
HAL Id: hal-02348810
https://hal.science/hal-02348810

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Combining geostatistics and simulations of flow and
transport to characterize contamination within the

unsaturated zone
Léa Pannecoucke, Mathieu Le Coz, Xavier Freulon, Chantal de Fouquet

To cite this version:
Léa Pannecoucke, Mathieu Le Coz, Xavier Freulon, Chantal de Fouquet. Combining geostatistics and
simulations of flow and transport to characterize contamination within the unsaturated zone. Science
of the Total Environment, 2020, 699, pp.134216. �10.1016/j.scitotenv.2019.134216�. �hal-02348810�

https://hal.science/hal-02348810
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


*Manuscript (double-spaced and continuously LINE and PAGE numbered)-for final publication 
Click here to view linked References

Combining geostatistics and simulations of fiow and 
transport to characterize contamination within the 

unsaturated zone

Léa Pannecoucke*1*, Mathieu Le Cozb, Xavier Fireulon*, Chantal de
Pouqueta

“MINES PansTech, PSL University, Centre de Géosciences, S5 rue St Honoré, 77S00
Fontainebleau, France

bInstitut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, SI 
avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France

Abstract

Characterization of contamination in soils or groundwater resulting from in

dustrial activities is critical for site remediation. In this study, geostatistics 

and physically-based simulations are combined for estimating levels of con

tamination within the unsaturated zone. First, a large number of flow and 

transport simulations are run and their outputs are used to compute em- 

pirical non-stationary variograms. Then, these empirical variograms, called 

numerical variograms and which are expected to reproduce the spatial vari- 

ability of the contaminant plume better than a usual variogram model based 

on observations only, are used for kriging.

The method is illustrated on a two-dimensional synthetic reference test 

case, with a contamination due to a point source of tritium (e.g. tritiated 

water). The diversity among the simulated tritium plumes is induced by 

numerous sets of hydraulic parameter fields conditioned by samples from the
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reference test case. Kriging with numerical variograms is then compared to 

ordinary kriging and kriging with an external drift: the results show that 

kriging with numerical variograms improves the estimâtes, ail the more that 

few observations are available, underlining the interest of the method. When 

considering arelatively dense sampling scénario, the mean absolute error with 

kriging with numerical variograms is reduced by 52% compared to ordinary 

kriging and by 45% compared to kriging with an external drift. For a scarcer 

sampling, those error s are respectively reduced of 73% and 34%. However, 

the performance of the method regarding the classification into contaminated 

or not contaminated zones dépends on the pollution threshold. Yet, the 

distribution of contamination is better reproduced by kriging with numerical 

variograms than by ordinary kriging or kriging with an external drift. 

Keywords: Soil hydraulic parameters, Unsaturated zone, Tritium plume, 

Parameters uncertainties, Empirical variogram, Random fields. 1

1, Introduction

Characterization of contamination resulting from industrial activities in 

soils or groundwater is a major issue for site remediation (Last et al., 2004; 

Zhang et al., 2010). The extent and level of the potential contamination 

should be known as precisely as possible, with minimum uncertainty. This is 

an essential condition to provide appropriate decision support Systems and 

to reduce environment al, économie and sociétal risks (Schadler et al., 2011; 

Chen et al., 2019).

Kriging is used to map contamination in soils and groundwater as it pro

vides linear and unbiased estimâtes of pollutant concentration at unsampled
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locations (e.g,, Demougeot-Renard et al., 2004; Saby et al., 2006; Juang et 

al., 2008; D’Or et al., 2009; Pelillo et al., 2014; Liang et al., 2018). How- 

ever, the quality of the kriging estimât or strongly dépends on its ability to 

model the spatial structure of the studied variable through the variogram or 

the covariance function. In particular, the kriging estimator is often poorly 

accurate if the number of sampled values is low or if the spatial variability of 

the studied variable is governed by complex processes (Webster and Oliver, 

2007; Wang et al., 2017). Besides, the standard kriging estimator does not 

take into account knowledge on flow and transport processes: contamina

tion maps obtained by kriging are not necessarily consistent with flow and 

transport équations.

