, the range of productivity in BIODEPTH (site-level mean
aboveground biomass ranged from 337 to 802 gm−2) was much
narrower than that of HerbDivNet (grid-level mean aboveground
biomass ranged from 30 to 1382 gm−2). Therefore, a wide range
of productivity (a sufficiently large environmental stress gradient)

may be necessary to see the full picture of changes in
biodiversity–productivity relationships. This might be a reason why
grassland experiments rarely detected negative biodiversity effects
on productivity. Indeed, our high-productivity grids (12 grids with
mean biomass over 850 gm−2, ~8% of the 151 grids) contributed
considerably to the negative effects of biodiversity on productivity
(Fig. 5).

Although biodiversity did not have a consistent effect on
productivity, it did contribute to the stability of productivity
across space through changes in the biodiversity–productivity
relationship along a productivity gradient. Our work suggests that
biodiversity stabilizes rather than increases productivity at large
spatial scales in natural grasslands. Biodiversity appears to buffer
ecosystems against environmental heterogeneity, and thus to
reduce their dependency on abiotic factors46. Furthermore, the
species richness–spatial variability relationship varied with the
productivity level, i.e., species diversity increased spatial stability,
and these effects were greatest in the most productive ecosystems.
This is complementary to the results of the world’s longest-
running experiment across ecosystems47, which considered
temporal stability. The relationships between richness and spatial
variability had consistently negative slopes along the productivity
gradients when using CV as a measure of variability, but this was
not the case when using SD (see Supplementary Figs. 2 and 3).
This is due to the difference in the measurement of spatial
variability: SD is a measure of the average deviation from the
mean productivity, and is thus an absolute measure of variability;
while CV is the ratio between SD and mean productivity, and is
thus a relative measure that removes the impact of mean pro-
ductivity. In the high productivity group, the relationship
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between richness and productivity was negative (see the insets in
Figs. 3 and 5), thus reducing the negative correlation between
richness and spatial variability when the measure of variability is
changed from SD to CV. There is still a fairly negative correlation
between richness and CV, indicating that our result that biodi-
versity increases spatial stability is very robust in highly pro-
ductive environments. However, as the level of productivity
decreases (in medium and low productivity groups), the rela-
tionship between richness and productivity becomes positive,
which contributes to strengthening the negative correlation
between richness and variability when SD is replaced by CV.
Since CV removes the impact of mean productivity, it is a more
widely used measure of ecosystem variability34,35,39,41,42, which
suggests that our conclusion that biodiversity decreases spatial
variability is robust. These findings have important implications
in the context of global change. As a result of global warming and
rising carbon dioxide concentrations in the atmosphere, the pri-
mary productivity of ecosystems is expected to increase as well.
Larger numbers of species will be needed to maintain ecosystem
performance as the global climate continues to change48,49.

With the decrease of environmental stress (that is, as pro-
ductivity increases), the positive correlation between biodiversity
and productivity weakens gradually, and eventually becomes
negative. This gradual change explains why spatial stability
increases with increasing biodiversity. Existing theories,
however, do not fully explain the negative relationship between
biodiversity and productivity. Two primary mechanisms, the
complementarity and selection effects, have been widely used to

interpret biodiversity effects on ecosystem functioning. The
complementarity effect results from resource partitioning or
positive interactions between species29, and is generally
positive3,29,31. The selection effect is due to shifts in dominance
driven by interspecific competition29,50. The net biodiversity
effect (complementarity+selection) on productivity may be
negative if low-yielding species tend to be dominant in plant
communities, which leads to a negative relationship between
biodiversity and productivity. Experimental researches have
shown that a priority effect due to species growing at different
times explains this negative correlation between success in
interspecific mixtures and biomass production. Low-yielding
grass species grow early in the year and suppress higher yielding
forbs that grow later30,51, it leads to negative selection and
complementary effects30. This could continue year after year, if
grasses have earlier phenology than forbs, and they suppressed
growth of the forbs51. It is true that high-yielding species are not
always the most dominant30,51. This mechanism partially
explains the negative relationship between biodiversity and pro-
ductivity in all environments.

An alternative hypothesis that could explain the negative effect
of biodiversity at high levels of productivity is allelopathic effects
at high plant density. To compete for space and resources, many
plant species interfere with neighboring plants through the pro-
duction and release of secondary metabolites (allelochemicals) in
the surrounding environment through leachates, litter decom-
position, root exudates and leaf volatilization52. Communities
with a higher productivity may also experience stronger inter-
specific competitive interactions, which may increase allelopathic
effects. Mutual poisoning among species will reduce the pro-
ductivity of the plant community as a whole. If allelopathy has
larger negative effects on plant growth at high vs. low biodiversity
under fertile conditions, it could create a negative relationship
between biodiversity and productivity. We hope that our work
will be a starting point for new experiments to test this hypoth-
esis. Understanding the biological mechanisms that underlie
negative biodiversity effects on productivity will be an important
addition to the existing theory of biodiversity and ecosystem
functioning.

