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Abstract

Destabilization due to co-rotating internal viscous damping is a very well known phenomenon.
However, most practical applications in engineering do rather exhibit frictional damping
(stemming from joints, etc.) instead of velocity proportional dissipation. This contribution
aims on investigating the basic effects of internal damping due to co-rotaing frictional
dissipation and the interaction with external damping. It is found that adding internal
friction damping alters the dynamical behavior significantly: the threshold rotation speed
depending on De/Di known from the linear problem is replaced by self-excited vibrations
due to the frictional damping which occur between the resonance speed and the linear
threshold speed and which grow hyperbolically as the linear threshold speed is approached.
However, the result of the linear analysis is still meaningful since it marks the maximum
speed until which finite amplitudes are to be expected.
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INTRODUCTION

Among dynamical stability problems in general, self-
excited vibrations are major issues in rotordynamical ap-
plications which may lead to severe problems in acoustics
or even limit operational regimes and lifetime [1],[2],[3],[4].
Apart from self-excitation due to rotor-fluid interaction
in fluid-film bearings whip [2],[1],[5] or annular sealings
[3], [6], vibrations stemming from co-rotating dissipation
(so called ”internal damping”) are a common source for
self-excitated vibrations [6],[7],[3],[8].

Apart from material damping, co-rotating dissipa-
tion usually stems from shrink fits, joint connections or
inter-laminar friction in rotor-stacks of electric machines.
Historically, it was this latter application which led to
the discovery of the destabilizing effect of internal damp-
ing [9],[10],[11]. In the context of this contribution it is
interesting to note that the first contributions on this dy-
namical problem already used the term ”internal friction”
– however, since then almost all investigations had been
restricted to the influence of various types of linear or
non-linear viscous damping and accordingly the wording
changed from ”internal friction” to ”internal damping”.
Reviewing the literature revealed only very few studies
on the effect of co-rotating dissipation due to dry friction.
Most of them focussed on forced vibrations [12],[13] while
the influence on stability and self-excitation has only be
touched superficially [14].

Recent experiments emphasize that an appropriate
modelling of the dissipation in rotor stacks of electric
machinery demands for modelling approaches involving
dry friction [15],[16].

Not only for rotordynamical instabilities, but even for
stability theory in general the impact of dry friction has
not yet been investigated into detail. While the literature
on dynamical effects of joints in the context of forced
vibrations is quite rich (cf. [17],[18], [19],[20] for instance),
over a long time only very few publications had been
devoted to the impact of dry friction on the bifurcation
behavior and it only recently began to attract more
attention [21],[22],[23],[24],[25]. However, the significant
impact of Coulomb-type damping to stability problems
has already been proved experimentally ([26], [22] for
instance).

This contribution aims on investigating the influence
of co-rotating dissipation due to dry friction, i.e. inter-
nal frictional damping, on stabiliy and bifurcation of a
generic elastic rotor. To this end, the classical model
problem [6] is extended by adding rotor-fixed Coulomb
elements. Subsequently, this model problem is investi-
gated with respected to stationary steady state solutions
where the Coulomb elements stick, as well as periodic
steady state solutions.
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1. MODEL

1.1 Equations of motion
The classical model problem to investigate the basic
mechanism of self-excitation due internal damping and
the influence of external damping is a Jeffcott rotor (Laval
rotor) consisting of a massless shaft (lateral stiffness c)
in rigid bearings, to which a rigid disk (mass m) is
symmetrically mounted (cf. fig.1) and rotates about a
principle axis of inertia. Due to the aligned mounting
dynamic unbalance due to gyroscopic effects will not
occur. Moreover it is assumed that the mounting point
M of the disk coincides with the center of mass G: hence,
excitation due to static unbalance will not occur, neither.
The shaft rotates with a constant angular velocity Ω.
The influence of gravity is not taken into account.

m
c

de

Ωdi

R

G

Figure 1. Jeffcott rotor model with internal friction and
internal viscous damping.

