, We tested the expression level of some genes related to tight junction, mitochondrial metabolism, electrolyte transport and inflammation (Table 4). The hypoxanthine-guanine phosphoribosyltransferase (HPRT) and the 60S ribosomal protein L18 (RPL18) genes were amplified and used as reference genes. Relative gene expression was calculated with the 2 ???Ct method. Gene and protein names given in this article are in accordance with the HUGO Gene Nomenclature Committee, MultiScribe Reverse Transcriptase following the instruction of the High Capacity cDNA Reverse Transcription kit (Applied Biosystems ? ), and 25 ng of cDNAs were used in the PCR reactions with the Fast SYBR Green Master Mix (Applied Biosystems ? )

L. A. David, Diet rapidly and reproducibly alters the human gut microbiome, Nature, vol.505, pp.559-563, 2014.

F. Blachier, Changes in the Luminal Environment of the Colonic Epithelial Cells and Physiopathological Consequences, The American journal of pathology, vol.187, pp.476-486, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01568604

J. L. Madara, Increases in guinea pig small intestinal transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure, The Journal of cell biology, vol.97, pp.125-136, 1983.

R. Schilli, Comparison of the composition of faecal fluid in Crohn's disease and ulcerative colitis, Gut, vol.23, pp.326-332, 1982.

P. Vernia, A. Gnaedinger, W. Hauck, and R. I. Breuer, Organic anions and the diarrhea of inflammatory bowel disease, Digestive diseases and sciences, vol.33, pp.1353-1358, 1988.

G. M. Costongs, L. P. Bos, L. G. Engels, and P. C. Janson, A new method for chemical analysis of faeces, Clin Chim Acta, vol.150, pp.197-203, 1985.

X. Liu, High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection, American journal of physiology. Gastrointestinal and liver physiology, vol.307, pp.459-470, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173417

M. Beaumont, Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response. Free radical biology & medicine 93, pp.155-164, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568610

S. N. Ho, Intracellular water homeostasis and the mammalian cellular osmotic stress response, Journal of cellular physiology, vol.206, pp.9-15, 2006.

J. Aramburu, Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5, Biochemical pharmacology, vol.72, pp.1597-1604, 2006.

C. Brocker, D. C. Thompson, and V. Vasiliou, The role of hyperosmotic stress in inflammation and disease, Biomolecular concepts, vol.3, pp.345-364, 2012.

W. Neuhofer, Role of NFAT5 in inflammatory disorders associated with osmotic stress, Current genomics, vol.11, pp.584-590, 2010.

A. Hubert, B. Cauliez, A. Chedeville, A. Husson, and A. Lavoinne, Osmotic stress, a proinflammatory signal in Caco-2 cells, Biochimie, vol.86, pp.533-541, 2004.

T. Yang, J. B. Schnermann, and J. P. Briggs, Regulation of cyclooxygenase-2 expression in renal medulla by tonicity in vivo and in vitro, The American journal of physiology, vol.277, pp.1-9, 1999.

L. Schwartz, A. Guais, M. Pooya, and M. Abolhassani, Is inflammation a consequence of extracellular hyperosmolarity, Journal of inflammation, vol.6, 2009.

Z. H. Nemeth, E. A. Deitch, C. Szabo, and G. Hasko, Hyperosmotic stress induces nuclear factor-kappaB activation and interleukin-8 production in human intestinal epithelial cells, The American journal of pathology, vol.161, pp.987-996, 2002.

S. Arbabi, M. R. Rosengart, I. Garcia, S. Jelacic, and R. V. Maier, Epithelial cyclooxygenase-2 expression: a model for pathogenesis of colon cancer, The Journal of surgical research, vol.97, pp.60-64, 2001.

J. Duque, M. D. Diaz-munoz, M. Fresno, and M. A. Iniguez, Up-regulation of cyclooxygenase-2 by interleukin-1beta in colon carcinoma cells, Cellular signalling, vol.18, pp.1262-1269, 2006.

