P. Marcus, Surface science approach to corrosion phenomena, Electrochim. Acta, vol.43, pp.109-118, 1998.

D. D. Macdonald, Passivity -the key to our metals-based civilization, Pure Appl. Chem, vol.71, pp.951-978, 1999.

P. Schmuki, From Bacon to barriers: a review on the passivity of metals and alloys, J. Solid State Electrochem, vol.6, pp.145-154, 2002.

C. O. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochim. Acta, vol.48, pp.1093-1104, 2003.

H. Strehblow, V. Maurice, and P. Marcus, Corrosion Mechanisms in Theory and Practice, pp.235-326, 2011.

P. Marcus and V. Maurice, Oxide Passive Films and Corrosion Protection, Oxide Ultrathin Films. Science and Technology, pp.119-144, 2012.

V. Maurice and P. Marcus, Passive films at the nanoscale, Electrochim. Acta, vol.84, pp.129-138, 2012.

H. Strehblow, Passivity of Metals Studied by Surface Analytical Methods, a Review, Electrochim. Acta, vol.212, pp.630-648, 2016.

G. S. Frankel, Pitting corrosion of metals a review of the critical factors, J. Electrochem. Soc, vol.145, pp.2186-2198, 1998.

P. Marcus, H. Strehblow, and V. Maurice, Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure, Corrosion Sci, vol.50, pp.2698-2704, 2008.

H. Strehblow and P. Marcus, Mechanisms of Pitting Corrosion, Corrosion Mechanisms in Theory and Practice, pp.349-393, 2011.

, Passivity breakdown, pit initiation and propagation of pits in metallic materials-review, Corrosion Sci, vol.90, pp.5-22, 2015.

G. S. Frankel, T. Li, and J. R. Scully, Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability, J. Electrochem. Soc, vol.164, pp.180-181, 2017.

N. Ikemiya, T. Kubo, and S. Hara, In situ AFM observations of oxide film formation on Cu(111) and Cu (100) surfaces under aqueous alkaline solutions, Surf. Sci, vol.323, pp.81-90, 1995.

V. Maurice, H. Strehblow, and P. Marcus, situ STM study of the initial stages of oxidation of Cu (111) in aqueous solution, vol.458, pp.185-194, 2000.

J. Kunze, V. Maurice, L. H. Klein, H. Strehblow, and P. Marcus, situ scanning tunneling microscopy study of the anodic oxidation of Cu (111) in 0.1 M NaoH, vol.105, pp.4263-4269, 2001.

H. Strehblow, V. Maurice, and P. Marcus, Initial and later stages of anodic oxide formation on Cu, chemical aspects, structure and electronic properties, Electrochimica Acta, vol.46, pp.3755-3766, 2001.

J. Kunze, V. Maurice, L. H. Klein, H. Strehblow, and P. Marcus, situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu (111) in alkaline solutions, vol.48, pp.1157-1167, 2003.

J. Kunze, V. Maurice, L. H. Klein, H. Strehblow, and P. Marcus, situ STM study of the anodic oxidation of Cu (001) in 0.1 M NaOH, vol.554, pp.113-125, 2003.

J. Kunze, V. Maurice, L. H. Klein, H. Strehblow, and P. Marcus, situ STM study of the duplex passive films formed on Cu (111) and Cu (001) in 0.1 M NaOH, vol.46, pp.245-264, 2004.

V. Maurice, H. Talah, and P. Marcus, Ex situ STM imaging with atomic resolution of Ni (111) electrodes passivated in sulfuric acid, Surf. Sci, vol.284, pp.431-436, 1993.

V. Maurice, H. Talah, and P. Marcus, A scanning tunneling microscopy study of the structure of thin oxide films grown on Ni (111) single-crystal surfaces by anodic polarization in acid electrolyte, Surf. Sci, vol.304, pp.98-108, 1994.

S. L. Yau, F. R. Fan, T. P. Moffat, and . Bard-;-m-naoh, situ Scanning Tunneling Microscopy of Ni, vol.98, pp.5493-5499, 1994.