In addition to the conservative forces, the rotor is
subjected to viscous external damping (coefficient of
viscous damping de) due to motion with respect to the
environment as well as internal dissipation due to relative
motion with respect to the rotor. For the classical model
this latter internal dissipation is modelled as co-rotating
linear-viscous damping (coefficient di). For the present
study, the classical model is extended by adding co-
rotating Coulomb elements (amplitude R of the friction
force) to the internal damping.

M = G

~rM

~ex

~ey

~eξ

~eη

Ω

O ~ez = ~eζ

η

ξ

Figure 2. Kinematics with inertial frame I and
co-rotating frame R.

For the analysis two frames of reference are introduced
(cf.figure 2): one inertial frame I = {O, [~ex, ~ey, ~ez]} and
a co-rotating relative frame R = {O, [~eξ, ~eη, ~eζ ]} rotating
with the shaft. In the following, for time derivatives
leading supercripts will denote the observer system with

respect to which the derivative will be calculated: thus,
R d

dt
() will denote time derivatives with respect to an

observer moving with system R.
Both internal friction and internal viscous damping

depend on the relative velocity ~vrel =
R d

dt
(~rM ) of the

mounting point M with respect to the co-rotating frame
of reference R. Using Euler’s differentiation formula one
finds the velocity relation

~̇rM =
d~rM

dt

I

= ~vrel + ~Ω × ~rM,

where ~Ω = Ω~ez is the vector of the angular velocity. With
this, the internal viscous damping force can be written
as

~Fdi
= −di~vrel = −di

(

~̇rM − ~Ω × ~rM

)

.

The internal friction force is modeled using Coulomb’s
friction law. Accounting for sticking and sliding, the force
reads

~Fr =







−R ~vrel

||~vrel||
, ||~vrel|| 6= 0

~Fs , ||~Fr|| < R ∧ ||~vrel|| = 0
(1)

where the first line represents the sliding friction force and
~Fs is the a priori unknown reaction force while sticking.
The set F ∋ ~Fs of admissible stiction forces represents
a closed circle of radius R within the (Fξ, Fη) - plane
(cf. figure 3).

Fξ

Fη

R

R

−R

−R

sliding

stiction

F
F̃

Figure 3. Set F of admissible stiction forces and the
approximation set F̃ in the (Fξ, Fη) - plane.

In order to find closed form approximations of stationary
solutions the friction law (1) is simplified to

~Fr ≈ ~̃Fr ∈ −R
(

Sign(ξ̇)~eξ + Sign(η̇)~eη

)

for the following investigations. Formally, this can be
interpreted as a first order polyhedral approximation
of the friction cone. Here, the set-valued Sign function
defined as

Sign(x) =

{

sign(x) , |x| 6= 0

[−1, 1] , |x| = 0
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is used [27].
This simplified friction law implies a rectangular set

F̃ of stiction in the (Fξ, Fη) - plane, as it is also shown
in figure 3. From the graph it can be seen that this
approximation set is slightly larger than the original one
and contains it, i.e. F ⊂ F̃ . Thus, it will describe the
friction accurately for most cases and will overestimated
it only for some cases: the effect and the interpretation
of this simplification will be discussed within the results
section.

For the forces mentioned above, the equations of
motion become

m~̈rM + de~̇rM + di

(

~̇rM − ~Ω × ~rM

)

+ c~rM = F̃r.

Introducing the nondimensional time τ = ω0t with ω2
0 =

c
m

they can be rewritten as

~r
′′

M + 2(De +Di)~r
′

M + ~rM − 2Di
~Ω × ~rM =

F̃r

c
,

where De = de

2mω0
, Di = di

2mω0
and ()′ = d/dτ() is

the derivative with respect to the dimensionless time τ .
Introducing ρ = R

c
and refering to the co-rotating frame

of reference R, the equations of motion read
[

ξ′′

η′′

]

+

[

2(De +Di) −2ν
2ν 2(De +Di)

] [

ξ′

η′

]

+

[

1 − ν2 −2Deν
2Deν 1 − ν2

] [

ξ
η

]

∈ −ρ
[

Sign(ξ′)
Sign(η′)

]

, (2)

where ν = Ω

ω0
is the normalized rotational speed and ξ, η

are the coordinates of ~rM with respect to the co-rotating
frame.
Due to the set-valued character of the right-hand side
these equations allow for two kinds of solutions: equilibria
(sticking) at the one hand side, and sliding motions on
the other hand.

