M. Abiola, M. Favier, E. Christodoulou-vafeiadou, A. L. Pichard, and I. Martelly,

I. Deniau, Activation of Wnt/?-catenin signaling increases insulin sensitivity 438 through a reciprocal regulation of Wnt10B and SREBP-1c in skeletal muscle cells, vol.4, 2009.

M. S. Alexander, G. Kawahara, N. Motohashi, J. C. Casar, I. Eisenberg et al., , p.441

L. M. Kunkel, MicroRNA-199a is induced in dystrophic muscle and affects WNT 442 signaling, cell proliferation, and myogenic differentiation, Cell Death and Differentiation, vol.443, issue.20, pp.1194-1208, 2013.

K. M. Baldwin and F. Haddad, Invited Review: Effects of different activity and inactivity 445 paradigms on myosin heavy chain gene expression in striated muscle, Journal of Applied, vol.446, issue.1, pp.345-357, 2001.

D. P. Bartel, MicroRNAs: Genomics, biogenesis, mechanism, and function, Cell, vol.116, issue.2, pp.448-281, 2004.

M. Berg-von-linde, L. Arevström, and O. Fröbert, Insights from the den: How 450 hibernating bears may help us understand and treat human disease, Clinical and 451 Translational Science, vol.8, issue.5, pp.601-605, 2015.

K. K. Biggar, C. W. Wu, and K. B. Storey, High-throughput amplification of mature 453 microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop 454 reverse transcription polymerase chain reaction, Analytical Biochemistry, vol.462, pp.32-34, 2014.

B. Chazarin, K. B. Storey, A. Ziemianin, S. Chanon, M. Plumel et al., Metabolic reprogramming involving glycolysis in the hibernating brown bear 458 skeletal muscle, Frontiers in Zoology, vol.16, issue.1, p.12, 2019.

J. Chen, Y. Tao, J. Li, Z. Deng, Z. Yan et al., microRNA-1 and 460 microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by 461 repressing Pax7, The Journal of Cell Biology, vol.190, issue.5, pp.867-879, 2010.

Y. Chen, D. W. Melton, J. A. Gelfond, L. M. Mcmanus, and P. K. Shireman, MiR-464 351 transiently increases during muscle regeneration and promotes progenitor cell 465 proliferation and survival upon differentiation, Physiological Genomics, vol.44, issue.21, pp.1042-466, 2012.

C. A. Collier, C. R. Bruce, A. C. Smith, G. Lopaschuk, and D. J. Dyck, Metformin 468 counters the insulin-induced suppression of fatty acid oxidation and stimulation of 469 triacylglycerol storage in rodent skeletal muscle, American Journal of Physiology-470 Endocrinology and Metabolism, vol.291, issue.1, pp.182-189, 2006.

,

A. Davalos, L. Goedeke, P. Smibert, C. M. Ramirez, N. P. Warrier et al., miR-33a/b contribute to the regulation of fatty acid 474 metabolism and insulin signaling, Proceedings of the National Academy of Sciences, vol.475, issue.22, pp.9232-9237, 2011.

K. Dessalle, V. Euthine, S. Chanon, J. Delarichaudy, I. Fujii et al., , 2012.

, SREBP-1 transcription factors regulate skeletal muscle cell size by controlling protein 478 synthesis through myogenic regulatory factors, PLoS ONE, vol.7, issue.11

B. K. Dey, J. Gagan, and A. Dutta, miR-206 and -486 induce myoblast differentiation by 481 downregulating Pax7, Molecular and Cellular Biology, vol.31, issue.1, pp.203-214, 2011.

G. P. Diniz and D. Wang, Regulation of skeletal muscle by microRNAs, 2016.

, Comprehensive Physiology, vol.6, issue.3, pp.1279-1294

P. H. Ducluzeau, N. Perretti, M. Laville, F. Andreelli, N. Vega et al., Regulation by insulin of gene expression in human skeletal muscle and adipose 487 tissue. Evidence for specific defects in type 2 diabetes, Diabetes, vol.50, issue.5, pp.1134-1142, 2001.

