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Abstract

The purpose of this study is to estimate the in-situ emission factors of several pollutants
(particle number [PN], black carbon [BC] and several volatile and semi-volatile organic
compounds [VOCs and SVOCs]) in an urban area of Nantes, France, with real-world traffic
conditions and characterization of the fleet composition. The fleet composition and driving
conditions are characterized by the number of vehicles, their speeds and their types
(passenger cars [PCs], light commercial vehicles [LCVs], heavy-duty vehicles [HDVs]) as well
as their characteristics (make, model, fuel, engine, EURO emission standard, etc.). The
number of vehicles passing on the boulevard is around 20,000 per day with about 44% of
Euro 5 and Euro 6 vehicles. The impacts of fleet composition on emission were analyzed by
ANOVA. The results show that the fleet composition has a significant impact on emissions for
different pollutants. Higher percentage of gasoline PCs between Euro 4 to Euro 6 and Euro 4
diesel PCs induces more BC emission. Higher percentage of old gasoline and diesel vehicles
(¢ Euro 3) induces higher emission of toluene, ethylbenzene and m+p- and o-xylene.
Furthermore, emission factors estimated in this work were compared to those calculated in
other in-situ studies that show a good agreement. For the chassis bench comparison, the in-

situ PN and BC emission factors are in the same range as those measured for diesel vehicles
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without particle filter and gasoline vehicles with direct injection system. These EFs are also

comparable with old heavy duty vehicles without particle filter (5x1013-2x10%* #/km).
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1. Introduction

On-road vehicle emissions are the main cause of atmospheric pollution in urban areas.
Road transport induces particles, black carbon (BC) and of several VOCs and SVOCs (Volatile
and Semi-Volatile Organic Compounds) emissions, such as carbonyl compounds
(formaldehyde, hexanal), and BTEX (benzene, toluene, ethylbenzene, xylene) as well as
various alkanes and alkenes. These VOCs and SVOCs are non-regulated compounds that
could serve as secondary particle precursors and have serious negative impacts on human
health (Sydbom et al., 2001; Lewtas et al., 2007) and air quality in cities.

The European Union is imposing emission limits for regulated pollutants in order to
reduce road-traffic emissions. Facing on these vehicle emission standards, emission factors
are derived from dynamometer bench test (Alves et al., 2015; Yang et al., 2015; Louis et al.,
2016; Martinet et al., 2017) or from on-board emissions measurements (O’Driscoll et al.,
2016; Ntziachristos et al., 2016). These emission factors constituted an input database with
different vehicle categories using by emission models (e.g., COPERT, HBEFA, PHEM and
MOVES) for air quality studies. However, for these emission models, the emission factors
inventories for recent Euro 5 and Euro 6 vehicles are quite poor (Rexeis et al., 2013). Only
eighty Euro 5 vehicles and twenty Euro 6 vehicles (with 13 different vehicle models, and only
one Euro 6 gasoline car) were added to HBEFA Version 3.2 for regulated compounds, which
may not be representative of the entire fleet composition. The emissions of non-regulated
pollutants are rarely measured and integrated in emission models. As consequence, their
emission factors for an entire fleet could not be estimated correctly actually due to this
deficiency of database, and their impact on air quality and human health could not be

investigated accurately.



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Emission factors could be estimated in-situ for a part or an entire fleet using various
methods. The first is the chasing method, where pollutant concentrations are measured
by driving a mobile measurement platform behind either a single vehicle (Karjalainen et
al., 2014; Jezek et al., 2015) or part of the fleet present on the road (Yli-Tuomi et al.,
2005; Wang et al., 2009; Westerdahl et al., 2009; Kam et al., 2012; Ning et al., 2012;
Hudda et al., 2013). In the second method, traffic pollutant concentrations are collected
by a fixed measurement platform placed on the roadside. This method makes it possible
to measure emissions for an entire fleet driving near the measurement site (Ketzel et al.,
2003; Imhof et al., 2005; Rose et al., 2005; Jones et al., 2006; Bukowiecki et al., 2010).
For most of these studies, the number of LDVs, HDVs and buses are counted and the
traffic speeds are measured in some cases. However, the fleet compositions with vehicle
engine, capacity, combustion, age and Euro emission standard were not fully
characterized. As consequence, the impacts of fleet composition on non-regulated
pollutant emissions are hardly investigated. Furthermore, the on-road emission factors in
these cited studies were mainly calculated for particles and BC. Very few on-road
emission factors studies were focused on secondary particle precursors (carbonyl
compounds, BTEX and alkanes...). Ning et al. (2012) determined on-road emission factors
for butane, but only for an HDV/bus fleet.

In this paper, the emission factors of particle number (PN), BC, and several aliphatic,
aromatic and carbonyl compounds were estimated using the different concentrations of NOy
and a pollutant between a background measurement site and a traffic measurement site
with the fleet composition observed during the measurements campaign. Furthermore, the
fleet composition was characterized based on the vehicle type, make, model, fuel, engine,

age, Euro emission standard, as well as the traffic conditions, traffic speed, and congestion.
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ANOVA statistical analyses were performed to characterize the impact of fleet composition
on emissions. Furthermore, the emission factors estimated in this study were compared to
other emission factors calculated in previous in-situ studies and those measured on a

dynamometer bench.

2. Experimental Method

2.1 Measurement Sites

The measurements were conducted at two sites in the city of Nantes, France, between
April 19 and 30, 2017. The first site was an urban background (47°13'20.3"N 1°32'15.2"W)
site to measure urban background pollutant concentrations over a period of four days. The
second site was a traffic site in the city center (47°12'16.0"N 1°33'10.9"W). It is an urban
boulevard with two lanes of traffic in each direction, a speed limit of 30 km/h, and traffic
lights (Fig. 1). The number of vehicles passing on the boulevard is around 20,000 per day.
Trucks and buses pass on the boulevard but with a low frequency. Measurements were

conducted over a period of seven days.

