A. Koma, K. Sunouchi, and T. Miyajima, Fabrication and characterization of heterostructures with subnanometer thickness, Microelectronic Engineering2, pp.129-136, 1984.

Y. J. Hong and C. Lee, Chapter Three -van der Waals Heteroepitaxy of Semiconductor Nanowires, Semiconductors and Semimetals, vol.93, pp.125-172, 2015.

C. A. Tran, High brightness GaN vertical light emitting diodes on metal alloyed substrate for general lighting application, Journal of Crystal, vol.298, pp.722-724, 2007.

N. Guan, X. Dai, A. V. Babichev, F. H. Julien, and M. Tchernycheva, Flexible inorganic light emitting diodes based on semiconductor nanowires, Chem. Sci, vol.8, pp.7904-7911, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651119

J. Kim, Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene, Nature, vol.5, p.4836, 2014.

Y. Kobayashi, K. Kumakura, T. Akasaka, and T. Makimoto, Layered boron nitride as a release layer for mechanical transfer of GaN-based devices, vol.484, pp.223-227, 2012.

M. Hiroki, Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN, Appl. Phys. Lett, vol.105, p.193509, 2014.

T. Ayari, Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

, Phys. Lett, vol.108, p.171106, 2016.

Q. Paduano, M. Snure, G. Siegel, D. Thomson, and D. Look, Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal-organic chemical vapor deposition, Journal of Materials, vol.31, pp.2204-2213, 2016.

X. Li, Flexible metal-semiconductor-metal device prototype on wafer-scale thick boron nitride layers grown by MOVPE, Scientific, vol.7, p.786, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01830854

K. Chung, Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes, APL, vol.2, p.92512, 2014.

S. Kang, Ultraviolet photoconductive devices with an n-GaN nanorod-graphene hybrid structure synthesized by metal-organic chemical vapor deposition, Scientific, vol.5, p.10808, 2015.

M. Heilmann, Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer, Nano Lett, vol.16, pp.3524-3532, 2016.

M. Heilmann, Growth of GaN Micro-and Nanorods on Graphene-Covered

, Enabling Conductivity to Semiconductor Nanostructures on Insulating Substrates, Crystal Growth &, vol.15, pp.2079-2086, 2015.

V. Kumaresan, Epitaxy of GaN Nanowires on Graphene, Nano Lett, vol.16, pp.4895-4902, 2016.

H. Hayashi, Y. Konno, and K. Kishino, Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO 2 covered with a thin AlN buffer layer, vol.27, p.55302, 2016.

T. Araki, Radio-frequency plasma-excited molecular beam epitaxy growth of GaN on graphene/Si(100) substrates, Appl. Phys, vol.7, p.71001, 2014.

S. Nakagawa, T. Tabata, Y. Honda, M. Yamaguchi, H. Amano et al.,

, Graphite Substrate by Radio Frequency Molecular Beam Epitaxy, Jpn. J. Appl. Phys, vol.52, pp.8-15, 2013.

S. Fernández-garrido, J. K. Zettler, L. Geelhaar, and O. Brandt, Monitoring the Formation of Nanowires by Line-of-Sight Quadrupole Mass Spectrometry: A Comprehensive Description of the Temporal Evolution of GaN Nanowire Ensembles, Nano Lett, vol.15, pp.1930-1937, 2015.

T. S. Park, C. I. Chung, S. M. Jung, D. Z. Jeon, R. Fim et al., ) AND Si(111)-Ag SURFACES, J. Phys, vol.49, issue.111, pp.6-275, 1988.

M. Sobanska, V. G. Dubrovskii, G. Tchutchulashvili, K. Klosek, and Z. R. Zytkiewicz, Analysis of Incubation Times for the Self-Induced Formation of GaN Nanowires: Influence of the Substrate on the Nucleation Mechanism, Crystal Growth &, vol.16, pp.7205-7211, 2016.

L. H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. I. Near-band-edge luminescence and strain effects, Journal of Applied, vol.101, p.113505, 2007.

P. Corfdir, Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates, Journal of Applied Physics105, p.13113, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390003

E. Calleja, Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy, Phys. Rev, vol.62, pp.16826-16834, 2000.

J. E. Van-nostrand, Molecular beam epitaxial growth of high-quality GaN nanocolumns, Journal of Crystal, vol.287, pp.500-503, 2006.

O. Brandt, C. Pfüller, C. Chèze, L. Geelhaar, and H. Riechert, Sub-meV linewidth of excitonic luminescence in single GaN nanowires: Direct evidence for surface excitons, Phys. Rev, vol.81, p.45302, 2010.

C. Pfüller, Statistical analysis of excitonic transitions in single, free-standing GaN nanowires: Probing impurity incorporation in the poissonian limit, Nano Res, vol.3, pp.881-888, 2010.