1.2 Sticking friction elements: Equilibria in
the co-rotating frame

If the co-rotating friction damper elements stick per-
mantly the relative motion vanishes, i.e. ξ′′ = ξ′ = η′′ =
η′ = 0 must hold: this corresponds to an equilibrium
solution in the co-rotating frame R. Since sticking may
occur not only at one position but within an interval of
positions, the equilibrium solutions belongs to a set, i.e.

[

ξ0

η0

]

∈ E = −ρ
[

1 − ν2 −2Deν
2Deν 1 − ν2

]−1 [

Sign(0)
Sign(0)

]

.

Since this is an affine mapping of the convex and polyg-

onal set Sign(0), the sticking set E will also be a convex
polygone.

ξ

η

E
P

P

P
P

O

Figure 4. Set of equilibrium positions (ξ0, η0) in the
(ξ, η) -plane.

Moreover, since the mapping is given by an orthogonal
matrix, it will only comprise scaling and rotation but
without any distorting. Thus, depending on the mapping
parameters ν and De and the friction parameter ρ, the
stiction set E will be scaled and rotated square: figure
4 shows an example for (ν,De) = (0.8, 0.1) . In order
to visualise the influence of the parameters (ν, De, ̺)
on the size of E figure 5 shows the relative length OP/̺
versus the rotational speed ν for different values of De.
Please note that the size of E is the same shape as the
magnification factor of a forced 1DoF-oscillator and that
the equilibrium solutions refer to the rotor-fixed frame
of reference. Thus, an observer from the inertial frame
I will observe oscillations with a constant amplitude
A0 ≤

√
2 OP and the frequency ν of the rotor.

De = 0.05

De = 0.25

De = 0.5
De = 1.0

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

ν

O
P ρ

Figure 5. Width OP of the stiction set E depending on
ν and De.

1.3 Sliding frictional elements: periodic so-
lutions in the co-rotating frame

Numerical simulations indicate, that there also exists a
stable limit cycle for ν > 1 if internal friction is present.
Here, Galerkin’s method will be used to find an approx-
imation to this stationary solution. In the sense of a
truncated first order Fourier-series approximations of
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stationary periodic solutions may be searched using

ξ ≈ ξ̄ = Aξ cos(ωτ), (3)

η ≈ η̄ = Aη cos(ωτ + ψ), (4)

where Aξ, Aη > 0; ω, ψ ∈ R. Here, the formula for the
first coordinate does not contain a phase shift since for
autonomous systems this phase angle may always be
eliminated by shifting the time datum.

Introducing (3), (4) into the equation of motion (2)
yields the residuum r = r(Aξ, Aη, ω, ψ). Then, Galerkin
projection over one oscillation period using the ansatz
functions as weighting functions yields

Aξ

(

1 − (ω2 + ν2)
)

+ 2Aη (sinψω −De cosψ) ν = 0 (5)

Aη

(

1 − (ω2 + ν2)
)

+ 2Aξ (sinψω +De cosψ) ν = 0 (6)

−Aξ (De +Di)ω
+Aη (+ cosψω +De sinψ) ν − sign(ω)

2ρ

π
= 0 (7)

−Aη (De +Di)
+Aξ (− cosψω +De sinψ) ν − sign(ω)

2ρ

π
= 0 (8)

Equations (5)-(8) show some type of pairwise anti-
symmetry: from this one may observe that

Aξ = Aη =: A (9)

cosψ = 0 → sinψ = ±1 (10)

→ ψ1 = +π/2 , ψ2 = −π/2 (11)

are obvious solutions. The phase shift implies circular
orbits, which is a reasonable since with regard to the
symmtry of the system. Using these first results, two
more equations for the unknowns A and ω are obtained

A[(De +Di)ω −Deν sinψ] = −sign(ω)
2ρ

π
(12)

ω2 − 2(ν sinψ)ω − (1 − ν2) = 0. (13)

Solving for A and ω yields four solutions. However, since
A > 0 had been assumed only two admissible solutions re-
main, having the same amplitude A but opposite angular
velocity and sign of phase angle, i.e.