2.2 Traffic Characterization

The fleet composition and traffic conditions on the traffic site were characterized by
AlyceSofreco (a private company specialized in the field of traffic measurement). These data
were recorded in both directions of traffic and over a period of seven days using two video
cameras and pneumatic-tube automatic traffic counters. The counters determined the
number of vehicles and the driving conditions (speed, traffic congestion, etc.) and the video

cameras collected the license plate numbers of each vehicle. Using these license plate
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numbers, AAAData (a private company) provided the characteristics of each vehicle,
including its make, model, vehicle type, fuel, engine, date of entry into circulation and Euro

emission standard according to the vehicle type (LDV and HDV).

2.3 Sampling Devices

The sampling devices were installed in a truck that been specially fitted with an array of
analyzers to sample the ambient air. The truck was placed along the edge of the road on the
traffic site and the sampling was carried out around at a height about two meters and at a
distance of 0.5 m of the road (Fig. 1). A Fast Mobility Particle Sizer (FMPS™; TSI) was used to
measure the distribution and total particle number ranging from 5.6 to 560 nm with 1 scan/s
at a flow rate of 8 L/min, with a concentration range from 0 to 107 particle/cm3. An
Aethalometer® (AE-33-7, Magee Scientific) was used to measure the BC concentration. The
data are collected once a second and at a flow rate of 5 L/min. The concentration ranges
from 10 to 10° ng/m?® with a detection limit of 5 ng/m?3for 1 hour. The device measures the
light attenuation for seven wavelengths from UV to IR (370, 470, 525, 590, 660, 880 and 940
nm). The 880 nm wavelength corresponding to the maximum amount of BC was used for the
quantification in this study.

VOCs and SVOCs were sampled on different cartridges with 1 sample per hour. DNPH
and Tenax™ cartridges were used to collect respectively carbonyl compounds and BTEX and
five majority alkanes with a flow rate of 1 L/min and 0.1 L/min. A private laboratory, TERA
Environnement, analyzed the cartridges (78 TENAX and 78 DNPH, including 28 for the
background site, 49 for the traffic site and 1 for the transport blank for each type of

cartridge) using standardized analytical methods (ISO-16000-6, ISO 16000-3, NIOSH 2549,
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121 NIOSH 5506 and NF X 43-025). The complete list of compounds (six BTEX, five alkanes and 11

122 carbonyl compounds) analyzed on the cartridges is given below.

123 e BTEX: benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene.
124 e Alkanes: nonane, decane, undecane, cyclopropane, ethyl, cyclohexane, ethyl.

125 e Carbonyl compounds: formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde,

126 crotonaldehyde, methacrolein, butanal, benzaldehyde, pentanal, hexanal.
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127
128 Fig. 1. Diagram of the traffic site used for the measurements.
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2.4 Emission Factors

The variation of NOy and pollutant concentrations between the background site and the
traffic site were used for estimating road-traffic emission factors (Imhof et al., 2005; Jones et
al. 2006; Johansson et al., 2009; Krecl et al., 2017). This method is based on the assumption
that the dilution of the pollutant between the exhaust outlets of vehicles and the sampler
device inlets and the behavior in the atmosphere are comparable for NOyx and the other
pollutants (Lohmeyer et al., 2002; Amato et al., 2010; Bukowiecki et al., 2010; Gietl et al.,
2010). Using this assumption, it is considered that the dilution of other pollutants may be
approximated by the dilution of NOy. The wind speed (Fig. 2) and directions during the
campaign varied between 0 and 7.6 m/s, with principally the north direction and few times
the south and west direction. The temperature varied between 0 and 19 °C with relative
humidity at about 30-99%. The following equation is used to calculate the emission factor for

a given pollutant:

EFnox
ANOx (1)

EFp=AP X

where EFp and EF y, are the emission factor for pollutant P and NOy, respectively, given in
mass or number of particles per vehicle per kilometer (#/veh/km or pg/veh/km). AP and
ANOx are the difference of concentrations between background and traffic sites for
pollutant P and NOy respectively. The emission factors for NOy used in the equation (1) were
obtained using COPERT 4 (COmputer Programme to calculate Emissions from Road
Transport) for each time step (one-hour period) with the corresponding fleet composition
characterized at the same time step. For urban driving conditions, COPERT 4 estimates a NOy

emission that takes into account cold and hot emissions.
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For all cartridges, the sampling time is one hour to have enough material for chemical
analysis. For PN and BC, the data resolution is 1 second. However, in order to be able to
analyze the emission factors with the fleet for all measured pollutants, the PN and BC
measurement were averaged in one-hour period, corresponding to the cartridge sampling
time. In addition, the NOy concentrations used for ANOy in Equation 1 are given as a 15-
minute average concentration. It is therefore impossible to go below this 15-minute time

step for calculating emission factors.
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Fig. 2. Time profiles of NOyx concentration and wind speed on the measurement week.

2.5 ANOVA Analysis

The analysis of variance (ANOVA) is a statistical technique for assessing the differences
between the dependent variables, which are the emissions, of a nominal variable with
several categories (composition of the fleet). The null hypothesis (HO) for the analysis

represents the fact that there is no significant difference between the groups. The
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alternative hypothesis considers that there is at least one significant difference among the
groups. For the ANOVA test, the F-ratio and associated probability value (p-value) are
calculated. If the p-value associated with the F is smaller than 0.05, then the HO is rejected
and the alternative hypothesis (H1) is retained (Fanelli et al., 2018) and this implies that the
groups have a significant impact on emissions (Wildt and Ahtola, 1978). It can be concluded
that the means of all groups are not equal and we can determine which groups are different
from others.

In this work, ANOVA was performed by SPAD (data analysis and data mining software) to
determine impact of fleet composition on emission factors. The nominal-leval variables used
are the number of HDVs, the percentage of diesel vehicles between pre-Euro and Euro 3, the
percentage of Euro 4 diesel, the percentage of diesel between Euro 5 and Euro 6, the
percentage of gasoline vehicles between pre-Euro and Euro 3 and the percentage of gasoline

between Euro 4 and Euro 6.