T. Suzuki, T. Yamada, and K. Itaya, Ni(100), and Sulfur-Modified Ni(100) in Acidic Solution, situ Electrochemical Scanning Tunneling Microscopy of Ni, vol.100, pp.8954-8961, 1996.

D. Zuili, V. Maurice, and P. Marcus, Surface structure of nickel in acid solution studied by in situ scanning tunneling microscopy, J. Electrochem. Soc, vol.147, pp.1393-1400, 2000.

O. M. Magnussen, J. Scherer, B. M. Ocko, and R. J. Behm, In situ X-ray Scattering Study of the Passive Film on Ni(111) in Sulfuric Acid Solution, J. Phys. Chem. B, vol.104, pp.1222-1226, 2000.

N. Hirai, H. Okada, and S. Hara, In-situ Electrochemical Atomic Force Microscopy with Atomic Resolution of Ni(110) in Neutral and Alkaline Aqueous Solution, Transaction JIM, vol.44, pp.727-730, 2003.

J. Scherer, B. M. Ocko, and O. M. Magnussen, Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, X-ray scattering, and electrochemical study, Electrochim. Acta, vol.48, pp.1169-1191, 2003.

M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki, and M. Ito, Surface structures at the initial stages in passive film formation on Ni(1 1 1) electrodes in acidic electrolytes, J. Electroanal. Chem, vol.566, pp.385-391, 2004.

A. Seyeux, V. Maurice, L. H. Klein, and P. Marcus, situ scanning tunnelling microscopic study of the initial stages of growth and of the structure of the passive film on Ni (111) in 1 mM NaOH (aq), vol.9, pp.337-346, 2005.

A. Seyeux, V. Maurice, L. H. Klein, and P. Marcus, In situ STM study of the effect of chloride on passive film on nickel in alkaline solution, J. Electrochem. Soc, vol.153, pp.453-463, 2006.

R. C. Bhardwaj, A. Gonzalez-martin, J. O'm, and . Bockris, In situ Scanning Tunneling Microscopy Studies on Passivation of Polycrystalline Iron in Borate Buffer, J. Electrochem. Soc, vol.138, pp.1901-1908, 1991.

M. P. Ryan, R. Newman, and G. Thompson, An STM Study of the Passive Film Formed on Iron in Borate Buffer Solution, J. Electrochem. Soc, vol.142, pp.177-179, 1995.

M. Toney, A. J. Davenport, L. Oblonsky, M. P. Ryan, and C. M. Vitus, Atomic Structure of the Passive Oxide Film Formed on Iron, Phys. Rev. Lett, vol.79, p.4282, 1997.

J. Li and D. J. Meier, An AFM study of the properties of passive films on iron surfaces, J. Electroanal. Chem, vol.454, pp.53-58, 1998.

A. J. Davenport, L. Oblonsky, M. P. Ryan, and M. Toney, The Structure of the Passive Film That Forms on Iron in Aqueous Environments, J. Electrochem. Soc, vol.147, pp.2162-2173, 2000.

I. Diez-pérez, P. Gorostiza, F. Sanz, and C. Müller, First Stages of Electrochemical Growth of the Passive Film on Iron, J. Electrochem. Soc, vol.148, pp.307-313, 2001.

E. E. Rees, M. P. Ryan, and D. S. Macphail, An STM Study of the Nanocrystalline Structure of the Passive Film on Iron, vol.5, pp.21-23, 2002.

H. Deng, H. Nanjo, P. Quian, A. Santosa, I. Ishikawa et al., Potential dependence of surface crystal structure of iron passive films in borate buffer solution, Electrochim. Acta, vol.52, pp.4272-4277, 2007.

S. Ando, T. Suzuki, and K. Itaya, In situ electrochemical scanning tunneling microscopy of Co(0001) single-crystal electrodes in acidic solution, J. Electroanal. Chem, vol.431, pp.277-284, 1997.

A. Foelske, J. Kunze, and H. Strehblow, Initial stages of hydroxide formation and its reduction on Co(0001), situ STM and XPS in 0.1 M NaOH, vol.554, pp.10-24, 2004.

F. Reikowski, F. Maroun, N. Di, P. Allongue, M. Ruge et al., In situ surface X-ray diffraction study of ultrathin epitaxial Co films on Au(111) in alkaline solution, Electrochim. Acta, vol.197, pp.273-281, 2016.