1) (A,ω, ψ = π/2) 2) (A,−ω, ψ = −π/2).

The corresponding approximate solutions read

1) ξ = A cosωτ 2) ξ = A cosωτ

η = A cos(ωτ + π/2) η = A cos(ωτ − π/2)

= −A sinωt = A sinωt.

Further analysing these two analytical results reveals that
the solutions 1) and 2) both describe the same backward
whirling motion within the co-rotating frame, as shown
in figure 6.

ξ

η

ω > 0
ψ = −π/2 =̂ ω < 0

ψ = +π/2

ξ = A cosωτ
η = A cos(ωτ + ψ)

Figure 6. Backward whirl of stationary periodic
solutions with respect to the co-rotating
frame.

In the following, solution 2) for ψ = − π
2

will be refer-
enced since the sign of ω directly expresses the backward
whirling motion in an obvious way. For this, amplitude,
frequency and range of validity of the limit cycle is given
by

ALC =
2ρ

π

1

De +Di(1 − ν)
(14)

ωLC = 1 − ν, 1 < ν < 1 +
De

Di

. (15)

Please note that this is the angular frequency of motions
with respect to the co-rotating frame. For an inertial ob-
server, the co-rotating back-ward whirl will compensate
the rotational speed of the rotor and oscillations with
the constant angular frequency IωLC = 1 will be seen.

2. RESULTS

Within this section, the analytical approximations shall
be compared to numerical simulations and analysed from
a physical point of view. The discussion starts with
a short review of results for internal viscous damping
only (ρ = 0, Di 6= 0), known from classical textbooks
[6],[3],[4]. Subsequently the system with internal fric-
tion only (ρ > 0, Di = 0) is investigated. Finally the
interaction between internal friction and internal viscous
damping (ρ > 0, Di > 0) is analysed. In addition, the
effect of approximating the circular set of equilibria E by
a rectangular shape Ẽ will be addressed.

2.1 The standard model:
internal viscous damping only

The classical approach to model internal damping is
based on co-rotating linear viscous damping without
accounting for dry friction, i.e. ρ = 0, Di 6= 0. In this
case, the steady state solution to (2) is the trivial solution
(ξ0, η0) = (0, 0) – thus, the set E degenerates to a single
point. Moreover, it is found that this trivial solution
loses its stability at a threshold speed of νcrit = 1 + De

Di

.
This stability threshold is outlined in figure 7. Further

analysis shows, that the steady state loses its stability due
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to a Hopf-bifurcation: thus, for subcritial speeds pertur-
bations will lead to oscillations with decaying amplitude,
while for supercritical speeds the system will oscillate
with growing amplitude. Eventually, the growth of ampli-
tude will be limited by some nonlinearity (e.g. nonlinear
stiffness or damping for instance): this aspect is not in-
corporated in the model presented here but is extensively
discussed in standard literature on bifurcations.

asymptotically stable

solution

unstable
solution

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

ν

D
e

D
i

Figure 7. Classic stability chart for internal viscous
damping only.

ν

A

0 1 2 3

νcrit

De

Di

= 1

Figure 8. Bifurcation diagramm for the classical model
only incorporating viscous damping forces.

2.2 Internal friction only
For the case of viscous external damping and purely
frictional internal dissipation – i.e. vanishing of the vis-
cous part of the internal damping – equation (14) for
stationary amplitudes simplifies to

ALC

∣

∣

∣

Di=0

=
2

π

ρ

De

, ∀ν ≥ 1. (16)

Obviously, beyond the critical speed ν = 1 self-excited
vibrations of finite amplitude will occur.

Figure 9 shows corresponding limit cycle amplitudes
versus the rotational speed ν for the example De =

E
numerical

ALC

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

ν

A ρ

Figure 9. Equilibrium set, analytical approximation an
numerical simulations results of the limit
cycles vs. ν.

0 0.5 1 1.5 2 2.5 3 3.5

−2

0

2

ν

ω

ωLC

numerical

Figure 10. Limit cycle oscillation frequency ωLC vs.
rotor speed ν.