3. Results and Discussion

3.1 Fleet Composition

The number of vehicles was characterized during the measurement on the traffic site. A
total of 140,076 vehicles drove along the boulevard during the seven-day measurement
period. Many vehicles were registered twice or more times during the week. The number of
unique vehicles after removing these duplicates is 57,220. The number of vehicles varied
between 21,147 and 23,401 from Monday to Friday. On Saturday and Sunday, 18,763
vehicles and 9,860 vehicles were counted, respectively. The number of vehicles per hour was

between 600 and 1800 with an average number of 1400/h for all five weekdays and

10
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between 200 and 1600 on the weekend with an average number of 900/h. The traffic speed
was characterized for each 5 minutes. The average traffic speed for one hour was between

16 and 34 km/h on all five weekdays and 21 and 38 km/h on the weekend (

(a) (b)

D

== LCVs

=—= HDVs

Fig. 3. Weekdays (a) and weekend (b) characterization of the fleet composition during the measurement campaign. 2017

composition of the French fleet (c).

Furthermore, the fleet composition characterized during the measurement campaign
was composed of 87% passenger cars (PCs), 11% light commercial vehicles (LCVs), and 2%
heavy-duty vehicles (HDVs) on weekdays. On the weekend, it consisted of 92% PCs, 7% LCVs,
and 1% HDVs. The number of LCVs and HDVs decreased over the weekend, particularly on
Sundays. According to André et al. (2014), the entire French fleet was composed of 82% PCs,
16% LCVs, and 2% HDVs in 2017 (Fig. 3). The comparison between this study and the French
fleet composition shows the slightly higher percentage of PCs and the slightly lower
percentage of LCVs. These differences are explained by the fact that the measurements

were conducted in an urban environment, where LCV and HDV traffic is generally lower.

11
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Fig. 4. Distribution of the various Euro emission standards for PCs (a) during the measurement campaign and (b) for the

2017 French fleet.

The distribution of the various Euro emission standards for PCs during the measurements
was 14% Euro 6, 30% Euro 5, 29% Euro 4, 17% Euro 3, 7% Euro 2, 2% Euro 1, and 1% pre-
Euro vehicles (Fig. 4a). This distribution is consistent with André et al. (2014), who estimated
the PCs French fleet composed 17% Euro 6, 33% Euro 5, 26% Euro 4, 15% Euro 3, 6% Euro 2,
2% Euro 1, and 1% pre-Euro in 2017 (Fig. 4b). As regards drive technology systems, the
observed PC fleet was composed of 68% diesel vehicles, 30% gasoline vehicles, and 2% other
such as gasoline or diesel hybrid vehicles, electric vehicles, gasoline/compressed natural gas
and gasoline/liquefied petroleum gas vehicles. The LCV fleet was composed of 97% diesel
vehicles. For the HDVs, all the trucks were powered by diesel engines and all the buses were

natural gas combustion or other gaseous hydrocarbons.

3.2 Estimation of Global Fleet Emission Factors

The global fleet emission factors for PN, BC, carbonyl compounds, BTEX, alkanes, NOy
concentrations, number of vehicles, and traffic speeds are presented in Fig. 5 as a function of

the measurement time and day on the traffic site. The average emission factor of one

12
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vehicle (equation (1)) has been multiplying by the vehicle number that gives us the pollutant
emission factors for a global fleet, over the one-hour measurement period. This allows us to
study the pollutant emissions in relation with the current traffic.

The particle number emission factors varied between 2x10% and 9.6x10' #/km on five
weekdays and between 2.3x10¢ and 4.6x10Y #/km on the weekend. The BC emission
factors varied between 2.4x10? and 2.4x10'! ng/km on weekdays and between 6.6x10° and
1.2x10 ng/km on the weekend. The emission factors for carbonyl compounds varied
between 2x10* and 2.4x10° ug/km on weekdays and between 2.7x10° and 4.9x10° ug/km
on the weekend. The hexanal emission factors ranged between 2.3x10° and 4.1x10° pg/km
on weekdays and between 1.5x10* and 3.2x10° ug/km on the weekend. For the three
alkanes, the emission factors were between 1.2x10* and 7.1x10¢ ug/km on weekdays and
between 5.3x10° and 2x10° ug/km on the weekend. The BTEX emission factors ranged
between 5.4x10° and 3.3x10° ug/km on weekdays and between 6.3x10* and 5.1x10° ug/km
on the weekend. The missing points for VOCs are either pollutant quantities sampled on the
cartridges below their quantification limit; or negative values by subtracting the background
value.

The urban background concentrations for the pollutants used in the equation (1) were
measured on the urban background site used by the air quality association “Air Pays de la
Loire”. This background site is not affected by road traffic emissions, the measured NOy, PN
and BC concentrations vary little on the different measurement time (16h/day during 4 days)
(between 3200 and 4800 #/cm? for PN, between 400 and 700 ng/m? for BC, and between 5
and 50 pug/m? for NOy) and provides a general background concentration with all different
sources. The subtraction in the equation (1) allows removing only the general back ground

levels but not the local background levels. This might induce a potential bias with an over

13
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estimation of EF for PN and other pollutants if the local background levels are higher than
general background levels. The local background levels could also be measured when there
is no traffic. However, depending on the weather conditions, especially the wind speeds, the
accumulation phenomena under no traffic condition might also induce a potential bias on
our measurement. The first point in the morning (at around 6:00 a.m.) was taken as the
background level at the traffic site. Using this local background levels, the emission factors of
PN and BC are respectively between 5x10% and 9x10Y #/km and 1.2x10% and
2.3x10* ng/km. The local background values induce an underestimation of 4 and 20 times
for PN and BC comparing to the ‘Air Pays de la Loire’ background site, but only for low
emission period. These background values do not induce a significant difference at high
emission period for both PN and BC. Overall, if we use the local background value, it induced
an average underestimation around 30% for all period of measurement.

In general, the highest emission factors were measured between 7:00a.m. and
10:00 a.m. and between 5:00 p.m. and 8:00 p.m. on all five weekdays. For the Saturday, the
highest emission factors were measured between 10:00 a.m. and 1:00 p.m. and between
5:00 p.m. and 8:00 p.m. For the Sunday, between 6:00 a.m. and 3:00 p.m., high emission
factors were measured for carbonyl compounds, BTEX and alkanes. The higher emission
factors measured in the morning can be explained by vehicle cold start, which emits large
amounts of pollutants such as BC, PN, BTEX, and carbonyl compounds (Westerholm et al.,
1996; Joumard et al., 2000; Sluder et al., 2000; Caplain et al., 2006; Louis et al., 2016;

Martinet et al., 2017).
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The PN and BC emission factors showed a good correlation, following the same tendency
during the week of measurements (Fig. 5). Apart from Tuesday afternoon between 2:00 p.m.
and 8:00 p.m., the PN emission factors did not follow the same tendency as the BC emission
factors. The emission factor values for BC decreased while those for PN increased sharply.
This could imply that the particle number emissions measured during this afternoon were

not due to road traffic (See Section below).