Physically-based simulations of flow and soluté transport are another 

widely used approach to assess contaminated soils and groundwater (e.g,. 

Neukum and Assam, 2009; Bugai et al., 2012; Cadini et al., 2016; Testoni 

et al., 2017). Such simulations take into account complex processes gov- 

erning contamination spread but they require a relevant définition of initial 

and boundary conditions, as well as internai hydraulic properties. Within 

the unsaturated sone, the inference of these hydraulic properties is difhcult, 

time-consuming (Schaap et al., 2004) and the induced uncertainties resuit in 

a lack of accuracy in the characterisation of the contaminated areas (Ban- 

necoucke et al., 2019).

Various strategies hâve been proposed to combine kriging and physically- 

based simulations in order to incorporate physical behavior as expressed in 

flow and transport models and spatial corrélation as quantified by geostatis- 

tical modeling. For example, Rivest et al. (2008) interpolate hydraulic heads
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using outputs from fiow simulations as an esternal drift for constraining 

kriging; Shlomi and Michalak (2007) reproduce a groundwater contaminant 

plume by assimilâting the covariance of the measured concentrations within 

the inversion procedure of a flow and transport mode! In those studies, the 

geostatistical properties of the spatial variable are estimated from measure- 

ments.

Roth (1995) and Roth et al. (1998) propose to compute empirical covari

ances of hydraulic head within a saturated zone from a set of flow simulation 

outputs; Schwede and Cirpka (2010) compute the prior statistical properties 

of soluté concentration in groundwater from Monte Carlo flow and transport 

steady-state simulations. The approach appears to be more suitable when 

the physically-based simulations do not resuit in a clear trend or when a large 

number of unknown parameters hampers the inversion of flow and transport 

model.

The présent study aims at combining kriging and flow and transport sim

ulations, by computing variograms from simulation outputs (called numerical 

variograms), in order to improve the characterisation of a contaminant plume 

under a complex configuration, be,, by considering transient unsaturated flow 

and highly variable hydraulic properties. First, the geostatistical framework 

and the numerical variograms method are presented (section 2). Then, a 

two-dimensional (2D) synthetic test case is built to assess the performance 

of the method (section 3). The global process of implementing kriging with 

numerical variograms is then detailed on this test case (section 4). Finally, 

results are presented (section 5) and discussed (section 6).
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2. Kriging with numerical variograms

This section recalls the principle of ordinary kriging estimator and intro- 

duces the numerical variograms method.

Ê, 1. G eostaüstical fmmework; ordinary kriging

Ordinary kriging is widely used to map pollutant concentrations in soil 

and groundwater. The estimât e of the variable of inter est Z at a target point 

xo, Z*(xo), is a linear combination of the observations:

N
Z*{x o') = J^XaZ(xa); (1)

o=l
where À0 are the kriging weights to be determined and xa are the loca

tions of the JG observations. Ordinary kriging assumes that (i) the mean 

of the regionalised variable (Z) under study is constant but unknown; and 

(ii) the variance of any incréments, i e, the variogram function 7(2:, xd) = 

^Var{[Z(x) — Z^xd)]2}, is known for any pairs of points in the studied do

main, The unbiasedness condition E[Z(x0) — Z*(x0)] and the minimisation 

of the error variance Var[Z(x0) — Z*(x0)] deflne the kriging System (Chilès 

and Delfiner, 2012):

-r 1 A -r0
i* 0 1

where T = [7(27,37)] is the matrix of variogram between each pair of 

observations (sise iVxiV), 1 is a vector of unit values (sise JG), À = [A0] is 

the vector of kriging weights, 7 is a Lagrange parameter and r0 = [7(27,27)]
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is the vector of variogram between the observations and the target point. In 

addition, the kriging error variance is given by:

<?k(xo) = Var[Z(x0) - Z*(x0)]
A

i
r0

A 1
(3)

Hence, solving the kriging System requires the variogram values between 

each pair of observations and between the target and the observations. Gen- 

erally, the experimental variogram is computed using the observations and 

then a variogram model is fitted.