0.1, Di = 0, r = 0.05. The analytical predictionALC

∣

∣

Di=0

for limit cycle amplitudes is indicated by a solid line and
is compared to results obtained from a numerical time
simulations which is marked by stars. The corresponding
limit cycle frequency ωLC observed from the co-rotating
frame R is shown in figure 10. The dark grey region
outlines the set of co-rotating equilibria E where the
frictional elements stick.

It is found, that the analytical prediction ALC

∣

∣

Di=0

for the stationary limit-cycle amplitudes gives very ac-
curate results, apart from the region immediately after
the bifurcation at ν = 1. This is due to the fact that
close to the bifurcation point the limit cycle orbits are
not circular and thus the chosen Galerkin ansatz may
only yield rough approximations (cf. fig. 11). Further
numerical simulations indicate, that this is related to the
chosen polygonal approximation of the friction charac-
teristic (cf. 3) which overestimates the friction for some
kinematic constellations. However, the analytical approx-
imation is very accurate in most cases and always yields
an upper limit for the model discussed here.

Concerning dynamics it is found that for subcritical
speeds ν < 1 the equilibrium set E is attractively sta-
ble: any inital condition will converge to this set and
settle down to a point in E . Since the notion of "equi-
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Figure 11. Limit cycle orbits for purely frictional
internal damping and viscous external
damping (Di = 0 , ρ = 0.05) at ν = 1.5,
ν = 1.75.

librium" refers to the co-rotating frame R, an observer
from the inertial system I will measure oscillations at
rotor frequency ν and with a constant amplitude, which
corresponds to the distance of the rest position within E
from the origin O.

As the critical speed νcrit = 1 is exceeded, the equi-
librium set loses stability and the system state converges
to an attractively stable limit cycle. For the present case
of vanishing viscous internal damping, the limit cycle
amplitude is constant for almost all speeds and only de-
pends on ν near to the bifurcation point. This friction
induced limit cycle excists for all supercritical speeds.
For an inertial observer, this limit cycle will have the
constant amplitude ALC and the oscillations frequency
IωLC = 1.

2.3 Internal dissipation due to co-rotating
friction and viscous damping

Considering internal viscous damping in addition to the
co-rotating frictional dissipation limit cycle amplitudes
are given by the full equation (14) and do only exist
within the speed range 1 < ν < 1 + De

Di

, i.e. limit cycles
will only exist between the resonance speed and the
linear stability margin. The corresponding amplitudes
are outlined examplarily for the parameter set De =
0.1, Di = 0.02, r = 0.05 in figures 12 (details) and in
figure 13 (overview). For these parameter values, the
linear stability margin – and thus the upper limit of the
existence intervall of ALC is at ν = 3. The oscillation
frequency does not depend on Di and thus corresponds
to that found before, cf. figure 10.

As already found in sect. 2.2 for the case of only
co-rotating frictional damping, a self-excited limit cycle
appears at the critical speed ν = 1. However, the limit
cycle amplitude now is no longer constant over the rotor
speed, but increases hyperbolically as it approaches the
pole at ν = 1 + De

Di

. Once this singularity has been
trespassed, limit cycles due to internal friction do no

equilibrium

numeric

analytic

0 0.5 1 1.5 2 2.5 3 3.5
0
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4

6

8

10

ν

A ρ

Figure 12. Equilibrium set E , analytical approximation
ALC an numerical results of limit cycle
amplitudes vs. ν for De = 0.1, Di = 0.02,
r = 0.05 (detail).
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20
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A ρ

Figure 13. Equilibrium set E , analytical approximation
ALC an numerical results of limit cycle
amplitudes vs. ν for De = 0.1, Di = 0.02,
r = 0.05 (overview).

longer exist and the amplitudes will be limited by some
other nonlinearities, which are not contained within the
model discussed here.