3.3 PN Concentration and Size Distribution Time Profiles

The number of vehicles, BC, NOx and PN for three size ranges ([0-50] nm, [50-100] nm,
and [100-500] nm) concentrations were followed from Monday (April 24th) to Sunday (April
30th), which show the similar results in general for the five weekdays, except for Tuesday
afternoon. Fig. 6 shows the time profiles of NOy, BC, PN concentrations and vehicles number
on Monday, Tuesday and Wednesday. Concentration peaks of BC, PN and NOyx was observed
over a short period between 7:00 a.m. and 9:00 a.m. on weekdays corresponding to morning

rush-hour traffic (See Section 3.2).

Moreover, Fig. 6 shows a large peak for PN with size range [0-50] nm between 2:00 p.m.
and 8:00 p.m. on Tuesday that is not correlated with BC, NOx and PN size ranges [50-100] nm
and [100-500] nm. Since NOy and BC are considered as traffic tracers (Pant et al., 2013),
which might indicates that the [0-50] nm PN on Tuesday afternoon is not generated by the

road traffic.
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Fig. 6. Time profiles of NOy concentration and number of vehicles and PN and BC concentrations on Monday, Tuesday and

Wednesday.

3.4 ANOVA Analysis of Global Fleet Emission Factors

The pollutant emission factors for a global fleet, over the one-hour measurement period,
have been analyzed by ANOVA statistical analysis to investigate impact of fleet composition
on measured pollutant emissions (Table 1). The emission factors were analyzed with 6
categories: number of HDVs (0 to 43 with groups of every 10 HDVs), percentage of diesel PCs
between pre-Euro to Euro 3 (5 to 25% with 5% interval), percentage of Euro 4 diesel PCs (10
to 30% with 5% interval), percentage of diesel PCs Euro 5 and Euro 6 (15 to 35% with 5%
interval), percentage of gasoline PCs between pre-Euro and Euro 3 standard (5 to 15% with
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5% interval) and percentage of gasoline PCs between Euro 4 and Euro 6 (5 to 25% with 5%
interval). The groups of variables for passenger cars have been made according to the
implementation of new after-treatment or engine technologies. For diesel vehicles, the
diesel particle filter (DPF), which significantly reduces PN and BC emissions, is considered as
variables. Thus, the first category includes the percentage of pre-Euro to Euro 3 diesel
vehicles that are not equipped with DPF; the second category includes the percentage of
Euro 4 diesel vehicles that are partially equipped with DPF; and the last category includes the
percentage of Euro 5 and Euro 6 diesel vehicles that are all equipped with DPF. For gasoline
vehicles, the first category therefore includes the percentage of gasoline vehicles from pre-
Euro to Euro 3 standards, all of which have indirect injection engines; and the second
category includes the percentage of gasoline vehicles from Euro 4 to Euro 6 standards, as the
introduction of direct injection engines has begun on Euro 4 standard vehicles. Moreover,
for ANOVA analysis, the fleet composition has been classed by groups (different gaps of
vehicle number or percentage) to investigate their impact on emissions. Each group has to
contain enough samples to be significant and not too large to have a good sensibility.
Tuesday afternoon PN data have not been taken into account because of its strange
behavior show in section 3.3.

For a result of the ANOVA analysis to be significant, the p-value must be < 0.05, which is
called a "significant result" in Table 1. However, to increase the power of the ANOVA
analysis, it is possible to consider that a result with a p-value between 0.05 and 0.1 are
significant, which is called "result considered as significant" in Table 1, but with a great
uncertainty. This analysis should be read with a special attention because they might also
indicate that the impacts of the analyzed group on emission could be significant but not

clearly significant.
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1063

1064

1065 322 Table1

1066

1067 323 Results of the ANOVA analysis for the effect of the fleet composition on the emission factors
1068

1069 Fleet Groups having a significant impact
1070

1071 composition
1072 Negative impact Positive impact

1073

Pollutants Unit p-value

1074 PN #/km 0.6 -- --
1075

1076 BC ng/km 0.2 - -
1077

1078 Formaldehyde  pg/km 0.2 - --
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093 Nonane ug/km 0.5 - -

1094
1095 Decane pg/km 0.4 - -

1096
1097 Undecane pg/km 0.7 - -

1098

Hexanal pg/km 0.6 - -
Benzene pg/km 0.6 - -
Number of Toluene pg/km 0.004* 20-30; 30-40 10-20
HDVs Ethylbenzene pg/km 0.04* 30-40 0-10; 10-20
m+p-Xylene pg/km 0.2 - -