B. Jenichen, Macro-and micro-strain in GaN nanowires on Si(111), vol.22, p.295714, 2011.

P. Corfdir, Sub-meV linewidth in GaN nanowire ensembles: Absence of surface excitons due to the field ionization of donors, Phys. Rev, vol.90, p.205301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083398

P. Corfdir, F. Feix, J. K. Zettler, S. Fernández-garrido, and O. Brandt, Importance of the dielectric contrast for the polarization of excitonic transitions in single GaN nanowires, New J. Phys, vol.17, p.33040, 2015.

J. K. Zettler, Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process, vol.26, p.445604, 2015.

S. Fernández-garrido, Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene

, Nano Lett, vol.17, pp.5213-5221, 2017.

T. Auzelle, Attribution of the 3.45 eV GaN nanowires luminescence to inversion domain boundaries, Appl. Phys. Lett, vol.107, p.51904, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01586122

C. Pfüller, Nature of excitons bound to inversion domain boundaries: Origin of the 3.45-eV luminescence lines in spontaneously formed GaN nanowires on Si(111), Phys. Rev, vol.94, p.155308, 2016.

G. P. Dimitrakopulos, Interfacial steps, dislocations, and inversion domain boundaries in the

/. Gan/aln and . Si, /(111) epitaxial system. physica status solidi (b)242, pp.1617-1627, 2005.

J. B. Schlager, Steady-state and time-resolved photoluminescence from relaxed and strained

, GaN nanowires grown by catalyst-free molecular-beam epitaxy, Journal of Applied Physics103, p.124309, 2008.

A. Gorgis, Time-resolved photoluminescence spectroscopy of individual GaN nanowires

, Phys. Rev, vol.86, p.41302, 2012.

C. Hauswald, Coupling of exciton states as the origin of their biexponential decay dynamics in GaN nanowires, Physical Review, vol.88, 2013.

C. Hauswald, Origin of the nonradiative decay of bound excitons in GaN nanowires, Phys. Rev, vol.90, p.165304, 2014.

M. Wölz, Epitaxial Growth of GaN Nanowires with High Structural Perfection on a Metallic TiN Film, Nano Lett, vol.15, pp.3743-3747, 2015.

J. K. Zettler, Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature, Nano, vol.16, pp.973-980, 2016.

P. Corfdir, Crystal-phase quantum dots in GaN quantum wires, Phys. Rev, vol.93, p.115305, 2016.

C. Su, Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition, Nano Lett, vol.11, pp.3612-3616, 2011.

G. H. Han, Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth, Nano Lett, vol.11, pp.4144-4148, 2011.

B. Hu, Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD, vol.50, pp.57-65, 2012.

B. Monemar, Bound excitons in GaN, J. Phys.: Condens. Matter13, p.7011, 2001.

B. Monemar, Fundamental energy gap of GaN from photoluminescence excitation spectra, Phys. Rev, vol.10, pp.676-681, 1974.

K. Kornitzer, Photoluminescence and reflectance spectroscopy of excitonic transitions in high-quality homoepitaxial GaN films, Phys. Rev, vol.60, pp.1471-1473, 1999.

O. Brandt, Statistical Analysis of the Shape of One-Dimensional Nanostructures: Determining the Coalescence Degree of Spontaneously Formed GaN Nanowires, Crystal Growth &, vol.14, pp.2246-2253, 2014.

V. M. Kaganer, Inhomogeneous strain in GaN nanowires determined from x-ray diffraction peak profiles, Phys. Rev, vol.86, p.115325, 2012.

X. Li, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

. Science324, , pp.1312-1314, 2009.

A. V. Babichev, Influence of Substrate Microstructure on the Transport Properties of CVD

, Graphene. ACS Appl. Mater, vol.8, pp.240-246, 2016.

M. Tchernycheva, Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors, Nano Lett, vol.14, pp.3515-3520, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01986746

A. V. Babichev, V. E. Gasumyants, A. Y. Egorov, S. Vitusevich, and M. Tchernycheva, Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications, vol.25, p.335707, 2014.

A. C. Ferrari, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett, vol.97, p.187401, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

M. O'brien and B. Nichols, CVD Synthesis and Characterization of Graphene Thin Films. (ARMY RESEARCH LAB ADELPHI MD SENSORS AND ELECTRON DEVICES DIRECTORATE, ARMY RESEARCH

, ADELPHI MD SENSORS AND ELECTRON DEVICES DIRECTORATE, 2010.

L. Liu, High-Yield Chemical Vapor Deposition Growth of High-Quality Large-Area AB-Stacked Bilayer Graphene, ACS, vol.6, pp.8241-8249, 2012.

C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Raman fingerprint of charged impurities in graphene, Appl. Phys. Lett, vol.91, p.233108, 2007.

A. Reina, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett, vol.9, pp.30-35, 2009.

L. Largeau, E. Galopin, N. Gogneau, L. Travers, F. Glas et al., Cryst. Growth Des, vol.12, p.2724, 2012.