W. A. Bickmore, The spatial organization of the human genome, Annu Rev. Genom. Hum. Genet, vol.14, pp.67-84, 2013.

W. Tadros and H. D. Lipshitz, The maternal-to-zygotic transition: a play in two acts, Development, vol.136, issue.18, pp.3033-3042, 2009.

D. A. Kane and C. B. Kimmel, The zebrafish midblastula transition, Development, vol.119, pp.447-456, 1993.

J. Newport and M. Kirschner, A major developmental transition in early xenopus embryos: II. control of the onset of transcription, Cell, vol.30, issue.3, pp.687-696, 1982.

C. Collart, G. E. Allen, C. R. Bradshaw, J. C. Smith, and P. Zegerman, Titration of Four Replication Factors Is Essential for the Xenopus laevis Midblastula Transition, Science, vol.341, issue.6148, pp.893-896, 2013.

S. R. Joseph, Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos, Elife, vol.6, p.23326, 2017.

A. A. Amodeo, D. Jukam, A. F. Straight, and J. M. Skotheim, Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition, Proceedings of the National Academy of Sciences, vol.112, issue.10, pp.E1086-E1095, 2015.

M. T. Lee, A. R. Bonneau, and A. J. Giraldez, Zygotic genome activation during the maternal-to-zygotic transition, Annu Rev. Cell Dev. Biol, vol.30, pp.581-613, 2014.

S. A. Harvey, I. Sealy, R. Kettleborough, F. Fenyes, R. White et al., Identification of the zebrafish maternal and paternal transcriptomes, Development, vol.140, issue.13, pp.2703-2710, 2013.

P. Heyn, M. Kircher, A. Dahl, J. Kelso, P. Tomancak et al., The Earliest Transcribed Zygotic Genes Are Short, Newly Evolved, and Different across Species, Cell Reports, vol.6, issue.2, pp.285-292, 2014.

R. J. White, Decision letter: A high-resolution mRNA expression time course of embryonic development in zebrafish, Elife, vol.6, p.30860, 2017.

K. Chen, Decision letter: A global change in RNA polymerase II pausing during the Drosophila midblastula transition, vol.2, p.861, 2013.

A. J. Giraldez, Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs, Science, vol.312, pp.75-79, 2006.

E. Bertrand, Localization of ASH1 mRNA particles in living yeast, Mol. Cell, vol.2, pp.437-445, 1998.

T. Ferraro, Transcriptional memory in the drosophila embryo, Curr. Biol, vol.26, pp.212-218, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02323366

P. D. Campbell, J. A. Chao, R. H. Singer, and F. L. Marlow, Dynamic visualization of transcription and RNA subcellular localization in zebrafish, Development, vol.142, issue.7, pp.1368-1374, 2015.

X. Darzacq, In vivo dynamics of RNA polymerase II transcription, Nat. Struct. Mol. Biol, vol.14, pp.796-806, 2007.

J. R. Chubb, T. Trcek, S. M. Shenoy, and R. H. Singer, Transcriptional pulsing of a developmental gene, Curr. Biol, vol.16, pp.1018-1025, 2006.

W. M. Li, C. M. Chan, A. L. Miller, and C. H. Lee, Dual functional roles of molecular beacon as a MicroRNA detector and inhibitor, J. Biol. Chem, vol.292, pp.3568-3580, 2017.

C. Nepal, Y. Hadzhiev, C. Previti, V. Haberle, N. Li et al., Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis, Genome Research, vol.23, issue.11, pp.1938-1950, 2013.

N. Olivier, M. A. Luengo-oroz, L. Duloquin, E. Faure, T. Savy et al., Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy, Science, vol.329, issue.5994, pp.967-971, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00519834

J. C. Siefert, E. A. Clowdus, and C. L. Sansam, Cell cycle control in the early embryonic development of aquatic animal species, Comp. Biochem Physiol. C. Toxicol. Pharmacol, vol.178, pp.8-15, 2015.

E. Zamir, Z. Kam, and A. Yarden, Transcription-dependent induction of G1 phase during the zebra fish midblastula transition, Mol. Cell Biol, vol.17, pp.529-536, 1997.

M. T. Lee, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition, Nature, vol.503, pp.360-364, 2013.

N. Olivier, M. A. Luengo-oroz, L. Duloquin, E. Faure, T. Savy et al., Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy, Science, vol.329, issue.5994, pp.967-971, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00519834

E. Rodriguez-aznar, A. Barrallo-gimeno, and M. A. Nieto, Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons, J. Neurosci, vol.33, pp.5095-5105, 2013.

T. Muramoto, I. Müller, G. Thomas, A. Melvin, and J. R. Chubb, Methylation of H3K4 Is Required for Inheritance of Active Transcriptional States, Current Biology, vol.20, issue.5, pp.397-406, 2010.

D. Schübeler, D. Scalzo, C. Kooperberg, B. Van-steensel, J. Delrow et al., Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing, Nature Genetics, vol.32, issue.3, pp.438-442, 2002.

E. Pourkarimi, J. M. Bellush, and I. Whitehouse, Spatiotemporal coupling and decoupling of gene transcription with DNA replication origins during embryogenesis in, C. elegans. Elife, vol.5, p.21728, 2016.

S. A. Blythe and E. F. Wieschaus, Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition, Cell, vol.160, pp.1169-1181, 2015.

F. Muller, L. Lakatos, J. Dantonel, U. Strahle, and L. Tora, TBP is not universally required for zygotic RNA polymerase II transcription in zebrafish, Curr. Biol, vol.11, pp.282-287, 2001.