A. L. Evans, V. Sahlén, O. G. Støen, Å. Fahlman, S. Brunberg et al.,

, Capture, anesthesia, and disturbance of free-ranging brown bears (Ursus arctos) 491 during hibernation, PLoS ONE, vol.7, issue.7, 2012.

S. Greco, M. De-simone, C. Colussi, G. Zaccagnini, P. Fasanaro et al., , p.493

F. , Common micro-RNA signature in skeletal muscle damage and regeneration 494 induced by Duchenne muscular dystrophy and acute ischemia, The FASEB Journal, vol.23, issue.10, pp.495-3335, 2009.

I. Guillet-deniau, V. Mieulet, S. Le-lay, Y. Achouri, D. Carré et al., , 2002.

, Sterol regulatory element binding protein-1c expression and action in rat muscles: insulin-498 like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression

, Diabetes, vol.51, issue.6, pp.1722-1728

F. Haddad, Isometric resistance exercise fails to counteract skeletal muscle atrophy 502 processes during the initial stages of unloading, Journal of Applied Physiology, vol.100, issue.2, pp.433-441, 2006.

H. Hadj-moussa, J. A. Moggridge, B. E. Luu, J. F. Quintero-galvis, and J. D. Gaitán-espitia, , p.505

R. F. Nespolo and K. B. Storey, The hibernating South American marsupial, p.506, 2016.

, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns, Scientific 507 Reports, vol.6, issue.1, p.24627

H. J. Harlow, T. Lohuis, T. D. Beck, and P. A. Iaizzo, Muscle strength in 509 overwintering bears, Nature, vol.409, issue.6823, 2001.

A. He, L. Zhu, N. Gupta, Y. Chang, and F. Fang, Overexpression of micro ribonucleic 511 acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 512 adipocytes, Molecular Endocrinology, vol.21, issue.11, pp.2785-2794, 2007.

G. Heldmaier, S. Ortmann, and R. Elvert, Natural hypometabolism during hibernation 515 and daily torpor in mammals, Respiratory Physiology and Neurobiology, vol.141, issue.3, pp.317-329, 2004.

J. D. Hershey, C. T. Robbins, O. L. Nelson, and D. C. Lin, Minimal seasonal alterations 518 in the skeletal muscle of captive brown bears, Physiological and Biochemical Zoology, vol.519, issue.2, pp.138-147, 2008.

M. R. Holahan, C. A. Smith, B. E. Luu, and K. B. Storey, Preadolescent phthalate 521 (DEHP) exposure is associated with elevated locomotor activity and reward-related 522 behavior and a reduced number of tyrosine hydroxylase positive neurons in post-adolescent 523 male and female rats, Toxicological Sciences : An Official Journal of the Society, vol.524, 2018.

, Toxicology, vol.165, issue.2, pp.512-530

M. Horak, J. Novak, and J. Bienertova-vasku, Muscle-specific microRNAs in skeletal 526 muscle development, Developmental Biology, vol.410, issue.1, pp.1-13, 2016.

,

T. Horie, T. Nishino, O. Baba, Y. Kuwabara, T. Nakao et al., , 2013.

, MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice, Nature Communications, vol.530, issue.1, p.2883

S. Horman, N. Hussain, S. M. Dilworth, K. B. Storey, and M. H. Rider, Evaluation of 532 the role of AMP-activated protein kinase and its downstream targets in mammalian 533 hibernation, Comparative Biochemistry and Physiology -B Biochemistry and Molecular 534 Biology, vol.142, issue.4, pp.374-382, 2005.

M. Jastroch, S. Giroud, P. Barrett, F. Geiser, G. Heldmaier et al., Seasonal 536 control of mammalian energy balance: Recent advances in the understanding of daily torpor 537 and hibernation, Journal of Neuroendocrinology, issue.11, p.28, 2016.

S. M. Jeon, Regulation and function of AMPK in physiology and diseases, Molecular Medicine, vol.539, issue.7, 2016.

S. F. Kornfeld, K. K. Biggar, and K. B. Storey, Differential expression of mature 541 microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis 542 lucifugus: a model of muscle atrophy resistance, Proteomics & Bioinformatics, vol.543, issue.5, pp.295-301, 2012.