Y. Yan, Ste20-related proline/alanine-rich kinase (SPAK) regulated transcriptionally by hyperosmolarity is involved in intestinal barrier function, PloS one, vol.4, 2009.

Y. Zhang, Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice, The American journal of pathology, vol.182, pp.1617-1628, 2013.

G. Samak, T. Suzuki, A. Bhargava, and R. K. Rao, c-Jun NH2-terminal kinase-2 mediates osmotic stress-induced tight junction disruption in the intestinal epithelium, American journal of physiology. Gastrointestinal and liver physiology, vol.299, pp.572-584, 2010.

L. Schwartz, Hyperosmotic stress contributes to mouse colonic inflammation through the methylation of protein phosphatase 2A, American journal of physiology. Gastrointestinal and liver physiology, vol.295, pp.934-941, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00858998

R. Gangwar, Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress, The Biochemical journal, vol.474, pp.731-749, 2017.

G. Samak, D. Narayanan, J. H. Jaggar, and R. Rao, CaV1.3 channels and intracellular calcium mediate osmotic stress-induced N-terminal c-Jun kinase activation and disruption of tight junctions in Caco-2 CELL MONOLAYERS, The Journal of biological chemistry, vol.286, pp.30232-30243, 2011.

A. N. Anbazhagan, S. Priyamvada, W. A. Alrefai, and P. K. Dudeja, Pathophysiology of IBD associated diarrhea. Tissue barriers 6, e1463897, 2018.

F. E. Le, In vitro models of the intestinal barrier. The report and recommendations of ECVAM Workshop 46. European Centre for the Validation of Alternative methods, Alternatives to laboratory animals: ATLA, vol.29, pp.649-668, 2001.

P. Krugliak, D. Hollander, C. C. Schlaepfer, H. Nguyen, and T. Y. Ma, Mechanisms and sites of mannitol permeability of small and large intestine in the rat, Digestive diseases and sciences, vol.39, pp.796-801, 1994.

L. Michea, C. Combs, P. Andrews, N. Dmitrieva, and M. B. Burg, Mitochondrial dysfunction is an early event in high-NaCl-induced apoptosis of mIMCD3 cells, American journal of physiology. Renal physiology, vol.282, pp.981-990, 2002.

A. P. Halestrap, The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism, Biochimica et biophysica acta, vol.973, pp.355-382, 1989.

X. Leschelle, Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide, Biochimica et biophysica acta, vol.1725, pp.201-212, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00101334

J. F. Staples and L. T. Buck, Matching cellular metabolic supply and demand in energy-stressed animals, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, vol.153, pp.95-105, 2009.

F. Buttgereit and M. D. Brand, A hierarchy of ATP-consuming processes in mammalian cells, The Biochemical journal, vol.312, pp.163-167, 1995.

M. Chen, S. K. Sastry, and K. L. O'connor, Src kinase pathway is involved in NFAT5-mediated S100A4 induction by hyperosmotic stress in colon cancer cells, American journal of physiology. Cell physiology, vol.300, pp.1155-1163, 2011.

C. Küper, F. X. Beck, and W. Neuhofer, Osmoadaptation of Mammalian cells -an orchestrated network of protective genes, Current genomics, vol.8, pp.209-218, 2007.

Y. Zhou, Q. Wang, H. L. Weiss, and B. M. Evers, Nuclear factor of activated T-cells 5 increases intestinal goblet cell differentiation through an mTOR/Notch signaling pathway, Molecular biology of the cell, vol.25, pp.2882-2890, 2014.

C. Lopez-rodriguez, Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress, Immunity, vol.15, pp.47-58, 2001.

N. O. Favale, C. I. Casali, L. G. Lepera, L. G. Pescio, and M. C. Fernandez-tome, Hypertonic induction of COX2 expression requires TonEBP/NFAT5 in renal epithelial cells, Biochemical and biophysical research communications, vol.381, pp.301-305, 2009.