o-Xylene pg/km 0.1 - -

1099 PN #/km 0.08** 15-20% 10-15%
1100

1101 BC ng/km 0.6 - -
1102 Percentage

1103 Formaldehyde  pg/km 0.3 -- --
1104 of diesel PCs

1105 Hexanal pg/km 0.2 - --
1106 between

1107 Benzene ug/km 0.6 -- --
1108 pre-Euro to

1109 Toluene ug/km 0.02* 10-15% 15-20%
1110 Euro 3

1111 Ethylbenzene  pg/km 0.07** 10-15% 15-20%

1112 standard
1113

1114
1115
1116
1117
1118
1119
1120
1121

m+p-Xylene pg/km 0.02* 10-15% 15-20%

o-Xylene ug/km 0.02* 10-15% 15-20%



1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

Nonane pg/km 0.1 - -
Decane pg/km 0.9 - -
Undecane pg/km 0.7 - -
PN #/km 0.1 -- -
BC ng/km 0.001* 10-15%; 15-20% 20-25%; 25-30%
Formaldehyde  pg/km o* 20-25%; 25-30% 10-15%; 15-20%
Hexanal pg/km 0.7 - -
Percentage Benzene pg/km 0.3 - -
of diesel PCs Toluene pg/km 0.1 - -
Euro 4 Ethylbenzene pg/km 0.02* 15-20% 20-25%
standard m+p-Xylene pg/km 0.04* 15-20% 20-25%
o-Xylene pg/km 0.02* 15-20% 20-25%
Nonane pg/km 0.3 -- -
Decane pg/km 0.9 -- -
Undecane pg/km 0.6 -- -
PN #/km 0.006* 30-35% 20-25%
BC ng/km 0.2 -- -
Percentage Formaldehyde  pg/km 0.06** 15-20% 30-35%
of diesel PCs Hexanal pg/km 0.3 - -
between Benzene ug/km 0.07** 15-20% 30-35%
Euro 5 to Toluene pg/km 0.2 - -
Euro 6 Ethylbenzene pg/km 0.2 - -
standard m+p-Xylene ug/km 0.1 -- -
o-Xylene ug/km 0.06** 15-20% 30-35%
Nonane pg/km 0.2 - -
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1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

Decane pg/km 0.6 - -
Undecane pg/km 0.007* 15-20% 30-35%
PN #/km 0.5 -- -
BC ng/km 0.7 -- -
Formaldehyde  pg/km 0.9 - -
Percentage
Hexanal pg/km 0.07 - -
of gasoline
Benzene pug/km 0.4 -- -
PCs
Toluene pug/km 0.07** 5-10% 10-15%
between
Ethylbenzene pg/km 0.004* 5-10% 10-15%
pre-Euro to
m+p-Xylene pg/km 0.007* 5-10% 10-15%
Euro 3
o-Xylene pg/km 0.02* 5-10% 10-15%
standard
Nonane pg/km 0.2 - -
Decane pg/km 0.9 - -
Undecane pg/km 0.7 - -
PN #/km 0.004* 5-10% 20-25%
BC ng/km 0* 5-10%; 10-15% 20-25%
Percentage Formaldehyde  pg/km 0.5 - .
of gasoline Hexanal pg/km 0.6 - -
PCs Benzene pg/km 0.4 - -
between Toluene pg/km 0.3 - -
Euro 4 to Ethylbenzene pg/km 0.1 -- --
Euro 6 m+p-Xylene pg/km 0.1 - -
standard o-Xylene ug/km 0.1 - -
Nonane pg/km 0.3 - -
Decane pg/km 0.5 - -
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Undecane pg/km 0.07** 5-10%; 10-15% 20-25%

* Significant results
** Results considered as significant

-- No results

For BC, the groups of “20-25%" and “25-30%" Euro 4 diesel PCs and “20-25%" gasoline
PCs between Euro 4 to Euro 6 have a significant positive impact on the emissions. This
observation indicates that higher percentage of these two categories present in the fleet
induces more BC emission. For the gasoline PCs between Euro 4 to Euro 6, the group “20-
25%" has also a significant positive impact on the PN emissions. The positive impact of
gasoline PCs between Euro 4 and Euro 6 on the PN and BC emissions can be explained by the
introduction of direct injection technology on certain gasoline vehicles, which induces more
PN and BC emissions than multipoint injection gasoline vehicles. These emissions could
reach the level of some diesel vehicles without a particulate filter (Liang et al., 2013,
Martinet et al., 2017).

The percentage of diesel and gasoline PCs between pre-Euro and Euro 3 has a significant
positive impact on toluene, ethylbenzene and m+p- and o-xylene emission factors, more
particular the groups “15-20%" and “10-15%" respectively. Comparing to the average
emission factors (1.4x10° pg/km for toluene, 3.4x10° pg/km for ethylbenzene, 9x10° pg/km
for m+p-xylene and 4.2x10° ug/km for o-xylene), the group “15-20%" of Pre-Euro to Euro 3
diesel induces 1.5, 1.4, 1.6 and 1.6 times higher emission respectively for toluene,
ethylbenzene, m+p-xylene and o-xylene. The group “10-15%" of Pre-Euro to Euro 3 gasoline
induces 1.2, 1.4, 1.3 and 1.3 times higher emission respectively for toluene, ethylbenzene,
m+p-xylene and o-xylene. Moreover, the group “20-25%" of diesel Euro 4 PCs has also a

positive impact on ethylbenzene and m+p- and o-xylene emission factors, 1.4, 1.4 and 1.5
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times higher respectively comparing to the average emission factors. For the analyses on the
number of HDVs, emission factors estimated in the weekend have not been taken into
account because of the HDV driving ban. The Table 1 showed that the impact of the number
of HDVs on pollutant emission does not show a significant positive impact. This observation
might be explained on one side by the small percentage of HDVs in the fleet (0 to 43 HDVs
per hour); and on the other side by the low HDVs emission since 80% of these HDVs are

recent vehicles (= Euro 4).

3.5 Emission Factors Per Vehicle and Comparison with Other Studies

In this section, the average emission factors calculated by equation (1) were used (# or
mass/veh/km) in order to compare with other studies. Fig. 7 shows the box-and-whisker plot
for these average emission factors per vehicle for carbonyl compounds, BTEX, alkanes, PN,
and BC. In these plots, the boxes contain 50% of the emission factors around the median
(black line in the box). The upper and lower halves of the boxes represent respectively the
75t and 25% percentiles and the whiskers represent the 90t and 10t percentiles. The
emission factors that are above or below the whiskers are considered to be atypical values.

Fig. 7 shows the average emission factors per vehicle for PN and BC, which are between
1.2x101% and 8.7x10* #/km/veh and between 1.7x10° and 2.16x10® ng/km/veh,
respectively. For both emission factors, the median is in the middle of the box, which
indicates a symmetric distribution. Half the emission factors are between 9.1x1013% and
1.87x10 #/km/veh for PN and between 1.1x107 and 3.8x107 ng/km/veh for BC. In addition,
the boxes are comparatively short, suggesting that the PN emission factors have a high level
of agreement between them, and the BC emission factors have also a high level of

agreement between them. Fig. 7 shows also the average emission factors per vehicle for the
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measured VOCs and SVOCs. For all these compounds, the median is in the lower half of the
box, which assumes an asymmetric distribution toward the low values. Their emission
factors varied between 14 and 2.1x10* ug/veh/km.