Obviously, the frictional part of the internal damping
not only induces self-excited vibrations, but also strongly
interacts with the viscous part of the internal damping.
From a physical point of view, this seems reasonable
according to the following line of reasoning: for the clas-
sical linear problem, the internal damping Di may feed
energy into the system and eventually lead to self-excited
vibrations as the linear stability threshold νcrit = 1 + De

Di

is passed. Internal damping due to friction produces a
self-excited limit cycle once the resonance speed ν = 1
has been passed. As the rotational speed is increased,
the internal viscous damping Di will feed more and more
energy per cycle into the system, thus leading to larger
and larger limit cycle amplitudes. Within a certain range,
the frictional dissipation and the external viscous damp-
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ing are able to compensate the energy feed-in by the
viscous internal damping. However, once the threshold
of the linear stability problem has been trespassed, the
viscous internal damping can no longer be compensated
by neither the viscous external damping nor the fric-
tional damping. By this, it is plausible that also for
the problem comprising frictional and viscous internal
damping, the stability margin of the linear problem still
has a meaning.

ρ ↓

0 1 2 3 4 5 6
0

1

2

3

4

ν

A

r = 0.25
r = 0.1
r = 0.025
r = 0.005

Figure 14. Oscillation amplitudes varying r and
De/Di = 2.

stable
equil.

unstable
solution

stable
limit cycle
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Figure 15. Enhanced stability chart accounting for
internal viscous damping and as well as
internal frictional damping.

3. CONCLUSIONS

Within this contribution the classical problem of self-
excitation of elastic rotors due to co-rotating internal
dissipation has been reviewed and extended in order to
also account for non-viscous frictional forces contributing

to the internal damping. To this purpose the classical
Jeffcott rotor (Laval-rotor) model with viscous inter-
nal damping and viscous external damping has been
extended by adding co-rotating dry friction forces. Nu-
merical simulations indicated limit cycles for operational
conditions above the critical speed. This observation has
been proved by analytically approximations for sticking
and sliding friction elements using Galerkin’s method.

• Due to the set-valued character of stiction forces the
unique steady state solution of the smooth problem
turns into an entire set E of possible solutions
for sticking friction elements. The size of this set
behaves similar to the magnification function of a
forced 1DoF-system and may become very large
near the critial speet at ν = 1.

• As long as the system rests at a sticking solution
within E the external observer will measure oscilla-
tions of constant amplitude having the rotational
frequency of the rotor. Based on frequency, such
solutions could mistakenly be interpreted as unbal-
ance excitation.

• For subcritical speeds ν < 1 the set E is attractive
and any initial condition will converge to this set.
For supercritical speeds ν > 0 the set E becomes
unstable: although the system state may still re-
main in E (for sticking friction elements), small
perturbations will lead to growing oscillations.

• As the rotor passes through ν = 1 the internal
frictional dissipation gives rise to a stable limit
cycle. This limit cycle exists within the interval
1 < ν < 1 + De

Di

. An external observer will ob-

serve oscillatons at a frequencey IωLC = 1. The
corresponding orbit will be whirling backward with
respect to the co-rotating frame of reference.

• Similar to viscous internal damping, frictional in-
ternal damping may destabilize the steady state
solutions. However, in contrast to viscous damping
this happens quite earlier at ν = 1 and leads to
finite limit-cycle amplitudes.

• As the rotation frequency ν approaches the lin-
ear stability margin νcrit = 1 + De

Di

the amplitude
of the limit cycle grows hyperbolically. As this
linear stability threshold is exceeded, the system
investigated within this study is not able to predict
a stationary solution anymore: the system state
growths towards another nonlinear attractor.

Thus, it may be concluded that co-rotating frictional
damping changes the stability and bifurcation behavior
significantly. In particular, for systems with pronounced
non-viscous frictional internal dissipation – as will be
the case for most assembled rotors consisting of several
parts with joints – the stability border νcrit of the linear
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system may give totally wrong threshold speeds for the
occurence of self-excited vibrations.

Thus, for systems incorporating internal frictional
dissipation it will rather be adequate to investigate the
occurence as well as the amplitude of limit cycles. Conse-
quently instead of the traditional discrimination between
”stable” and ”unstable” (as given by the linear analy-
sis), one should rather ask whether vibrations occur and
how relevant in terms of amplitude they will be for the
operation of the system.
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