A few experimental studies have also shown that biodiversity
decreases spatial variation in ecosystem properties41,53,54, but
these studies were all based on artificial or highly manipulated
ecosystems at very small scales and over limited richness gra-
dients. Varying relationships between biodiversity and ecosystem
functioning along environmental stress gradients have also been
found in other natural systems. By reanalyzing data from a global
survey of drylands55, Jucker & Coomes26 showed that the
strength of the relationship between biodiversity and ecosystem
multifunctionality changed consistently from slightly negative to
increasingly positive as the environment became harsher. The
scope of this survey was limited to arid, semi-arid, and dry-
subhumid ecosystems, which collectively cover 41% of Earth’s
land surface. Another large-scale forest survey in eastern Canada
also revealed that different biodiversity–productivity relationships
in boreal and temperate forest types converged as plant species
diversity increased once climate and environment were factored
in Paquette et al.16. Temperate forests with favorable habitats
showed a nearly flat relationship between biodiversity and pro-
ductivity but a proportionally larger intercept (i.e., a greater
productivity at low diversity), while boreal forests in less favorable
environments showed a lower productivity on average but a
much stronger, mostly positive linear response to biodiversity.
Although these two studies16,26 made no further analysis to link
the convergence of the different biodiversity–functioning rela-
tionships to spatial stability, the trend is clear. Both results from
natural drylands and forest ecosystems support our hypothesis
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that, on a large scale, the effect of biodiversity is not so much to
enhance ecosystem functioning as to stabilize it.

We acknowledge that in addition to light, temperature, and
water, other abiotic and biotic factors also have important effects
on plant richness and productivity. For example, Grace et al.4

showed that soil factors, and the influences of human and her-
bivorous animals are important determinants of grassland rich-
ness, biomass, and productivity. We did not have access to data
for these variables, and thus we did not include them in our
analyses.

There is some evidence that biodiversity increases the stability of
ecosystem processes and properties through time, across space, or
both34–41,47,53,54. Although there has been some overlap between
studies on biodiversity–productivity and biodiversity–stability
relationships, the connections between the effects of biodiversity
on ecosystem functioning and ecosystem stability remain
unclear3,10,35,38,56,57. Our work provides a unifying perspective on
these two types of relationships. The effects of biodiversity on
productivity and on its spatial stability should be viewed as two
aspects of the same ecological process, i.e., the variations in the sign
and strength of interspecific interactions along a stress or pro-
ductivity gradient. Our findings have important implications for
biodiversity conservation. They suggest that biodiversity con-
servation will be more beneficial to mean ecosystem functioning in
low-productivity areas, while it will be more beneficial to the sta-
bilization of ecosystem functioning in high-productivity areas.
They also suggest that the effects of biodiversity on ecosystem
functioning can only be understood comprehensively on large, or
even global, scales. Integrating biodiversity–productivity and
biodiversity–stability relationships into a single unified picture at
the global extent provides a system-level understanding of ecolo-
gical processes that is likely to transform ecology into a more
systematic science.

Methods
Data selection. To minimize the methodological differences that exist among
disparate studies, a global survey of natural grasslands uses consistent data-
collection methods for testing global hypotheses in ecology and environmental
science: the Herbaceous Diversity Network (HerbDivNet)43,44. HerbDivNet con-
ducts coordinated surveys in 30 natural grasslands (sites) from 19 countries and six
continents (Supplementary Fig. 1; the map is displayed using package “maps” in R
version 3. 4. 1). Grassland type was separated into 5 categories: temperate, tem-
perate wet meadow, Mediterranean, tropical and subtropical, and alpine. At each
site, between 2 and 14 grids (each 8 m × 8m in size) were sampled, and each
grid was located in a patch of relatively homogeneous environment. HerbDivNet
has 10,048 plots (each 1 m × 1 m), most of which have peak live biomass, total
(live+litter) biomass and species richness data (https://datadryad.org/resource/
doi:10.5061/dryad.038q8). The decomposition rate of plant litter varies greatly
among different sites, so that using total (live+litter) biomass would cause a large
error. Therefore, we used data from the 9640 plots in which both species richness
and aboveground live biomass were measured in our analysis (Fig. 3). The
aboveground live biomass at peak biomass was used as a surrogate measure of
primary productivity, and the plant species richness was used as a measure of
biodiversity. These plots were distributed in 151 grids, each of which contained
from 60 to 64 plots. HerbDivNet spans a wide range of plant biomass (from 2 to
3374 g m−2, with 480 plots over 1000 g m−2, about 5% of the 9640 plots), and
provides sufficient replication of plots along the productivity gradient.