V. Maurice, W. Yang, and P. Marcus, XPS and STM Investigation of the Passive Film Formed on Cr (110) Single-Crystal Surfaces, vol.141, pp.3016-3027, 1994.

D. Zuili, V. Maurice, and P. Marcus, In situ scanning tunneling microscopy study of the structure of the hydroxylated anodic oxide film formed on Cr (110) single-crystal surfaces, J. Phys. Chem. B, vol.103, pp.7896-7905, 1999.

M. P. Ryan, R. Newman, and G. Thompson, A scanning tunnelling microscopy study of structure and structural relaxation in passive oxide films on Fe-Cr alloys, vol.70, pp.241-251, 1994.

M. P. Ryan, R. Newman, and G. Thompson, Atomically Resolved STM of Oxide Film Structures on Fe-Cr Alloys during Passivation in Sulfuric Acid Solution, J. Electrochem. Soc, vol.141, pp.164-165, 1994.

V. Maurice, W. Yang, and P. Marcus, XPS and STM Study of Passive Films Formed on Fe-22Cr (110) Single-Crystal Surface, J. Electrochem. Soc, vol.143, pp.1182-1200, 1996.

H. Nanjo, R. Newman, and N. Sanada, Atomic images of 304SS surface after electrochemical treatments, Appl. Surf. Sci, vol.121, pp.253-256, 1997.

V. Maurice, W. Yang, and P. Marcus, X-Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100) Fe-18Cr-13Ni Single-Crystal Surfaces, J. Electrochem. Soc, vol.145, pp.909-920, 1998.

V. Vignal, J. Olive, and D. Desjardins, Effect of molybdenum on passivity of stainless steelsin chloride media using ex situ near field microscopy observations, Corrosion Sci, vol.41, pp.969-884, 1999.

T. Massoud, V. Maurice, L. H. Klein, and P. Marcus, Nanoscale morphology and atomic structure of passive films on stainless steel, J. Electrochem. Soc, vol.160, pp.232-238, 2013.

V. Maurice, H. Peng, L. H. Klein, A. Seyeux, S. Zanna et al., Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces, Faraday Discussions, vol.180, pp.151-170, 2015.

A. Machet, A. Galtayries, S. Zanna, L. H. Klein, V. Maurice et al., XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy, vol.49, pp.3957-3964, 2004.

V. Maurice, L. H. Klein, and P. Marcus, Atomic structure of metastable pits formed on nickel, Electrochem. Solid-State Lett, vol.4, pp.1-3, 2001.

V. Maurice, L. H. Klein, and P. Marcus, Atomic-scale investigation of the localized corrosion of passivated nickel surfaces, Surf. Interf. Anal, vol.34, pp.139-143, 2002.

V. Maurice, T. Nakamura, H. Peng, L. H. Klein, A. Seyeux et al., Initial stages of localised corrosion by pitting of passivated nickel surfaces studied by STM and AFM, Local Probe Techniques for Corrosion Research. EFC Publications N° 45, pp.71-83, 2007.

A. Seyeux, V. Maurice, and P. Marcus, Breakdown kinetics at nanostructure defects of passive films, Electrochem, Solid State Lett, vol.12, pp.25-27, 2009.

A. Bouzoubaa, B. Diawara, V. Maurice, C. Minot, and P. Marcus, Ab initio study of the interaction of chlorides with defect-free hydroxylated NiO surfaces, Corrosion Science, vol.51, pp.941-948, 2009.

A. Bouzoubaa, B. Diawara, V. Maurice, C. Minot, and P. Marcus, Ab initio modelling of localized corrosion: Study of the role of surface steps in the interaction of chlorides with passivated nickel surfaces, Corrosion Science, vol.51, pp.2174-2182, 2009.

A. Bouzoubaa, D. Costa, B. Diawara, N. Audiffen, and P. Marcus, Insight of DFT and atomistic thermodynamics on the adsorption and insertion of halides onto the hydroxylated NiO (111) surface, Corrosion Sci, vol.52, pp.2643-2652, 2010.