However, the experimental variogram may be instable when only few 

data are available. In addition, the experimental variogram relies on several 

assumptions about the regionalised variable under study, such as stationarity 

or isotropy. Therefore, expert knowledge might be taken into account to 

improve the variogram fitting (Chilès and Delfiner, 2012).

Ê,ê, Numerical variograms

Instead of computing the experimental variogram from observations, non 

stationary numerical variograms are computed from several réalisations of Z.. 

For the application présented in this study, these réalisations resuit from a 

physically-based model, e.g,, flow and transport simulations of a contaminant 

plume. The numerical variogram 7 between two points x and x' isthe average 

of the incréments computed on the réalisations:

A = JJ JJ \[zr(x) ~ AA)]'

j)=i
(4)

where Zp(x) (resp. Zp(x/)) is the value of Z at location x (resp. F) for 

the p-th réalisation.
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The object defined in Eq. (4) is a proper variogram, since it is condi- 

tionally definite-positive (Chilès and Delfiner, 2012). Indeed, it satisfies the 

condition:

MM ^ P M
- 0 (5)

i=l j = 1 p= 1 i=l

for ail for ail (wj).^...^ such that = 0 and for ail

M (de Fouquet, 2019). It ensures the consistency of the kriging System and 

the variogram values can then be computed for each pair of points (x, Y) 

needed to build the matrices T and To. In this method, the variogram is 

assumed to exist and the mean of Z is assumed to be constant, The latter 

assumption might appear too constraining and a slightly different approach 

that takes into account the spatial variability of the mean of Z is presented 

in Appendix 1.

Numerical variograms are expected to reproduce the spatial variability of 

Z better than a model based on observations only, since they use physically- 

based simulations. More precisely, Z resuit s from the application of a non- 

linear opérât or H on a set of inputs Y: Z — H (M). The variability among the 

réalisations of Z is induced by the variability of Y (the randomisation of the 

inputs Y is presented in Appendix 2). In the case of flow and transport mod- 

eling, some input parameters, such as hydraulic properties, are more difhcult 

to détermine than others. Conséquently, the set of simulations should take 

into account the uncertainties on those parameters, by considering different 

input scénarios and thus covering the range of possible cases.
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3. A reference test case

In this section, a synthetic reference test case is built to assess kriging 

with numerical variograms. This reference case consiste in a two-dimensional 

(2D) vertical plane of 100 m large by 15 m deep in an unsaturated zone 

contaminated with a point source of tritiated water. The génération of this 

reference case is composed of three steps: (i) génération of textural properties 

of the surficial formation; (ii) conversion of these properties into hydraulic 

parameter fields; and (iii) simulation of a tritium plume with a flow and 

transport numerical code.

3.1. Textural properties

The surficial formation is assumed to be composed of a single faciès with 

a spatially variable texture. The proportions of sand, silt and clay are con- 

sidered to follow a normal distribution (e.g., Keza et ai., 2015; Usowics and 

Lipiec, 2017; Taye et al., 2018) and the spatial variability in these propor

tions is modeled by an exponential variogram with an anisotropy between the 

horizontal and vertical directions (e.g., Reza et al., 2015; Usowicz and Lip

iec, 2017). A triplet of random fields specifying sand, silt and clay contents 

with a 0,5 mx0.5 m spatial resolution is générât ed following the previous 

assumptions, using the turning bands method (Lantuéjoul, 2002). The mean 

(± standard déviation) of the sand, silt and clay proportions are set to 75% 

(± 10%), 12.5% (± 6%) and 12.5% (± 6%) and corrélation lengths of 10 m 

and 3 m are considered in the horizontal and vertical directions respectiveiy 

(Figure la).
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3.Ê. Hydrautic parameters