L. L. Clarke, A guide to Ussing chamber studies of mouse intestine, American journal of physiology. Gastrointestinal and liver physiology, vol.296, pp.1151-1166, 2009.

S. Zeissig, Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease, Gut, vol.56, pp.61-72, 2007.

D. Hollander, Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor, Annals of internal medicine, vol.105, pp.883-885, 1986.

C. Rahner, L. L. Mitic, and J. M. Anderson, Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut, Gastroenterology, vol.120, pp.411-422, 2001.

M. Furuse, K. Furuse, H. Sasaki, and S. Tsukita, Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells, The Journal of cell biology, vol.153, pp.263-272, 2001.

S. Amasheh, Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, Journal of cell science, vol.115, pp.4969-4976, 2002.

R. Rosenthal, Claudin-2, a component of the tight junction, forms a paracellular water channel, Journal of cell science, vol.123, 1913.

T. Suzuki, N. Yoshinaga, and S. Tanabe, Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium, The Journal of biological chemistry, vol.286, pp.31263-31271, 2011.

C. M. Van-itallie, A. S. Fanning, A. Bridges, and J. M. Anderson, ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton, Molecular biology of the cell, vol.20, pp.3930-3940, 2009.

M. Bruewer, Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms, Journal of immunology, vol.171, pp.6164-6172, 2003.

S. Garrido-urbani, P. F. Bradfield, and B. A. Imhof, Tight junction dynamics: the role of junctional adhesion molecules (JAMs), Cell and tissue research, vol.355, pp.701-715, 2014.

M. A. Peplowski, Tumor necrosis factor alpha decreases aquaporin 3 expression in intestinal epithelial cells through inhibition of constitutive transcription, Physiological reports, vol.5, 2017.

W. Zhang, Y. Xu, Z. Chen, Z. Xu, and H. Xu, Knockdown of aquaporin 3 is involved in intestinal barrier integrity impairment, FEBS letters, vol.585, pp.3113-3119, 2011.

N. Ikarashi, The laxative effect of bisacodyl is attributable to decreased aquaporin-3 expression in the colon induced by increased PGE2 secretion from macrophages, American journal of physiology. Gastrointestinal and liver physiology, vol.301, pp.887-895, 2011.

P. C. Hawker, J. S. Mckay, and L. A. Turnberg, Electrolyte transport across colonic mucosa from patients with inflammatory bowel disease, Gastroenterology, vol.79, pp.508-511, 1980.

C. J. Edmonds and D. Pilcher, Electrical potential difference and sodium and potassium fluxes across rectal mucosa in ulcerative colitis, Gut, vol.14, pp.784-789, 1973.

E. Q. Archampong, J. Harris, and C. G. Clark, The absorption and secretion of water and electrolytes across the healthy and the diseased human colonic mucosa measured in vitro, Gut, vol.13, pp.880-886, 1972.

G. I. Sandle, Cellular basis for defective electrolyte transport in inflamed human colon, Gastroenterology, vol.99, pp.97-105, 1990.

P. S. Aronson, Kinetic properties of the plasma membrane Na + -H + exchanger, Annual review of physiology, vol.47, pp.545-560, 1985.

N. Demaurex, S. Grinstein, and . Na-+-/h-+-antiport, modulation by ATP and role in cell volume regulation, The Journal of experimental biology, vol.196, pp.389-404, 1994.

K. Kunzelmann and M. Mall, Electrolyte transport in the mammalian colon: mechanisms and implications for disease, Physiological reviews, vol.82, pp.245-289, 2002.

F. Rocha, IFN-gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. American journal of physiology, Cell physiology, vol.280, pp.1224-1232, 2001.

S. Sullivan, Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD-associated diarrhea, Inflammatory bowel diseases, vol.15, pp.261-274, 2009.

M. Andriamihaja, Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption, Amino acids, vol.50, pp.755-763, 2018.