B. Jeon, S. K. Sankaranarayanan, A. C. Van-duin, and S. Ramanathan, Reactive Molecular Dynamics Study of Chloride Ion Interaction with Copper Oxide Surfaces in Aqueous Media, ACS Appl. Mater. Interfaces, vol.4, pp.1225-1232, 2012.

B. Narayanan, S. A. Deshmukh, S. K. Sankaranarayanan, and S. Ramanathan, Strong correlations between structural order and passive state at water-copper oxide interfaces, Electrochim. Acta, vol.179, pp.386-393, 2015.

R. E. Newnham and Y. M. De-haan, Refinement of the ? Al2O3, Ti2O3, V2O3 and Cr2O3 Structures, vol.117, p.235, 1962.

R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2003.

L. C. Bartel and B. Morosin, Exchange Striction in NiO, Phys. Rev, vol.3, p.1039, 1971.

M. G. Brik, A. Suchocki, and A. Kami?ska, Lattice Parameters and Stability of the Spinel Compounds in Relation to the Ionic Radii and Electronegativities of Constituting Chemical Elements, Inorg. Chem, vol.53, pp.5088-5099, 2014.

T. Massoud, V. Maurice, F. Wiame, L. H. Klein, A. Seyeux et al., Nanostructure and local properties of oxide layers grown on stainless steel in simulated pressurized water reactor environment, Corrosion Sci, vol.84, pp.198-203, 2014.

D. W. Suggs and A. Bard, Scanning Tunneling Microscopic Study with Atomic Resolution of the Dissolution of Cu(100) Electrodes in Aqueous Chloride Media, J. Phys. Chem, vol.99, pp.8349-8355, 1995.

O. M. Magnussen, M. Vogt, J. Scherer, and R. J. Behm, Double-layer structure, corrosion and corrosion inhibition of copper in aqueous solution, Appl Phys A, vol.66, pp.447-451, 1998.

P. Broekmann, M. Anastasescu, A. Spaenig, W. Lisowski, and K. Wandelt, Atomic structures and dynamics of a Cu(100) electrode in dilute hydrobromic acid: An in situ STM study, J. Electroanal. Chem, vol.500, pp.241-254, 2001.

J. Yin, C. D'haese, and B. Nysten, Surface electrical properties of stainless steel fibres: An AFM-based study, Appl. Surf. Sci, vol.330, pp.65-73, 2015.

S. H. Kim, U. Erb, K. T. Aust, and G. Palumbo, Grain boundary character distribution and intergranular corrosion behaviour in high purity aluminium, Scr. Mater, vol.44, pp.835-839, 2001.

M. T. Woldemedhin, D. Raabe, and A. W. Hassel, Grain boundary electrochemistry of B-type Nb-Ti alloy using a scanning droplet cell, Phys. Stat. Sol. (a), pp.1246-1251, 2011.

V. Y. Gerrtsman and S. M. Gruemer, Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys, Acta Mater, vol.49, pp.1589-1598, 2001.

B. V. Mahesh and R. K. Singh-raman, Role of nanostructure in electrochemical corrosion and high temperature corrosion: A review, Metall. Mater Trans. A, vol.45, pp.5799-5822, 2014.

J. Mieluch and M. Smialowski, The Behaviour of Grain Boundaries in Iron During Anodic Polarization in Ammonium Nitrate Solution, Corros. Sci, vol.4, pp.237-243, 1964.

P. Lin, G. Palumbo, U. Erb, and K. T. Aust, Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600, Scripta Metallurgica et Materiala, vol.33, pp.1387-1392, 1995.

H. Miyamoto, K. Yoshimura, T. Mimaki, and M. Yamashita, Behavior of Intergranular Corrosion of ?0 1 1? Tilt Grain Boundaries of Pure Copper Bicrystals, Corros. Sci, vol.44, pp.1835-1846, 2002.

M. Shimada, H. Kokawa, Z. J. Wang, Y. S. Sato, and I. Karibe, Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin induced grain boundary engineering, Acta Materialia, vol.50, pp.2331-2341, 2002.

E. M. Lehockey, A. M. Brennenstuhl, and I. Thompson, On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking, Corros. Sci, vol.46, pp.2383-2404, 2004.