In the unsaturated zone, flow processes are strongly related to the mois- 

ture rétention curve and the relative hydraulic conductivity function. The 

Mualem-van Genuchten (MvG) model (Mualem, 1976; van Genuchten, 1980) 

describes the links between water pressure head (yi), water content (61) and 

relative hydraulic conductivity (K):

Oiyjj) = 6V + , with m= 1- -, (6)v 1 (1 + |m/i|")m n w

and

K(f) = Kssl[l-(l-SiT? with Se=&W~&r; (7)

Uÿ Uy
where 0r and 0S are respectively the residual and saturated volumétrie wa

ter contents [L3,L-3], a is inversely proportional to the air-entry value [L'1]. 

n is a pore-sise distribution index [-] and Ks is the saturated hydraulic con

ductivity tensor [L.T'1].

Since the measurement of MvG parameters is complex (Schaap et ah, 

2004), they are commonly estimated from textural properties, which mea- 

surements are easier (e.g., Wôsten et ah, 1999; Toth et al., 2015; Zhang and 

Schaap, 2017). The relationships linking MvG parameters and textural prop

erties, called pedotransfer functions (PTF), are mostly based on régression 

analysis of existing soil databases. In this study, the random fields describ- 

ing the textural properties of the surficial formation are converted into five 

MvG parameter fields (Ks, a, n, 0r and 0S) by means of rosetta3 (Zhang and 

Schaap, 2017). For given sand, silt and clay contents, the average values of 

MvG parameters are considered (Figure lb).
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3,3, Tritium'plume modeting

The generated MvG parameter fields are used as input to a numerical code 

that simulâtes flow and soluté transport. The tritium plume is simulated with 

MELODIE code, which is developed by the Erench Institute for Radiation 

Protection and Nuclear Safety (IRSN). This code simulâtes underground flow 

and soluté transport in saturated and unsaturated porous media within the 

framework of radioactive waste disposai facilities (IRSN, 2009; Amor et ah, 

2014; Amor et ah, 2015; Bousid et al., 2018). MELODIE is set for solving in 

2D the Richards équation describing flow in variably saturated porous media 

and an advection-dispersion-reaction équation representing the migration of 

radionuclides (Pannecoucke et al., 2019). The modeling domain is discretised 

in triangles with 0.5 mbase and 0.25 m height. The five MvG parameter fields 

define the hydraulic properties within the domain. The boundary conditions 

are set as follows:

1. a fixed hydraulic head corresponding to the mean water table élévation 

(7.5 m above the bottom boundary with a 0.004 m.m"1 latéral gradient) 

is set on both sides of the domain;

2. no-flow conditions are set on the bottom boundary;

3. a time variable flow corresponding to the daily percolation rate, typical 

from center of France, and estimated from the water balance method 

(Thornthwaite and Mather, 1955) is imposed on the top boundary.

A point source of tritiated water is simulated by setting an activity of 

1,000 Bq.d"1 during one month on the top surface node on the center of the 

modeling domain. The évolution of the activity within the domain is then 

simulated during five years with an adaptive time stepping (from 10"20 to 1 d)

10
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by considering a retardation factor of 1 and a decay constant of 1.54.10'4 d'1 

(Figure le).

3,4- Reference dataset

Two types of observations are extracted from the synthetic test case, in 

accordance with a potential decommissioning case.

1. The texture is sampled in 8 boreholes Crossing the unsaturated zone 

(7 m deep) distributed over the whole modeling domain (Figure la). 

Those boreholes are assumed to provide accurate observations of sand, 

siit and ciay contents with 0.5 m vertical resolution.

2. The tritium plume is sampled to obtain observations of volumic activity 

with 0.5 m vertical resolution within boreholes Crossing the unsaturated 

zone (7 m deep). Two sampling scénarios are considered: (i) 7 boreholes 

distributed over a zone of 20 m wide around the tritium source (scénario 

SI, Figure ld); and (ii) 4 boreholes distributed over the same zone 

(scénario S2, Figure le). It is interesting to notice that for sampling 

scénario S2, the high values of activity are not sampled, contrary to 

sampling scénario SI.