For each compound, the atypical values are presented by black dots. Here, only the
atypical values above the upper whisker limit are further analyzed with the corresponding
fleet composition. The emission factors above the upper whisker for PN and BC are,
respectively, 2.3 to 6.6 times higher and 2.7 to 9.6 times higher compared to the median.
The highest emission factor for both corresponds to the same fleet composition with 69% of
LDVs diesel and 58% of PCs < Euro 4 (composition 8 in the Fig. 7) for the Wednesday
between 8:00 p.m. and 9:00 p.m. The second highest emission factor for BC and the third
highest for PN (composition 7 in the Fig. 7) correspond to the Sunday between 8:00 a.m. and

9:00 a.m.
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Fig. 7. Box-and-whisker plot of the average vehicle emission factors for PN, BC, carbonyl compounds, BTEX and alkanes.
Fleet composition of 1: Monday 2:00 - 3:00 p.m.; 2: Sunday 6:00 - 7:00 a.m.; 3: Wednesday 11:00 - 12:00 a.m.; 4: Sunday
11:00 - 12:00 a.m.; 5: Monday 11:00 - 12:00 a.m.; 6: Monday 8:00 - 9:00 p.m.; 7: Sunday 8:00 - 9:00 a.m.; 8: Wednesday
8:00 - 9:00 p.m.

The emission factors for carbonyl compounds above the upper whisker are 5 to 11 times

higher and 6 to 17 times higher than the median for formaldehyde and hexanal, respectively.

For the three alkanes, the emission factors above the upper whisker are 3 to 18 times higher
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compared to their median. The BTEX emission factors above the upper whisker are 1.4 to 8
times higher compared to their median. The highest emission factor for hexanal, benzene,
toluene, ethylbenzene and nonane correspond to the same fleet composition (composition 2
in the Fig. 7) for the Sunday between 6:00 a.m. and 7:00 a.m. We remark that, in this time
interval, the fleet composition composed relatively high percentage of LDVs diesel (80%),
PCs < Euro 4 (65%) and HDVs (3%), which have been showed by the ANOVA analysis to have
significant impacts on emission of these compounds (Table 3). For m+p and o xylene
compounds, the highest emission factor corresponds to the fleet composition of the Sunday
between 11:00 a.m. and 12:00 a.m. (composition 4 in the Fig. 7), with relatively high
percentage of PCs < Euro 4. For formaldehyde, the highest emission factor corresponds to
the Monday between 11:00 a.m. and 12:00 a.m. (composition 5) with 3% of HDVs.

Fig. 8 shows the comparison of PN, BC, formaldehyde and BTEX emission factors
estimated in this study and with those estimated during lab bench measurements with
Artemis urban driving cycles that is not exactly the same driving condition but might
represent the most similar driving condition (average speed from 8.7 to 31.8 km/h from
congestion to fluid situations) comparing to our traffic site (hourly average speed between
16 and 34 km/h). The detail of bench measurement of Euro 1 to Euro 6 gasoline and diesel
PCs were presented in our previous works (Rehn 2013; Louis et al., 2016; Martinet et al.,
2017). Moreover, the PN and BC emission factors estimated in this study were also
compared with other in-situ studies with similar site characteristics (Ketzel et al., 2003;
Gratmonev et al., 2004; Rose et al., 2005; Imhof et al., 2005; Jones et al. 2006; Westerdahl et
al., 2009; Krecl et al., 2018).

The emission factors estimated by other in-situ studies are between 5.8x1013 and

9.3x10™ #/veh/km for PN; and between 1.7x107 and 3.5x107 ng/veh/km for BC, which are in
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without particle filter and gasoline vehicles with direct injection system are in the same
range as the box plot. The impact of gasoline with direct injection system and Euro 4 diesel
vehicles on PN and BC emission has been observed with ANOVA analysis. However, for the
pre-Euro to Euro 3 old diesel vehicles, even they induce a high BC and PN emission with
individual vehicle measurement, their impact on BC and PN emission could be considered
either as significant but with a great uncertainty or not significant because they are
omnipresent in each one-hour period with very closed percentage in the fleet (10 to 20%).
These in-situ emission factors are also comparable with old HDVs without particle filter (PN
emission factors between 5x10% and 2x10% #/veh/km) (Giechaskiel et al., 2012), contrary to
recent HDVs equipped with DPF that induce lower PN emissions (between 5x10'° and 2x1012
#/veh/km) (Giechaskiel et al., 2018). For fomaldehyde, the emission factors of Euro 3 and
Euro 4 diesel and gasoline vehicles are in the same range as the emission factors estimated
in this work. More recent Euro 5 and Euro 6 PCs seem to contribute less emission. For BTEX,
the Euro 5 gasoline DI vehicle is located above the box that might indicate its high impact on
BTEX emission. However, we want to attract special attention here, because only one Euro 5
gasoline DI vehicle data from bench has been provided (Louis et al., 2016). More vehicles for
each category should be tested on the chassis bench under similar experimental conditions

to confirm this observation.

4. Conclusion

This paper aimed to estimate the emission factors of PN, BC, and several aliphatic,
aromatic and carbonyl compounds with a real fleet present on the measurement site. The

fleet composition characterized during the measurement campaign was comparable with
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the 2017 French fleet. A total of 140,076 vehicles were counted for seven days with about
21,000 to 23,000 vehicles in the weekdays and 10,000 to 18,000 in the weekend.

The highest emissions were measured during the morning between 7:00 a.m. - 10:00
a.m. and during the end of afternoon between 5:00 p.m. - 8:00 p.m. for the weekdays, and
between 10:00 a.m. - 1:00 p.m. and between 5:00 p.m. - 8:00 p.m. for the Saturday. These
periods correspond to traffic peaks. The higher emission measured in the morning can be
explained by vehicle cold start, which emits large amounts of pollutants such as BC, PN,
BTEX, and carbonyl compounds. PN and BC emission factors show a good correlation, except
the Tuesday afternoon between 2:00 p.m. - 8:00 p.m. The emission factor values for BC
decreased while those for PN increased sharply. This could imply that the particle number
emissions, especially the PN size between [0-50] nm, measured during this afternoon were
not due to road traffic.