Spatial variability. We investigated the global relationships between species
richness and the spatial variability of productivity at different levels of species
richness. The spatial variability of productivity within a group of plots with same
richness was calculated using two metrics of dispersion: (i) standard deviation
(SD), the average deviation from the mean value, which has been used as a measure
of ecosystem variability in previous studies53,54; and (ii) coefficient of variation
(CV), the ratio between the standard deviation SD and the mean μ (SD/μ). CV
reflects the average change of productivity per unit weight, which increases com-
parability among different ecosystems; it is widely used as a measure of ecosystem
variability34,35,39,41,42. We used the two metrics to make the results more robust.
Both these metrics measure the inverse of the spatial stability or predictability of
total productivity.

Structural equation model. We used structural equation models (SEM) to test the
causal linkages between biodiversity, productivity, and abiotic factors. SEM is an
analytical method designed to evaluate the assumptions about complex causal
networks of cause−effect relationships58,59. SEM has been considered in recent
years to be an effective way of integrative understanding of the causal mechanisms
controlling biodiversity–productivity relationships in natural systems4. For plant
growth, light, temperature, and moisture are essential. We extracted the average
monthly data on air temperature and precipitation in each site from WorldClim
(http://worldclim.org/version2)60 by mapping the site location (longitude and
latitude) to the nearest 1 km × 1 km grid. Note that the ‘grid’ here refers to the earth
surface grid, it is different from ‘grid’, one of the grassland sampling units. We
defined ‘temperature’ as the average air temperature of the growing season (in the
northern hemisphere from January to August; in the southern hemisphere from
July to February), and ‘moisture’ as the total amount of precipitation in the
growing season. In open grasslands, light time may be a more important factor of
plant growth than is light intensity, so we chose the number of daylight hours
during the growing season as a measure of light availability. We obtained the
average monthly number of daylight hours at each longitude and latitude integer
point from ‘NASA Surface Meteorology and Solar Energy: Global Data Sets’
(https://eosweb.larc.nasa.gov/cgi-bin/sse/global.cgi). Light availability at each
sampling site was obtained as the weighted average of the numbers of daylight
hours at the four integer longitude and latitude points around it, with a weight
inversely proportional to distance. We used daylight hours, temperature, and
precipitation during the growing season as independent variables to explain plot
richness and plot productivity. Plot richness was an intermediate variable and plot
productivity a response variable (Fig. 2). Maximum likelihood was used to estimate
model parameters. In order to test how the partial effect of biodiversity on pro-
ductivity changes across productivity gradient, the 151 grids were divided into
three equal groups depending on their mean productivity: low, medium, and high
productivity (with 50 to 51 grids each). We then repeated the above SEM analysis
for the three groups separately. We also used a multi-group modeling (Simulta-
neous analysis of several groups) by considering the three groups at the same time.
We checked whether the results were similar if we considered the three groups
independently or together.

We also used structural equation models to test the causal relationships between
species richness, productivity, and spatial variability of productivity. The 9640 plots
were grouped into 47 groups by species richness level as in Fig. 6. For each plot
group, four variables were calculated: species richness, mean productivity,
productivity variability across plots (measured as either SD or CV), and number of
plots. Number of plots was chosen as an independent variable because productivity
variability across plots may be associated with the number of plots at a given
species richness: the larger the number of plots, the greater the likelihood of
extreme productivity values, and the greater the variability in plot productivity.
Productivity variability was always selected as a response variable with no effect on
other variables. Three competing models (Supplementary Fig. 4) were set up:
richness and mean productivity were both independent variables (Model a), and
either richness or productivity was an independent variable and the other an
intermediate variable (Model b and Model c, respectively). Maximum likelihood
was used to estimate model parameters. The three competing models were then
compared by using four absolute fit indices (χ2, GFI, AGFI, RMSEA), five relative fit
indices (NFI, RFI, IFI, TLI, CFI), and three parsimonious fit indices (NC, AIC,
CAIC; see Supplementary Table 2 for details). Model b was the best-fitting model
(P= 0.353; Fig. 7 and Supplementary Table 2).