Besides, an additional test case is built using the same model settings 

(initial and boundary conditions) but another realization of the texture fields. 

It results in a plume with a different shape from the reference (Figure 2).

4. Estimation by kriging with numerical variograms

In this section, kriging with numerical variograms (KNV) is carried out 

to estimate the tritium activity of the plume modeled in section 3, from

11
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the observations of volumic activity previously sampled. First, hydraulic pa- 

rameters random fields are generated from the punctual texture observations 

available in the reference dataset (section 3.4). Then, 2,000 unconditioned 

tritium plumes are simulâted by means of a flow and transport model. These 

simulations are used to compute numerical variograms of activity and finally 

interpolate punctual activity observations from the reference dataset (accord- 

ing to scénarios SI or S2, section 3.4).

4-1- Hydraulic parameters random fields

A large number of random fields describingthe MvG hydraulic parameters 

(Ks, a, n, 6V, 0S) within the surficial formation are generated based on two 

different approaches.

1. Approach 1: the observations of sand, silt and clay contents available 

in the reference dataset are used to compute experimental variograms, 

■which allow the génération of 1,000 triplets of conditional fields of sand, 

silt and clay contents. The variogram parameters are randomised (see 

Appendix 2) and the conditional simulations follow the distribution 

(close to normal) given by the observations from the reference dataset. 

The resulting triplets of random fields describing the textur al properties 

are converted into MvG parameter fields using rosetta3 PT F (for given 

sand, silt and clay contents, the average values of MvG parameters are 

considered). It results in 1,000 sets of 5 random fields.

2. Approach 2: the sand, silt and clay contents available in the refer

ence dataset are converted into MvG parameters using rosetta3 PTF 

(for given sand, silt and clay contents, the average values of MvG pa

rameters are considered). Experimental variograms are computed from
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these values of MvG parameters, which are then interpolated by means 

of a conditional simulation tool considering variogram models with ran- 

domised parameters (Appendix 2). Normal distributions of Br and 

and lognormal distributions of Ks, a and n are considered (e,p,, Botros 

et al., 2009; Pannecoucke et al., 2019), with means and variances given 

by the values of hydraulic parameters at sampled locations. It results 

in 1,000 sets of 5 random fields.

4-ê. Simulations of floui and soluté transport

The MvG parameter fields obtained via the two previous approaches are 

set as inputs to MELODIE code to simulate 2,000 tritium plumes. Ail the 

other model parameters are kept constant compared to the test case described 

in section 3.3.

4-S, Estimation and performance ass essorent

The set of 2,000 simulated plumes is used to compute the numerical var- 

iograms between each couple of points needed to build the kriging System. 

The KNV estimate is computed using (i) the observations from 7 boreholes 

(SI); and (ii) the observations from 4 boreholes (S2).

Two other kriging methods are used as benchmarks: (i) ordinary kriging 

(OK), with a stationary model of variogram based on the observations only; 

and (ii) kriging with an external drift (KED) with auxiliary variables given 

by simulation outputs (Rivest et al., 2008). More precisely, the empirical 

average of the simulations (mean plume) is used as an auxiliary variable, 

and thus the empirical mean of Z is considered variable over the modeiing 

domain (see Appendix 1).
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In order to assess the performances of KNV compared to O K and K ED,

severai indicators are computed.