C. Collart, J. C. Smith, and P. Zegerman, Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Midblastula Transition, Dev. Cell, vol.42, p.3, 2017.

M. Zhang, P. Kothari, M. Mullins, and M. A. Lampson, Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition, Cell Cycle, vol.13, issue.24, pp.3828-3838, 2014.

E. Brookes and A. Pombo, Code breaking: the RNAPII modification code in pluripotency, Cell Cycle, vol.11, pp.1267-1268, 2012.

S. Conic, Imaging of native transcription factors and histone phosphorylation at high resolution in live cells, J. Cell Biol, vol.217, pp.1537-1552, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02349584

P. Heyn, H. Salmonowicz, J. Rodenfels, and K. M. Neugebauer, Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos, RNA Biol, vol.14, pp.752-760, 2017.

D. Schubeler, The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote, Genes Dev, vol.18, pp.1263-1271, 2004.

K. Howe, Structure and evolutionary history of a large family of NLR proteins in the zebrafish, Open Biol, vol.6, p.160009, 2016.

M. D. Locati, Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development, RNA, vol.23, pp.1188-1199, 2017.

Y. S. Mao, B. Zhang, and D. L. Spector, Biogenesis and function of nuclear bodies, Trends Genet, vol.27, pp.295-306, 2011.

L. Hilbert, Transcription establishes microenvironments that organize euchromatin, 2017.

M. Zhang, P. Kothari, and M. A. Lampson, Spindle assembly checkpoint acquisition at the mid-blastula transition, PLoS One, vol.10, p.119285, 2015.

E. F. Joyce, J. Erceg, and C. T. Wu, Pairing and anti-pairing: a balancing act in the diploid genome, Curr. Opin. Genet Dev, vol.37, pp.119-128, 2016.

D. L. Baars, K. A. Takle, J. Heier, and F. Pelegri, Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment, J Vis Exp, p.54492, 2016.

J. A. Farrell and P. H. O'farrell, From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition, Annu Rev. Genet, vol.48, pp.269-294, 2014.

D. E. Dalle-nogare, P. T. Pauerstein, and M. E. Lane, G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition, Dev. Biol, vol.326, pp.131-142, 2009.

A. R. Langley, J. C. Smith, D. L. Stemple, and S. A. Harvey, New insights into the maternal to zygotic transition, Development, vol.141, pp.3834-3841, 2014.

A. Ghamari, In vivo live imaging of RNA polymerase II transcription factories in primary cells, Genes Dev, vol.27, pp.767-777, 2013.

F. J. Iborra, A. Pombo, J. Mcmanus, D. A. Jackson, and P. R. Cook, The Topology of Transcription by Immobilized Polymerases, Experimental Cell Research, vol.229, issue.2, pp.167-173, 1996.

M. Meier, Cohesin facilitates zygotic genome activation in zebrafish, Development, vol.145, p.156521, 2018.

R. Bartfai, TBP2, a vertebrate-specific member of the TBP family, is required in embryonic development of zebrafish, Curr. Biol, vol.14, pp.593-598, 2004.

T. García-muse and A. Aguilera, Transcription?replication conflicts: how they occur and how they are resolved, Nature Reviews Molecular Cell Biology, vol.17, issue.9, pp.553-563, 2016.

H. Chen, Z. Xu, C. Mei, D. Yu, and S. Small, A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes, Cell, vol.149, pp.618-629, 2012.

M. Lagha, Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo, Cell, vol.153, pp.976-987, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02323564

C. B. Hug, A. G. Grimaldi, K. Kruse, and J. M. Vaquerizas, Chromatin Architecture Emerges during Zygotic Genome Activation Independent of Transcription, Cell, vol.169, p.19, 2017.

S. A. Blythe and E. F. Wieschaus, Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis, Elife, vol.5, p.20148, 2016.

T. J. Stevens, 3D structures of individual mammalian genomes studied by single-cell Hi-C, Nature, vol.544, pp.59-64, 2017.

M. R. Branco and A. Pombo, Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol, vol.4, p.138, 2006.

C. Trapnell, L. Pachter, and S. L. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.25, issue.9, pp.1105-1111, 2009.

V. Haberle, A. R. Forrest, Y. Hayashizaki, P. Carninci, and B. Lenhard, CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses, Nucleic Acids Res, vol.43, pp.51-51, 2015.

W. J. Kent, BLAT-The BLAST-Like Alignment Tool, Genome Res, vol.12, pp.656-664, 2002.

F. Sievers and D. G. Higgins, Clustal Omega, Accurate Alignment of Very Large Numbers of Sequences, Methods in Molecular Biology, pp.105-116, 2013.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2-a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, pp.1189-1191, 2009.

H. A. Kestler, VennMaster: Area-proportional Euler diagrams for functional GO analysis of microarrays, BMC Bioinforma, vol.9, p.67, 2008.

H. Chen and P. C. Boutros, VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R, BMC Bioinforma, vol.12, p.35, 2011.

A. Gréen, A. Lönn, K. H. Peterson, K. Öllinger, and I. Rundquist, Translocation of histone H1 subtypes between chromatin and cytoplasm during mitosis in normal human fibroblasts, Cytom. Part A, vol.77, pp.478-484, 2010.

F. Mora-bermúdez, D. Gerlich, and J. Ellenberg, Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase, Nat. Cell Biol, vol.9, pp.822-831, 2007.

S. M. Percival, Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome, Dis. Models & Mech, vol.8, pp.941-955, 2015.