Bayesian model. As an alternative analysis, we constructed hierarchical Bayesian
models to fit both the central tendency of productivity and the variation around the
central tendency as a function of species richness. The Bayesian model is com-
plementary to the SEM, but has the advantages in avoiding categorization of the
plots or grids into groups artificially. The full model is:

Productivityi;j;k � Normalðα0;j þ α�1;jRichnessi;j;k þ αsite; σkÞ ð1Þ

logðσkÞ � Normalðβ0 þ β1 � Richnessk; σβÞ ð2Þ

α0;j � Normalðγ0;0 þ γ0;1 � Lj þ γ0;2 � Pj þ γ0;3 � Tj; σα0 Þ ð3Þ

α1;j � Normalðγ1;0 þ γ1;1 � Grid productivityj; σα1 Þ ð4Þ
where Productivityi;j;k and Richnessi;j;k are productivity and species richness of plot
i in grid j and richness level k (i.e., plots with the same richness value k were at the
richness level k), respectively.αsite is a site-level random effect, which was modeled
as a normal distribution with zero mean. Grid-level productivity was modeled as a
function of daylight hours (Lj), precipitation (Pj) and temperature (Tj). σk , σβ , σα0 ,
and σα1 are the standard deviations of independent normal distributions; specifi-
cally, σk represents the standard deviation of the productivity at each richness level
(Fig. 6b). β1 represents the effect of richness on productivity variation (the second
hypothesis in Introduction or Fig. 1b). Grid productivityj is the average pro-
ductivity at grid j. α0;j and α1;j were used to control spatial variation in average
productivity and the effects of richness on productivity possibly induced by grid-
specific variation in productivity, respectively; γ1;1 assessed how the richness effects
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on productivity vary across stress or productivity gradients (the first hypothesis in
Introduction or Fig. 1a) (Fig. 5).

We assessed the goodness of model fit by performing posterior predictive
checks61. We calculated Bayesian p-values (PB) to assess the deviance between the
posterior distribution of predicted productivity ynewð Þ from the fitted Bayesian
models and the distribution of observed productivity yobserved

� �
. PB is defined as the

probability that the predictive distribution is more extreme than the observed
distribution. We used two statistics (T(y): mean and CV of productivity across all
plots) to summarize the distributions.

PB ¼ ProbabilityðTðynewÞ � TðyobservedÞÞ ð5Þ
A PB close to 0.5 indicates a good model fit. We also calculated PB from the

difference between predicted and observed productivity at each plot
Probabilityðynew � yobservedÞ� �

). All the three Bayesian p-values (0.508, 0.531, and
0.490 for p-values based on mean, standard deviation, and plot-level productivity,
respectively) indicate a good fit of the Bayesian model to the observed productivity.
We further assessed whether the difference of richness–productivity relationships
across grids (Fig. 1a) could lead to a positive relationship between richness and the
spatial stability of productivity (Fig. 1b). We first predicted the relationships
between richness and productivity at each grid from the estimated grid-level
parameters in the Bayesian models (α0;j and α1;j; Fig. 4a). We then sampled 60 plots
from each grid (plot numbers of grids range from 60 to 64) and calculated the SD
of predicted productivity at each richness level. We repeated the sampling for 1000
times. Finally, we assessed the relationship between richness and predicted SD of
productivity using simple linear regression (Fig. 4b).

We also fitted the relationship between species richness and the coefficient of
variation (CV) of productivity at each richness level using a similar hierarchical
Bayesian model as in Eqs 1–4 (Fig. 6d), where we replaced log (σk) with log (CVk) in
Eq. 1. We fitted all the Bayesian models using Markov Chain Monte Carlo (MCMC)
sampling techniques in JAGS 4.2.0 using the rjags package62. We set diffuse prior
distributions for all parameters (see Supplementary Materials for JAGS code). We
ran three parallel chains and used Gelman and Rubin’s convergence diagnostics to
assess parameter convergence (with a cutoff value of 1.1)63.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The grassland data are from Fraser et al.44; these data have been deposited by Fraser et al.
in the Dryad repository (https://datadryad.org/resource/doi:10.5061/dryad.038q8; Title:
raw plot data from globally distributed sites). Temperature and precipitation data are
from WorldClim (http://worldclim.org/version2), and daylight hours data are from
‘NASA Surface Meteorology and Solar Energy: Global Data Sets’ (https://eosweb.larc.
nasa.gov/cgi-bin/sse/global.cgi). The source data underlying Figs. 2, 3, 4a, b, 5, 6a–d, 7a,
b, and Supplementary Figs. 1, 2a–f, 3a–f, 5a, b, and 6a, b are provided as a Source
Data file.

Code availability
The code for the hierarchical Bayesian models and structural equation models (SEM) are
available in Supplementary Notes 1 and 2, respectively.
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