1, The maps of estimation, estimation error and kriging error standard 

déviation are computed. For OK and KED, the maps of kriging error 

standard déviation are corrected by a proportional efïect (Donati and 

de Fouquet, 2018) in order to account for the zones of low or high values 

of estimated activity, This supplementary modeling step is not needed 

for KNV, because numerical variograms directly account for the local 

variability of activity in the contaminâted zone,

2, The error s are quantified in terms of mean absolut e error (MAE), root- 

mean-square error (RMSE) and mean relative error (MRE), The MRE 

is given by:

MRE — E
Zrsf(xi) - Z*(xj)

(8)
îWs “ max(l,Zrs^(xi)) 

where nce;;s is the number of cells in the modeling domain (without 

the observations), Zrs^(x^) (resp, K^aq)) is the value of activity of the 

reference plume (resp, the estimation) at location aq, The denominator 

is set to 1 if IV^aq) < 1 in order to avoid huge relative errors when 

Zrsf(xi) is close to 0,

3, The ability of the estimator to reproduce the distribution of the actual 

contamination is assessed via the selectivity curve (Chilès and Delfiner, 

2012), This curve is parametrized by the contamination threshold z. 

For each jz, two quantities are computed,

♦ the percentage of grid cells in the modeling domain such that 

Z(xi) > z (on the x-axis), defined as:
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TiasllsE ^Z(dH)>g
—------------ x 100 (9)

^cetts
where lz(xi)>^ equals 1 if Z(xi) > z, 0 otherwise;

♦ the corresponding percentage of total volumic activity contained 

by the previous grid celle (on the y-axis), defined as:

^aslls

---------- --  X 100, (10)
E Z(xi)
i= 1

4, The proportions of false-positive and false-négative surfaces are com- 

puted for several contamination thresholds {z), The proportion of 

false-positive surface is defined as the number of grid cells such that 

Z* (xi) > z and Zrs^(xi) < x, divided by the number of grid cells such 

that Zrs?(xi) > z (the actual surface of the contaminated zone on the 

reference, which dépends on the contamination threshold). The pro

portion of false-négative surface is defined as the number of grid cells 

such that Z*(xi) < z and Zrs? (xi) > z, divided by the actual surface of 

the contaminated zone, This indicator assesses the risk of leaving on- 

site contamination (false-négative) or on the contrary of overestimating 

the extent of the contamination and the associâted remediation costs 

(false-positive).

5. Resuit s

In this section, the performance indicators described above are computed 

for the estimâtes of the reference plume obtained by OK, K ED, KNV and

15
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for sampling scénarios SI and S2. Then, the results are presented for the 

additional test case (section 3.4, Figure 2). Finally, the KNV estimâtes 

computed when distinguishing the two sets of simulations based on approach 

1 or approach 2 (section 4.1) are compared.

5.1. Sampling scénario SI

The maps of estimation are almost similar (Figures 3a, 3b, 3c) for the 

three methods. Yet, the errors are slightly higher for OK and KED than for 

KNV (Figures 3d, 3e, 3f). Besides, the theoretical standard déviations of 

kriging error are much higher for O K and KED than for KNV, even when a 

proportional efïect is taken into account (Figures 3g, 3h, 3i). In accordance 

with this qualitative assessment, KNV results in smaller mean errors than 

OK and in a lesser extent KED (Table 1), whatever the actual activity values 

(Figure 4a).

The selectivity curves show that KNV estimate slightly better reproduces 

the actual distribution of activity than OK and KED estimâtes (Figure 4b). 

The curves obtained with the three approaches are yet almost overlaying 

each other.

The proportion of false-positive surface is smaller for KNV that for OK, 

whatever the contamination threshold (Figure 4c). This proportion is re

duc ed of 10%, except for contamination thresholds above 1,000 Bq.m"3g2o 

(mainly because the contaminated surfaces are more and more reduced when 

the threshold increases). The proportion of false-positive surface is yet 

smaller for KED than for KNV for very low contamination thresholds (below 

20 Bq.m"3e2o); for higher contamination thresholds, KNV leads to smaller 

proportion of false-positive surfaces than KED. The proportion of false-

16



326

327

328

329

330

33 i

332

333

334

335

336

337

338

339

340

34 i

342

343

344

345

346

347

348

349

350

négative surface is slightly higher for KNV than for OK and K ED for con

tamination threshoids beiow 500 Bq.m"3g2o (Figure 4d). For higher con

tamination thresholds, KNV performs better than O K and K ED, because 

numerical variograms are non stationary and enables a better estimation of 

high values of activity.