V. Randle, Special' Boundaries and Grain Boundary Plane Engineering, Scr. Mater, vol.54, pp.1011-1015, 2006.

S. Xia, B. Zhou, and W. Chen, Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in Alloy 690, J Mater Sci, vol.43, pp.2990-3000, 2008.

R. Jones and V. Randle, Sensitisation behaviour of grain boundary engineered austenitic stainless steel, Materials Science and Engineering A, vol.527, pp.4275-4280, 2010.

,. S. Cl-changliang, H. Xi, T. G. Li, B. X. Liu, W. J. Zhou et al., Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control, Corros. Sci, vol.53, pp.1880-1886, 2011.

C. Luo, X. Zhou, G. E. Thompson, and A. E. Hughes, Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy, Corros. Sci, vol.61, pp.35-44, 2012.

S. Kumar, B. Balla-sai-prasad, V. Kain, and J. Reddy, Methods for making alloy 600 resistant to sensitization and intergranular corrosion, Corros. Sci, vol.70, pp.55-61, 2013.

Y. Takehara, H. Fujiwara, and H. Miyamoto, Special" to "general" transition of intergranular corrosion in Sigma 3{111} grain boundary with gradually changed misorientation, Corros. Sci, vol.77, pp.171-175, 2013.

A. Stratulat, J. A. Duff, T. J. Marrow, and T. James, Grain boundary structure and intergranular stress corrosion crack initiation in high temperature water of a thermally sensitised austenitic stainless steel, Corros. Sci, vol.85, pp.428-435, 2014.

E. Martinez-lombardia, Y. Gonzalez-garcia, L. Lapeire, I. De-graeve, K. Verbeken et al., Scanning Electrochemical Microscopy to Study the Effect of Crystallographic Orientation on the Electrochemical Activity of Pure Copper, Electrochim. Acta, vol.116, pp.89-96, 2014.

N. Srinivasan, V. Kain, N. Birbilis, K. V. Krishna, S. Shekhawat et al., Near boundary gradient zone and sensitization control in austenitic stainless steel, Corros. Sci, vol.100, pp.544-555, 2015.

E. Martinez-lombardia, L. Lapeire, V. Maurice, I. De-graeve, K. Verbeken et al., In situ scanning tunneling microscopy study of the intergranular corrosion of copper, Electrochem. Com, vol.41, pp.1-4, 2014.

H. Chen, V. Maurice, L. H. Klein, K. Verbeken, H. Terryn et al., Grain boundary passivation studied by in situ scanning tunneling microscopy on microcrystalline copper, J. Solid State Electrochem, vol.19, pp.3501-3509, 2015.

H. Chen, M. Bettayeb, V. Maurice, L. H. Klein, K. Verbeken et al., Local passivation of metals at grain boundaries: In situ scanning tunneling microscopy study on copper, Corrosion Sci, vol.111, pp.659-666, 2016.

M. Bettayeb, V. Maurice, L. H. Klein, K. Verbeken, H. Terryn et al.,

W. Schwenk, Corrosion control by organic inhibitors, p.103, 1981.

M. M. Antonijevic and M. B. Petrovic, Copper corrosion inhibitors. A review, Int. J. Electrochem. Sci, vol.3, pp.1-28, 2008.

P. Raja and M. G. Sethuraman, Natural products as corrosion inhibitor for metals in corrosive media -A review, Materials Lett, vol.62, pp.113-116, 2008.

M. Rohwerder and G. Grundmeier, Corrosion prevention by adsorbed organic monolayers and ultrathin plasma polymer films, Corrosion Mechanisms in Theory and Practice, pp.617-667, 2011.

G. Gece, Drugs: A review of promising novel corrosion inhibitors, Corrosion Sci, vol.53, pp.3873-3898, 2011.

G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corrosion Sci, vol.50, pp.2981-2992, 2008.

D. Costa and P. Marcus, Adsorption of organic inhibitor molecules on metal and oxidized surfaces studied by atomistic theoretical methods, Molecular Modeling of Corrosion Processes -Scientific Development and Engineering Applications, vol.2015, pp.125-131

M. R. Vogt, W. Polewska, O. M. Magnussen, and R. Behm, situ STM Study of (100) Cu Electrodes in Sulfuric Acid Solution in the Presence of Benzotriazole Adsorption, Cu Corrosion, and Cu Deposition, vol.144, pp.113-116, 1997.

