, Cancer Cell Biology J_ID: z3q Customer A_ID: IJC28594 Cadmus Art: IJC28594 Ed. Ref. No.: 13-1229.R2 Date: 25-November-13 Stage, p.11

, ID: jwweb3b2server Time: 16:02 I Path

G. Selvaggi, S. Novello, and V. Torri, Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected nonsmall-cell lung cancer, Ann Oncol, vol.15, pp.28-32, 2004.

F. R. Hirsch, P. A. Janne, and W. E. Eberhardt, Epidermal growth factor receptor inhibition in lung cancer: status 2012, J Thorac Oncol, vol.8, pp.373-84, 2013.

L. V. Sequist, B. A. Waltman, and D. Dias-santagata, Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors, Sci Transl Med, vol.3, pp.75-101, 2011.

B. Busser, L. Sancey, and E. Brambilla, The multiple roles of amphiregulin in human cancer, Biochim Biophys Acta Rev Cancer, vol.1816, pp.119-150, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00602082

A. Hurbin, J. L. Coll, and L. Dubrez-daloz, Cooperation of amphiregulin and insulin-like growth factor-1 inhibits Bax-and Bad-mediated apoptosis via a protein kinase C-dependent pathway in non-small cell lung cancer cells, J Biol Chem, vol.280, pp.19757-67, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00340599

A. Hurbin, L. Dubrez, and J. L. Coll, Inhibition of apoptosis by amphiregulin via an insulin-like growth factor-1 receptor-dependent pathway in non-small cell lung cancer cell lines, J Biol Chem, vol.277, pp.49127-49160, 2002.

B. Busser, L. Sancey, and V. Josserand, Amphiregulin promotes BAX inhibition and resistance to gefitinib in non-small-cell lung cancers, Mol Ther, vol.18, pp.528-563, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00425468

A. Hurbin, M. Wislez, and B. Busser, Insulin-like growth factor-1 receptor inhibition overcomes gefitinib resistance in mucinous lung adenocarcinoma, J Pathol, vol.225, pp.83-95, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00598462

J. Cadranel, E. Quoix, and L. Baudrin, IFCT-0401 Trial: a phase II study of gefitinib administered as first-line treatment in advanced adenocarcinoma with bronchioloalveolar carcinoma subtype, J Thorac Oncol, vol.4, pp.1126-1161, 2009.

B. Busser, L. Sancey, and V. Josserand, Amphiregulin promotes resistance to gefitinib in nonsmall cell lung cancer cells by regulating Ku70 acetylation, Mol Ther, vol.18, pp.536-579, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00425467

Y. Dobashi, S. Suzuki, and M. Kimura, Paradigm of kinase-driven pathway downstream of epidermal growth factor receptor/Akt in human lung carcinomas, Hum Pathol, vol.42, pp.214-240, 2011.

J. A. Engelman, K. Zejnullahu, and T. Mitsudomi, MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling, Science, vol.316, pp.1039-1082, 2007.

F. Yamasaki, M. J. Johansen, and D. Zhang, Acquired resistance to erlotinib in A-431 epidermoid cancer cells requires down-regulation of MMAC1/PTEN and up-regulation of phosphorylated Akt, Cancer Res, vol.67, pp.5779-88, 2007.

H. Li, G. Schmid-bindert, and D. Wang, Blocking the PI3K/AKT and MEK/ERK signaling pathways can overcome gefitinib-resistance in non-small cell lung cancer cell lines, Adv Med Sci, vol.56, pp.275-84, 2011.

B. Barneda-zahonero and M. Parra, Histone deacetylases and cancer, Mol Oncol, 2012.

H. Osada, Y. Tatematsu, and H. Saito, Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients, Int J Cancer, vol.112, pp.26-32, 2004.

H. Y. Cohen, S. Lavu, and K. J. Bitterman, Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis, Mol Cell, vol.13, pp.627-665, 2004.

C. Subramanian, J. A. Jarzembowski, A. W. Opipari, and . Jr, HDAC6 deacetylates Ku70 and regulates Ku70-Bax binding in neuroblastoma, Neoplasia, vol.13, pp.726-760, 2011.

S. C. Dowdy, S. Jiang, and X. C. Zhou, Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells, Mol Cancer Ther, vol.5, pp.2767-76, 2006.

B. J. North, B. L. Marshall, and M. T. Borra, The human Sir2 ortholog, SIRT2, is an NAD1-dependent tubulin deacetylase, Mol Cell, vol.11, pp.437-481, 2003.

S. Y. Archer, S. Meng, and A. Shei, p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells, Proc Natl Acad Sci, vol.95, pp.6791-6797, 1998.

D. A. Altomare and J. R. Testa, Perturbations of the AKT signaling pathway in human cancer, Oncogene, vol.24, pp.7455-64, 2005.

A. Bellacosa, C. C. Kumar, D. Cristofano, A. Testa, and J. R. , Activation of AKT kinases in cancer: implications for therapeutic targeting, Adv Cancer Res, vol.94, pp.29-86, 2005.

