M. Glotzer, Animal cell cytokinesis, Annu Rev Cell Dev Biol, vol.17, pp.351-386, 2001.

X. Morin and Y. Bellaiche, Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development, Dev Cell, vol.21, pp.102-121, 2011.

J. A. Knoblich, Asymmetric cell division: recent developments and their implications for tumour biology, Nat Rev Mol Cell Biol, vol.11, pp.849-60, 2010.

T. Kiyomitsu, Mechanisms of daughter cell-size control during cell division, Trends Cell Biol, vol.25, pp.286-295, 2015.

L. Rose and P. Gönczy, Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos, WormBook Online Rev C Elegans Biol, p.25548889, 2014.

S. W. Grill, P. Gonczy, E. H. Stelzer, and A. A. Hyman, Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo, Nature, vol.409, pp.630-633, 2001.

S. W. Grill, J. Howard, E. Schaffer, E. H. Stelzer, and A. A. Hyman, The distribution of active force generators controls mitotic spindle position, Science, vol.301, pp.518-539, 2003.

J. Labbe, The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly, J Cell Biol, vol.167, pp.245-256, 2004.

L. S. Rose and K. J. Kemphues, Early patterning of the C. elegans embryo, Annu Rev Genet, vol.32, pp.521-545, 1998.

E. Munro, J. Nance, and J. R. Priess, Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo, Dev Cell, vol.7, pp.413-437, 2004.

D. H. Park and L. S. Rose, Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning, Dev Biol, vol.315, pp.42-54, 2008.

E. M. Gusnowski and M. Srayko, Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning, J Cell Biol, vol.194, pp.377-86, 2011.

A. Kimura and S. Onami, Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration, PLOS Biology, vol.8, pp.765-75, 2005.

K. Kimura and A. Kimura, Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo, Proc Natl Acad Sci U A, vol.108, pp.137-179, 2011.

M. Gotta, Y. Dong, Y. K. Peterson, S. M. Lanier, and J. Ahringer, Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo, Curr Biol, vol.13, pp.1029-1066, 2003.

D. G. Srinivasan, A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans, Genes Dev, vol.17, pp.1225-1239, 2003.

K. Colombo, S. W. Grill, R. J. Kimple, F. S. Willard, D. P. Siderovski et al., Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos, Science, vol.300, pp.1957-61, 2003.

H. H. Keating and J. G. White, Centrosome dynamics in early embryos of Caenorhabditis elegans, J Cell Sci, vol.111, pp.3027-3033, 1998.

J. Pecreaux, J. C. Roper, K. Kruse, F. Julicher, A. A. Hyman et al., Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators, Curr Biol, vol.16, pp.2111-2133, 2006.

S. W. Grill, K. Kruse, and F. Julicher, Theory of mitotic spindle oscillations, Phys Rev Lett, vol.94, p.108104, 2005.

C. Kozlowski, M. Srayko, and F. Nedelec, Cortical Microtubule Contacts Position the Spindle in C. elegans Embryos, Cell, vol.129, pp.499-510, 2007.

K. Kiontke, The phylogenetic relationships of Caenorhabditis and other rhabditids, WormBook, 2005.

,

B. Goldstein, L. M. Frisse, and W. K. Thomas, Embryonic axis specification in nematodes: evolution of the first step in development, Curr Biol, vol.8, pp.157-60, 1998.

E. Schierenberg, Three sons of fortune: early embryogenesis, evolution and ecology of nematodes, Bioessays, vol.23, pp.841-848, 2001.

M. Brauchle, K. Kiontke, P. Macmenamin, D. Fitch, and F. Piano, Evolution of early embryogenesis in rhabditid nematodes, Dev Biol, vol.335, pp.253-262, 2009.

M. Félix, C. Braendle, and A. D. Cutter, A Streamlined System for Species Diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with Name Designations for 15 Distinct Biological Species. Goldstein B, editor, PLoS ONE, vol.9, 2014.

R. Farhadifar, C. F. Baer, A. Valfort, E. C. Andersen, T. Müller-reichert et al., Selection, and Evolutionary Dynamics of the Mitotic Spindle, Curr Biol, 2015.

C. Panbianco, D. Weinkove, E. Zanin, D. Jones, N. Divecha et al., A casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning, Dev Cell, vol.15, pp.198-208, 2008.

S. Redemann, S. Schloissnig, S. Ernst, A. Pozniakowsky, S. Ayloo et al., Codon adaptationbased control of protein expression in C. elegans, Nat Methods, vol.8, pp.250-252, 2011.

G. Yvert, S. Ohnuki, S. Nogami, Y. Imanaga, S. Fehrmann et al., Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast, BMC Syst Biol, vol.7, 2013.
URL : https://hal.archives-ouvertes.fr/ensl-00962348

L. J. Harmon, J. T. Weir, C. D. Brock, R. E. Glor, and W. Challenger, GEIGER: investigating evolutionary radiations, Bioinformatics, vol.24, pp.129-131, 2008.

C. Burgarella, P. Gayral, M. Ballenghien, A. Bernard, P. David et al., Molecular Evolution of Freshwater Snails with Contrasting Mating Systems, Mol Biol Evol, vol.32, pp.2403-2416, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01315526

A. Dey, C. Chan, C. G. Thomas, and A. D. Cutter, Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri, Proc Natl Acad Sci, vol.110, pp.11056-11060, 2013.