5.S. Samplmg scénario SS

For sampling scénario S2, the maps of estimation obtained by the three 

approaches look different (Figures 5a, 5b, 5c). The shape of the plume esti- 

mated by OK appears poorly consistent, while the plumes estimated by KED 

and KNV respect the global shape of the reference plume. Yet, the plume 

estimated by KED is more attenuated than the one obtained by KNV. Ré

sides, standard déviations of kriging error are higher for OK and even more 

for KED than for KNV (Figures 5g, 5h, 5i). MAE, RMSE and MRE are 

smaller for KNV than for OK and KED (Table 1). In particular, OK and 

KED tend to reduce the actual variability of activities (overestimation of low- 

est activities, under estimât ion of highest activities), while KNV results in a 

more consistent distribution of activities, despite an overall overestimation, 

especially for the highest values of activity (Figure 6a).

The selectivity curves show that KNV and KED better reproduce the 

actual distribution of activity than O K (Figure 6b). For example, 10% of 

the modeling surface contains 80% of the whole contamination for KED and 

KNV estimâtes, while 18% of the modeling domain contains the same amount 

of contamination for the activity field estimated by OK.

The false-positive surfaces obtained by KNV are smaller than the ones 

obtained by OK and KED (Figure 6c), except for contamination thresholds
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higher than 1,000 Bq. m'3 020 (due to the fact that O K and KED tend to un- 

derestimate high values of activity while KNV over estimât es high values of 

activity). The false-négative surfaces obtained by KNV are generally larger 

than the ones obtained by O K and KED, at least for contamination thresh- 

olds below 800 Bq.m"3H20 (Figure 6d).

5.3. AddÂüonal test case

In order to test the reproducibility of the proposed approach, the same 

study has been made on the additional test plume (Figure 2), which has a 

more complex shape than the reference one. MAE, RM SE and MRE are 

reduced for KNV, compared to OK and KED (Table 2, Figures 7a and 8a) 

for sampling scénarios SI and S2. Contrary to the reference test case, the 

errors are higher for KED than for OK (Table 2).

The selectivity curves (Figure 7b and 8b) show that KNV better re

produces the distribution of the actual contamination than KED and OK, 

especially for sampling scénario S2.

The false-positive surface is smaller for KNV than for O K and KED, for 

both sampling scénarios (Figure 7c and 8c). For the false-négative surfaces, 

the performances of each method dépend on the contamination threshold. 

For SI, for low thresholds (below 50 Bq.m'3g2o) KED performs better than 

O K and than KNV, while for higher thresholds, KNV performs better than 

O K and than KED (Figure 7d). For S2, O K and KNV perform better than 

KED (Figure 8d).

18



373

374

375

376

377

3/8

379

380

38 i

382

383

384

385

386

387

388

389

390

39 i

392

393

394

395

396

5,4- Hydraulic parameter fields

In section 4.1, two slightly different approaches hâve been introduced to 

generate MvG parameter random fields. For the results presented above, 

the simulated plumes obtained via the two approaches hâve been gathered 

and mixed to compute numerical variograms. In order to compare both 

approaches, KNV is implemented with (i) numerical variograms computed 

from 1,000 simulations generated with approach 1 (KNV-1); (ii) numeri

cal variograms computed from 1,000 simulations generated with approach 2 

(KNV-2).

For the reference test case, the estimated plumes are almost the same 

for KNV-1, KNV-2 and KNV. Indeed, MAE are really close, especially for 

SI (Table 3). For S2, KNV-2 leads to smaller errors than KNV and than 

KNV-1. For the additional test case, the results obtained with KNV-2 and 

KNV are almost similar (Table 3). On the contrary, the results obtained 

with KNV-1 are unacceptable (the estimated plumes are not consistent at 

ail), for both sampling scénarios.