J. Brognard, A. S. Clark, and Y. Ni, Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation, Cancer Res, vol.61, pp.3986-97, 2001.

A. Shah, W. A. Swain, and D. Richardson, Phospho-akt expression is associated with a favorable outcome in non-small cell lung cancer, Clin Cancer Res, vol.11, pp.2930-2936, 2005.

F. Cappuzzo, E. Magrini, and G. L. Ceresoli, Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer, J Natl Cancer Inst, vol.96, pp.1133-1174, 2004.

W. Pao, T. Y. Wang, and G. J. Riely, KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib, PLoS Med, vol.2, p.17, 2005.

P. Laurent-puig, A. Lievre, and H. Blons, Mutations and response to epidermal growth factor receptor inhibitors, Clin Cancer Res, vol.15, pp.1133-1142, 2009.

P. J. Roberts, T. E. Stinchcombe, and C. J. Der, Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy?, J Clin Oncol, vol.28, pp.4769-77, 2010.

N. T. Ihle, L. A. Byers, and E. S. Kim, Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome, J Natl Cancer Inst, vol.104, pp.228-267, 2012.

V. Gama, J. A. Gomez, and L. D. Mayo, Hdm2 is a ubiquitin ligase of Ku70-Akt promotes cell survival by inhibiting Hdm2-dependent Ku70 destabilization, Cell Death Differ, vol.16, pp.758-69, 2009.

K. H. Jung, J. H. Noh, and J. K. Kim, HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins, J Cell Biochem, vol.113, pp.2167-77, 2012.

A. Vannini, C. Volpari, and G. Filocamo, Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor, Proc Natl Acad Sci, vol.101, pp.15064-15073, 2004.

Y. Minamiya, T. Ono, and H. Saito, Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung, Lung Cancer, vol.74, pp.300-304, 2011.

D. Marcotullio, L. Canettieri, G. Infante, P. Greco, A. Gulino et al., Protected from the inside: endogenous histone deacetylase inhibitors and the road to cancer, Biochim Biophys Acta, vol.1815, pp.241-52, 2011.

M. C. Haigis and D. A. Sinclair, Mammalian sirtuins: biological insights and disease relevance, Annu Rev Pathol, vol.5, pp.253-95, 2010.

J. Jeong, K. Juhn, and H. Lee, SIRT1 promotes DNA repair activity and deacetylation of Ku70, Exp Mol Med, vol.39, pp.8-13, 2007.

N. R. Sundaresan, S. A. Samant, and V. B. Pillai, SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70, Mol Cell Biol, vol.28, pp.6384-401, 2008.

H. Y. Cohen, C. Miller, and K. J. Bitterman, Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase, Science, vol.305, pp.390-392, 2004.

R. C. Tseng, C. C. Lee, and H. S. Hsu, Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients, Neoplasia, vol.11, pp.763-70, 2009.

A. D. Amsel, M. Rathaus, and N. Kronman, Regulation of the proapoptotic factor Bax by Ku70-dependent deubiquitylation, Proc Natl Acad Sci, vol.105, pp.5117-5139, 2008.

C. Boyault, K. Sadoul, and M. Pabion, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination, Oncogene, vol.26, pp.5468-76, 2007.

I. Oehme, J. P. Linke, and B. C. Bock, Histone deacetylase 10 promotes autophagy-mediated cell survival, Proc Natl Acad Sci, vol.110, pp.2592-601, 2013.

K. V. Butler, J. Kalin, and C. Brochier, Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A, J Am Chem Soc, vol.132, pp.10842-10848, 2010.

Q. Zuo, W. Wu, and X. Li, HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin, Oncol Rep, vol.27, pp.819-843, 2012.

M. Cea, D. Soncini, and F. Fruscione, Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells, PLoS One, vol.6, p.22739, 2011.

N. R. Sundaresan, V. B. Pillai, and D. Wolfgeher, The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy, Sci Signal, vol.4, p.46, 2011.

P. Liu, H. Cheng, and T. M. Roberts, Targeting the phosphoinositide 3-kinase pathway in cancer, Nat Rev Drug Discov, vol.8, pp.627-671, 2009.

K. D. Courtney, R. B. Corcoran, and J. A. Engelman, The PI3K pathway as drug target in human cancer, J Clin Oncol, vol.28, pp.1075-83, 2010.

B. T. Hennessy, Y. Lu, and E. Poradosu, Pharmacodynamic markers of perifosine efficacy, Clin Cancer Res, vol.13, pp.7421-7452, 2007.

C. R. Garrett, D. Coppola, and R. M. Wenham, Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of AKT phosphorylation, in adult subjects with solid tumors containing activated AKT, Invest New Drugs, vol.29, pp.1381-1390, 2011.

J. C. Bendell, J. Rodon, and H. A. Burris, Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors, J Clin Oncol, vol.30, pp.282-90, 2012.

S. Chandarlapaty, A. Sawai, and M. Scaltriti, AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity, Cancer Cell, vol.19, pp.58-71, 2011.