V. Lecomte, E. Meugnier, V. Euthine, C. Durand, D. Freyssenet et al., A New Role for Sterol Regulatory Element Binding Protein 1 Transcription Factors 546 in the Regulation of Muscle Mass and Muscle Cell Differentiation. Molecular and Cellular 547 Biology, vol.30, pp.1182-1198, 2009.

T. I. Lima, H. N. Araujo, E. S. Menezes, C. H. Sponton, M. B. Araújo et al., , p.549

L. R. Silveira, Role of microRNAs on the regulation of mitochondrial biogenesis 550 and insulin signaling in skeletal muscle, Journal of Cellular Physiology, vol.232, issue.5, pp.958-966, 2017.

D. C. Lin, J. D. Hershey, J. S. Mattoon, and C. T. Robbins, Skeletal muscles of 553 hibernating brown bears are unusually resistant to effects of denervation, The Journal of 554 Experimental Biology, vol.215, issue.12, pp.2081-2087, 2012.

N. Liu, A. H. Williams, Y. Kim, J. Mcanally, S. Bezprozvannaya et al., , p.556

E. N. Olson, An intragenic MEF2-dependent enhancer directs muscle-specific 557 expression of microRNAs 1 and 133, Proceedings of the National Academy of Sciences, pp.20844-20849, 2007.

B. E. Luu, K. K. Biggar, C. W. Wu, and K. B. Storey, Torpor-responsive expression of 560 novel microRNA regulating metabolism and other cellular pathways in the thirteen-lined 561 ground squirrel, Ictidomys tridecemlineatus, FEBS Letters, vol.590, issue.20, pp.3574-3582, 2016.

,

B. E. Luu, S. R. Green, C. L. Childers, M. R. Holahan, and K. B. Storey, The roles of 564 hippocampal microRNAs in response to acute postnatal exposure to di(2-ethylhexyl) 565 phthalate in female and male rats, NeuroToxicology, vol.59, pp.98-104, 2017.

,

S. Miretti, E. Martignani, P. Accornero, and M. Baratta, Functional effect of mir-27b on 568 myostatin expression: A relationship in piedmontese cattle with double-muscled phenotype, 569 BMC Genomics, vol.14, issue.1, p.194, 2013.

H. M. O'neill, J. S. Lally, S. Galic, M. Thomas, P. D. Azizi et al., , p.571

G. R. , AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid 572 oxidation and insulin sensitivity in mice, Diabetologia, vol.57, issue.8, pp.1693-1702, 2014.

,

F. Pellissier, C. M. Glogowski, S. F. Heinemann, M. Ballivet, and V. Ossipow, Lab 575 assembly of a low-cost, robust SYBR green buffer system for quantitative real-time 576 polymerase chain reaction, Analytical Biochemistry, vol.350, issue.2, pp.310-312, 2006.

,

P. K. Rao, R. M. Kumar, M. Farkhondeh, S. Baskerville, and H. F. Lodish, Myogenic 579 factors that regulate expression of muscle-specific microRNAs, Proceedings of the National 580 Academy of Sciences, vol.103, pp.8721-8726, 2006.

S. Rome, V. Lecomte, E. Meugnier, J. Rieusset, C. Debard et al., , 2008.

, Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory 583 pathways in muscle, Physiological Genomics, vol.34, issue.3, pp.327-337

,

V. Rottiers, S. H. Najafi-shoushtari, F. Kristo, S. Gurumurthy, L. Zhong et al.,

M. , MicroRNAs in metabolism and metabolic diseases, Cold Spring Harbor 587 Symposia on Quantitative Biology, vol.76, pp.225-233, 2011.

,

P. Ru, P. Hu, F. Geng, X. Mo, C. Cheng et al., Feedback loop 590 regulation of SCAP/SREBP-1 by miR-29 modulates EGFR signaling-driven glioblastoma 591 growth, Cell Reports, vol.16, issue.6, pp.1527-1535, 2016.

T. Ruf and F. Geiser, Daily torpor and hibernation in birds and mammals, Biological 593 Reviews of the Cambridge Philosophical Society, vol.90, issue.3, pp.891-926, 2015.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative CT 595 method, Nature Protocols, vol.3, issue.6, pp.1101-1108, 2008.