M. Vogt, R. Nichols, O. M. Magnussen, and R. Behm, Benzotriazole adsorption and inhibition of Cu (100) corrosion in HCl: A combined in situ STM and in situ FTIR spectroscopy study, J Phys Chem B, vol.102, pp.5859-5865, 1998.

W. Polewska, M. R. Vogt, O. M. Magnussen, and R. Behm, In situ STM study of Cu (111) surface structure and corrosion in pure and benzotriazole-containing sulfuric acid solution, J Phys Chem B, vol.103, pp.10440-10451, 1999.

M. Sugimasa, L. Wan, J. Inukai, K. Itaya, and K. , and (111) in HClO4 Solution In situ Scanning Tunneling Microscopy Study, Adlayers of Benzotriazole on Cu, vol.149, issue.110, pp.367-373, 2002.

M. M. Antonijevic and M. B. Petrovic, Copper corrosion inhibitors. A review, Int. J. Electrochem. Sci, vol.3, pp.1-28, 2008.

M. Finsgar and I. Milosev, Inhibition of copper corrosion by 1,2,3-benzotriazole. A review, Corrosion Sci, vol.52, pp.2737-2749, 2010.

F. Grillo, D. W. Tee, S. M. Francis, H. Fru?chtl, and N. V. Richardson, Initial Stages of Benzotriazole Adsorption on the Cu(111) Surface, vol.5, pp.5269-5273, 2013.

F. Grillo, D. W. Tee, S. M. Francis, H. Fru?chtl, and N. V. Richardson, Passivation of Copper: Benzotriazole Films on Cu, vol.118, pp.8667-8675, 2014.

Y. Jiang, J. Adams, and D. Sun, Benzotriazole Adsorption on Cu2O(111) Surfaces: A First-Principles Study, J. Phys. Chem. B, vol.108, pp.12851-12857, 2004.

A. Kokalj and S. Peljhan, Density Functional Theory Study of Adsorption of Benzotriazole on Cu2O Surfaces, J Phys Chem C, vol.119, pp.11625-11635, 2015.

A. Kokalj, Ab initio modeling of the bonding of benzotriazole corrosion inhibitor to reduced and oxidized copper surfaces, Faraday Discussions, vol.180, pp.415-438, 2015.

C. Gattinoni and A. Michaelides, Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole, Faraday Discussions, vol.180, pp.439-458, 2015.

D. Costa, T. Ribeiro, F. Mercuri, G. Pacchioni, and P. Marcus, Atomistic Modeling of Corrosion Resistance: A First Principles Study of O2 Reduction on the Al(111) Surface Covered with a Thin Hydroxylated Alumina Film, Adv. Mater. Interfaces, vol.1, p.1300072, 2014.

D. Costa, T. Ribeiro, P. Cornette, and P. Marcus, DFT Modeling of Corrosion Inhibition by Organic Molecules: Carboxylates as Inhibitors of Aluminum Corrosion, J. Phys. Chem. C, vol.120, pp.28607-28616, 2016.

B. Muller and S. Kubitzki, Corrosion Inhibition of Aluminium Pigments by Esters of Gallic Acid, Mater. Corros, vol.48, pp.755-758, 1997.

I. B. Obot and A. Madhankumar, Enhanced Corrosion Inhibition Effect of Tannic Acid in the Presence of Gallic Acid at Mild steel/HCl Acid Solution Interface, J. Ind. Eng. Chem, vol.25, pp.105-111, 2015.

, Figure 8. DFT optimized structures and projected density of states (DOS) of molecularly adsorbed gallic acid on model passivated Al(111) surface. (a) Model of the ultrathin (0.2 nm) supported oxide film on Al(111)

, Dense adsorbed layer formed by the molecule on the supported oxide film. (d) Projected DOS of the oxide layer without (dotted line) and with

, Projected DOS of the adsorbed molecule COO function (gray line) and oxide layer (plain line). Zero energy level is set at the metal Fermi level