The impacts of the fleet composition on the pollutant emissions were studied by ANOVA
analyses. These analyses show the positive impact of the higher percentage of gasoline PCs
between Euro 4 and Euro 6 and Euro 4 diesel PCs on the BC emissions and the higher
percentage of diesel and gasoline PCs between pre-Euro and Euro 3 on toluene,
ethylbenzene, m+p-xylene and o-xylene emissions. The higher percentage of Euro 4 diesel
PCs induces higher emission of ethylbenzene, m+p-xylene and o-xylene. And the number of
HDVs present in the weekdays does not induce a significant impact on measured pollutant
emissions since 80% of HDVs in the fleet is recent HDVs (> Euro 4).

The emission factors per vehicle were studied with boxplots and compared to other
emission factors calculated in previous in-situ studies and with bench measurement. PN and
BC emission factors assume a symmetric distribution contrary to the BTEX, alkanes and

carbonyl compounds emission factors. For PN and BC, the highest emission factors
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correspond to the same fleet composition with high percentage of diesel PCs. The highest
emission factors for hexanal, benzene, toluene, ethylbenzene and nonane correspond to a
fleet composition with high percentage of diesel PCs (85%) and old PCs (65%), and for m+p
and o Xylene, they correspond to high percentage of old PCs (61%). These results have also
been observed by the ANOVA analyses for toluene, ethylbenzene, m+p-xylene and o-xylene.
The PN and BC emission factors estimated by other in-situ studies are in the same range as
the emission factors estimated in this work. For the chassis bench comparison, the PN and
BC emission factors estimated in this work are in the same range as those measured for
diesels PCs without particle filter, gasoline PCs with direct injection system and old HDVs. For
BTEX, bench emission factors are in the same range as in-situ emission factors estimated in

this work.
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Appendices

Table A.1

Analytical methods for BTEX, carbonyl compounds, and PAH samples in the gas and particulate phases with quantification

limit and uncertainty

Compound family

Cartridge

type

Analytical

technique

Standardized

method

Quantification

limit

Analytical

uncertainty

BTEX

Benzene

Toluene

Ethylbenzene

m-p,Xylene

o-Xylene

Tenax

ATD-GC/MS*

ISO 16000-6

10 ng/cartridge

1 ng/cartridge

20%

Alkanes

Nonane

Decane

Undecane

Cyclopropane, Ethyl

Cyclohexane, Ethyl

Tenax

ATD-GC/MS*

ISO 16000-6

1 ng/cartridge

20%

Carbonyl

Formaldehyde

Acetaldehyde

Acetone

Acrolein

Propionaldehyde

Crotonaldehyde

Methacrolein

Butanal

DNPH

HPLC/UV#

ISO 16000-3

30 ng/cartridge

20%
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Benzaldehyde

Pentanal

Hexanal

* ATD-GC-MS: Automated Thermal Desorption - Gas Chromatograph - Mass Spectrometer

# HPCL/UV: High Performance Liquid Chromatography/Ultra Violet Detector

Table A.2

Vehicle emission factors per hour for PN, BC, carbonyl compounds, BTEX and alkanes.

Standard
Pollutants Emission factors (Min-Max) Mean
deviation
PN Weekdays 1.2x 101 - 8.7 x 10* 2 x 101 1.9 x 10*
(#/veh/km) Weekend 6.1x 1013 - 5.3 x 10% 1.7 x 101 1x 10
BC Weekdays 1.7 x 106 - 2.2 x 108 2.4 x 107 2.8 x 107
(ng/veh/km) Weekend 9 x 106 - 9.3 x 107 4.7 x 107 2.1 x107
Formaldehyde  Weekdays 1.6x101- 18 3 3.9
(mg/veh/km) Weekend 6x102-13 3.2 3.1
Hexanal Weekdays 1.4x102-2.8 7.1x1071 8.8 x 101
(mg/veh/km) Weekend 2.1x101-7.8 1.8 1.8
Benzene Weekdays 9.1x102-7.4 1.2 1.5
(mg/veh/km) Weekend 2.3x101-13.4 2.4 3.5
Toluene Weekdays 3.4x102-11 3 2.6
(mg/veh/km) Weekend 3.3-20.5 9.6 4.7
Ethylbenzene Weekdays 1.3x102%2-2.6 8.5x 101 7 x 101
(mg/veh/km) Weekend 7%x101-5 2.6 1.2
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1977
1978
1979
1980
1981
1982
1983
1984
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506

507
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m+p Xylene Weekdays 1.8x101-6.8 1.6
(mg/veh/km) Weekend 1.4-10.4 6.4
o Xylene Weekdays 7x102%2-2.9 7.1x 101 6.4 x 101
(mg/veh/km) Weekend 6.1x101-59 3.2
Nonane Weekdays 3.5x102-3.3 8 x 101 7.5%x 101
(mg/veh/km) Weekend 3.3x101-4.9 2
Decane Weekdays 1.5x101-15.2 1.5
(mg/veh/km) Weekend 41x102%2-4.5 1.7
Undecane Weekdays 5.5x102-4.8 5.3x 101 8..9x101
(mg/veh/km) Weekend 3.5x102-2.1 1.1 7 x 101
Table A.3
Example of COPERT input data for calculating NOy emission factors
Mean Urban
Euro Stock . .
Category Fuel Segment S ta: dard In] Activity Speed
[km/year]  [km/h]
Passenger Cars Gasoline Small PRE ECE 0 0 25
Passenger Cars Gasoline Small Euro 1 1 4077 25
Passenger Cars Gasoline Small Euro 2 2 5055 25
Passenger Cars Gasoline Small Euro 3 1 6820 25
Passenger Cars Gasoline Small Euro 4 2 8508 25
Passenger Cars Gasoline Small Euro 5 1 11007 25
Passenger Cars Gasoline Small Euro 6 5 13309 25
Passenger Cars Gasoline Medium PRE ECE 0 0 25
Passenger Cars Gasoline Medium Euro 1 2 5398 25
Passenger Cars Gasoline Medium Euro 2 4 6672 25
Passenger Cars Gasoline Medium Euro 3 5 8995 25
Passenger Cars Gasoline Medium Euro 4 0 11319 25
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2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
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2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065