J. M. Steffen, D. A. Koebel, X. J. Musacchia, and W. K. Milsom, Morphometric and 597 metabolic indices of disuse in muscles of hibernating ground squirrels, Comparative 598 Biochemistry and Physiology --Part B: Biochemistry And, vol.99, issue.4, pp.815-819, 1991.

, , pp.90147-90153

K. B. Storey and J. M. Storey, Metabolic rate depression: the biochemistry of mammalian 601 hibernation, Advances in Clinical Chemistry, vol.52, pp.77-108, 2010.

M. V. Taylor and S. M. Hughes, Mef2 and the skeletal muscle differentiation program. 604 Seminars in, Cell and Developmental Biology, vol.72, pp.33-44, 2017.

,

S. N. Tessier, T. E. Audas, C. Wu, S. Lee, and K. B. Storey, The involvement of 607 mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation, Cell 608 Stress and Chaperones, vol.19, issue.6, pp.813-825, 2014.

S. N. Tessier and K. B. Storey, Expression of myocyte enhancer factor-2 and downstream 610 genes in ground squirrel skeletal muscle during hibernation. Molecular and Cellular 611 Biochemistry, vol.344, pp.151-162, 2010.

S. N. Tessier and K. B. Storey, Myocyte enhancer factor-2 and cardiac muscle gene 613 expression during hibernation in thirteen-lined ground squirrels, Gene, vol.501, issue.1, pp.8-16, 2012.

S. N. Tessier and K. B. Storey, To be or not to be: the regulation of mRNA fate as a 616 survival strategy during mammalian hibernation, Cell Stress and Chaperones, vol.19, issue.6, pp.763-617, 2014.

D. B. Tinker, H. J. Harlow, and T. D. Beck, Protein use and muscle-fiber 619 changes in free-ranging, hibernating black bears, Physiological and Biochemical Zoology, vol.620, issue.4, pp.414-424, 1998.

G. Togliatto, A. Trombetta, P. Dentelli, P. Cotogni, A. Rosso et al., Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb 623 ischemia via SOD-2-mediated miR-221/222 expression, Journal of the American Heart, vol.624, issue.6, p.622, 2013.

S. Wada, Y. Kato, M. Okutsu, S. Miyaki, K. Suzuki et al., , 2011.

, Translational suppression of atrophic regulators by MicroRNA-23a integrates resistance to 627 skeletal muscle atrophy, Journal of Biological Chemistry, vol.286, issue.44, pp.38456-38465

,

S. J. Wickler, D. F. Hoyt, and F. Van-breukelen, Disuse atrophy in the hibernating 630 golden-mantled ground squirrel, Spermophilus lateralis, American Journal of Physiology-631 Regulatory, Integrative and Comparative Physiology, vol.261, issue.5, pp.1214-1217, 2017.

,

C. Wu, K. K. Biggar, and K. B. Storey, Expression profiling and structural 634 characterization of microRNAs in adipose tissues of hibernating ground squirrels, 2014.

, Proteomics & Bioinformatics, vol.12, issue.6, pp.284-291

,

M. E. Yacoe, Protein metabolism in the pectoralis muscle and liver of hibernating bats, 638 Eptesicus fuscus, Journal of Comparative Physiology B, vol.152, issue.1, pp.137-144, 1983.

B. T. Zhang, S. S. Yeung, Y. Liu, H. H. Wang, Y. M. Wan et al., The effects of low frequency electrical stimulation on satellite cell activity in rat 642 skeletal muscle during hindlimb suspension, BMC Cell Biology, vol.11, issue.1, p.641, 2010.

Y. Zhang, O. A. Aguilar, and K. B. Storey, Transcriptional activation of muscle atrophy 645 promotes cardiac muscle remodeling during mammalian hibernation. PeerJ, 4, e2317, 2016.

T. Zhou, X. Meng, H. Che, N. Shen, D. Xiao et al., Regulation of 648 insulin resistance by multiple MiRNAs via targeting the GLUT4 signalling pathway. 649 Cellular Physiology and Biochemistry, vol.38, pp.2063-2078, 2016.