A. D. Cutter, R. Jovelin, and A. Dey, Molecular hyperdiversity and evolution in very large populations, Mol Ecol, vol.22, pp.2074-2095, 2013.

K. Fowler and M. C. Whitlock, The distribution of phenotypic variance with inbreeding, Evolution, pp.1143-1156, 1999.

S. Riche, M. Zouak, F. Argoul, A. Arneodo, J. Pecreaux et al., Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos, J Cell Biol, vol.201, pp.653-662, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877132

W. Nahaboo, M. Zouak, P. Askjaer, and M. Delattre, Chromatids segregate without centrosomes during Caenorhabditis elegans mitosis in a Ran-and CLASP-dependent manner, Mol Biol Cell, vol.26, pp.2020-2029, 2015.

T. F. Hansen, Evolutionary Constraints, 2015.

J. R. True and E. S. Haag, Developmental system drift and flexibility in evolutionary trajectories, Evol Dev, vol.3, pp.109-128, 2001.

E. S. Haag and J. R. True, Evolution and development: anchors away!, Curr Biol, vol.17, pp.172-176, 2007.

M. Félix, Cryptic Quantitative Evolution of the Vulva Intercellular Signaling Network in Caenorhabditis, Curr Biol, vol.17, pp.103-114, 2007.

K. R. Wotton, E. Jiménez-guri, A. Crombach, H. Janssens, A. Alcaine-colet et al., Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita, Elife, vol.4, p.4785, 2015.

A. J. Verster, A. K. Ramani, S. J. Mckay, and A. G. Fraser, Comparative RNAi Screens in C. elegans and C. briggsae Reveal the Impact of Developmental System Drift on Gene Function, PLoS Genet, vol.10, 2014.

M. Lynch, M. C. Field, H. V. Goodson, H. S. Malik, J. B. Pereira-leal et al., Evolutionary cell biology: Two origins, one objective, Proc Natl Acad Sci, vol.111, pp.16990-16994, 2014.

T. F. Hansen and E. P. Martins, Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data, Evolution, pp.1404-1417, 1996.

S. Estes and S. J. Arnold, Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales, Am Nat, vol.169, pp.227-244, 2007.

E. C. Andersen, J. P. Gerke, J. A. Shapiro, J. R. Crissman, R. Ghosh et al., Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity, Nat Genet, vol.44, pp.285-290, 2012.

R. Farhadifar, J. M. Ponciano, E. C. Andersen, D. J. Needleman, and C. F. Baer, Mutation Is a Sufficient and Robust Predictor of Genetic Variation for Mitotic Spindle Traits in Caenorhabditis elegans, Genetics, vol.203, pp.1859-1870, 2016.

I. Nuez and M. A. Felix, Evolution of Susceptibility to Ingested Double-Stranded RNAs in Caenorhabditis Nematodes, PLoS ONE, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00666012

T. Lo, C. S. Pickle, S. Lin, E. J. Ralston, M. Gurling et al., Precise and Heritable Genome Editing in Evolutionarily Diverse Nematodes Using TALENs and CRISPR/Cas9 to Engineer Insertions and Deletions, Genetics, vol.195, pp.331-348, 2013.

H. Witte, E. Moreno, C. Rödelsperger, J. Kim, J. Kim et al., Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus, Dev Genes Evol, vol.225, p.25548084, 2015.

S. M. O'rourke, S. N. Christensen, and B. Bowerman, Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex, Nat Cell Biol, vol.12, pp.1235-1241, 2010.

M. F. Tsou, A. Hayashi, L. R. Debella, G. Mcgrath, and L. S. Rose, LET-99 determines spindle position and is asymmetrically enriched in response to PAR polarity cues in C. elegans embryos, Development, vol.129, pp.4469-81, 2002.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, pp.71-94, 1974.

P. Gonczy, H. Schnabel, T. Kaletta, A. D. Amores, T. Hyman et al., Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis, J Cell Biol, vol.144, pp.927-973, 1999.

D. Cluet, P. Stébé, S. Riche, M. Spichty, and M. Delattre, Automated High-Throughput Quantification of Mitotic Spindle Positioning from DIC Movies of Caenorhabditis Embryos, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/ensl-01074628

R. Farhadifar and D. Needleman, Automated segmentation of the first mitotic spindle in differential interference contrast microcopy images of C. elegans embryos, Methods Mol Biol Clifton NJ, vol.1136, pp.41-45, 2014.

L. J. Revell, phytools: an R package for phylogenetic comparative biology (and other things), Methods in Ecology and Evolution, vol.2012, pp.217-223

L. J. Revell, G. Reynolds, and R. , A new Bayesian method for fitting evolutionary models to comparative data with intraspecific variation, Evol Int J Org Evol, vol.66, pp.2697-2707, 2012.

E. Paradis, J. Claude, and K. Strimmer, APE: Analyses of Phylogenetics and Evolution in R language, Bioinformatics, vol.20, pp.289-290, 2004.
URL : https://hal.archives-ouvertes.fr/ird-01887318

J. Felsenstein, Phylogenies and the Comparative Method. The amercian naturalist, p.1, 1985.

N. Kanzaki, K. Kiontke, E. Tanaka, Y. Hirooka, A. Schwarz et al., Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution, Scientific Reports, vol.7, issue.1, p.28894108, 2017.