Passenger Cars Gasoline Medium Euro 5 2 14555 25
Passenger Cars Gasoline Medium Euro 6 3 17592 25
Passenger Cars Gasoline  Large-SUV-Executive PRE ECE 0 0 25
Passenger Cars Gasoline  Large-SUV-Executive Euro 1 0 5610 25
Passenger Cars Gasoline  Large-SUV-Executive Euro 2 0 7069 25
Passenger Cars Gasoline  Large-SUV-Executive Euro 3 0 9523 25
Passenger Cars Gasoline  Large-SUV-Executive Euro 4 1 12000 25
Passenger Cars Gasoline  Large-SUV-Executive Euro 5 0 15454 25
Passenger Cars Gasoline  Large-SUV-Executive Euro 6 3 18619 25
Passenger Cars Diesel Mini Euro 4 10 15608 25
Passenger Cars Diesel Mini Euro 5 5 17572 25
Passenger Cars Diesel Mini Euro 6 5 19 25
Passenger Cars Diesel Small Euro 1 1 10957 25
Passenger Cars Diesel Small Euro 2 3 12152 25
Passenger Cars Diesel Small Euro 3 7 13560 25
Passenger Cars Diesel Small Euro 4 16 15236 25
Passenger Cars Diesel Small Euro 5 12 17146 25
Passenger Cars Diesel Small Euro 6 17 18122 25
Passenger Cars Diesel Large-SUV-Executive Euro 1 0 11376 25
Passenger Cars Diesel Large-SUV-Executive Euro 2 1 12489 25
Passenger Cars Diesel Large-SUV-Executive Euro 3 2 14286 25
Passenger Cars Diesel Large-SUV-Executive Euro 4 2 15807 25
Passenger Cars Diesel Large-SUV-Executive Euro 5 2 17770 25
Passenger Cars Diesel Large-SUV-Executive Euro 6 2 18788 25
UghtCovnnerdaI Diesel N1-1I Conventional 0 2313 25
Vehicles
Light Commercial . ) N1-11 Euro 1 0 5012 25
Vehicles
Light Commercial = ;o) N1-1I Euro 2 0 7490 25
Vehicles
Light Commercial ) N1-I1 Euro 3 2 10979 25
Vehicles
Light Commercial o ) N1-11 Euro 4 9 15840 25
Vehicles
Light Commercial o ) N1-11 Euro 5 13 21249 25
Vehicles
Light Commercial = ;o) N1-1I Euro 6 23 25636 25
Vehicles
Heavy Duty Trucks Diesel Rigid <=7,5t Euro | 0 846 25
Heavy Duty Trucks Diesel Rigid <=7,5t Euro Il 0 4475 25
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2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124

Heavy Duty Trucks Diesel Rigid <=7,5t Euro I 0 11207 25
Heavy Duty Trucks Diesel Rigid <=7,5t Euro IV 0 19789 25
Heavy Duty Trucks Diesel Rigid <=7,5t EuroV 0 32935 25
Heavy Duty Trucks Diesel Rigid <=7,5t Euro VI 0 50409 25
Heavy Duty Trucks Diesel Rigid 7,5-12t Euro | 0 903 25
Heavy Duty Trucks Diesel Rigid 7,5-12t Euro Il 0 4404 25
Heavy Duty Trucks Diesel Rigid7,5-12t Euro I 0 11191 25
Heavy Duty Trucks Diesel Rigid 7,5-12t Euro IV 1 19733 25
Heavy Duty Trucks Diesel Rigid 7,5-12t EuroV 1 33797 25
Heavy Duty Trucks Diesel Rigid7,5-12t Euro VI 0 53438 25
Heavy Duty Trucks Diesel Rigid 14- 20t Euro | 0 952 25
Heavy Duty Trucks Diesel Rigid 14-20t Euro Il 0 4598 25
Heavy Duty Trucks Diesel Rigid 14-20t Euro llI 0 11195 25
Heavy Duty Trucks Diesel Rigid 14- 20t Euro IV 0 19669 25
Heavy Duty Trucks Diesel Rigid 14-20t EuroV 0 33306 25
Heavy Duty Trucks Diesel Rigid 14-20t Euro VI 1 50609 25
Heavy Duty Trucks Diesel Rigid 20- 26 t Euro | 0 983 25
Heavy Duty Trucks Diesel Rigid 20- 26t Euro Il 0 4800 25
Heavy Duty Trucks Diesel Rigid 20- 26t Euro llI 0 11470 25
Heavy Duty Trucks Diesel Rigid 20- 26t Euro IV 0 19795 25
Heavy Duty Trucks Diesel Rigid 20- 26 t EuroV 0 33762 25
Heavy Duty Trucks Diesel Rigid 20- 26t Euro VI 0 50832 25
Heavy Duty Trucks Diesel Rigid 26 - 28 t Conventional 0 0 25
Heavy Duty Trucks Diesel Rigid 26 - 28t Euro | 0 995 25
Heavy Duty Trucks Diesel Rigid 26 - 28t Euro Il 0 4999 25
Heavy Duty Trucks Diesel Rigid 26 - 28t Euro llI 0 11940 25
Heavy Duty Trucks Diesel Rigid 26 - 28t Euro IV 0 19884 25
Heavy Duty Trucks Diesel Rigid 26 - 28t Euro V 2 34084 25
Heavy Duty Trucks Diesel Rigid 26 - 28t Euro VI 0 50947 25

Buses Diesel Urba”j‘;zets Midi Euro IV 0 27800 25

Buses Diesel Urba”j‘l‘;ets Midi Euro V 0 38074 25

Buses Diesel Urban Buses Midi Euro VI 0 45582 25

<=15t
Buses Diesel Ar’t-itlt,l)lz r‘:ei{usf158 ; Conventional 0 2000 25
Buses Diesel Urban Buses Euro | 0 5823 25

Articulated >18t
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Fig. A.2. Time profiles of the percentages of the diesel PCs,

the measurement week.

the percentages of gasoline PCs and the numbers of HDVs on
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