6. Discussion

Spatial variability of MvG parameters is generally poorly characterised 

at field scale even if it can signifieantly affect the évolution of contaminant 

plumes within the unsaturated zone (Pannecoucke et al., 2019). For exam

ple, in this study, the tritium plumes simulated using a similar groundwater 

flow and transport model but various MvG parameter fields (generated from 

observations of texture sampled in 8 boreholes) are significantly different: 

their surfaces range from 60 to 150 m2 and their mass centers are spread
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over 20 m wide (Figure 9). Therefore, although the initial and boundary 

conditions of the flow and transport model are fixed, the uncertainties re- 

lated to hydraulic parameters within the surficial formation do not lead to 

an accurate characterisation of the contamination.

To improve plume characterisation and délinéation, kriging with numer- 

ical variograms, consisting in using flow and transport simulation outputs 

to compute numerical variograms, appears to per for m better than standard 

geostatisticaltools (OK and KED), at least for most ofthe various indicators 

considered in this study. KNV appears to be particularly interesting when 

the available observations are scarce, as shown by the larger différence of 

performances between O K and KNV (or KED and KNV) for scarce (S2, 4 

boreholes) compared to dense (SI, 7 boreholes) sampling scénarios. Besides, 

it is interesting to notice that KNV enables the estimation of high values of 

activity, even if those high values are not sampled, which is not the case for 

O K and KED {e.g. refer ence test case, scénario S2). When the actual plume 

differs from the mean simulated plume, KED is poorly efficient, e,p,, in the 

case of the additional test case with a more complex plume geometry.

However, for reproducing such a complex plume shape, KNV estimator 

results in better performances when the MvG parameter fields are generated 

from interpolation of punctual values of these parameters (approach 2) than 

from conversion of soil texture fields (approach 1). This could be explained 

by the fact that the approach 2 leads to a higher variability in MvG param

eters and thus in more variable simulated plumes as outputs of the flow and 

transport model (Figure 9). A relevant characterisation of the variability in 

hydraulic parameters therefore remains a key issue for taking advantage of
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KJNV. This requires to deveiop in s tin approaches for better estimating soil 

hydraulic parameters and their variability at field scale (e,p,, Léger et al., 

2014 and 2016),

This work focuses on uncertainties in spatial variability in MvG parameter 

fields. However, other input parameters, such as the location of the source of 

pollution or the boundary conditions, also impact flow and soluté transport in 

the unsaturated zone. In a real study case, those parameters are not perfectly 

known and it would be interesting to take into account the uncertainties in 

those inputs.

Besides, in the case of a real contaminated site with a regulatory threshold 

to be respected, the délimitation into contaminated and uncontaminated 

zone should take into account uncertainties on the estimâtes, expressed by 

the standard déviation of kriging error, and some probabilities of exceeding a 

given threshold. Geostatistical conditional simulations could also hâve been 

implemented, but it requires strongest assumptions and more computational 

time. That is why the application was limited to estimation (as in Saby et 

al., 2006 or Liang et al., 2018).

7. Conclusion

This study shows that kriging with numerical variograms improves the 

estimâtes of tritium activities in the unsaturated zone. Although the as

sumptions might appear simplistic (stationary mean), this method leads to a 

réduction of the estimation errors, and more importantly of the corresponding 

error standard déviation (de,, more trustworthy estimators). This method is 

ail the more interesting that the number of observations of pollutant concen
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tration is reduced. However, the assessment procedure detaiied in this study 

is based on a synthetic case study with weii constrained boundary conditions. 

The next step is be to carry out the method on a real contaminated site.

In addition, the kriging with numerical variograms method can be trans- 

posed to other scales of heterogeneities, such as Systems with several geo- 

logical units, or other pollutants with a more complex Chemical behavior, as 

soon as a numerical code that simulâtes the studied phenomenon is available. 

It could also be applied in completely different domains, such as air quality 

characterisation, estimations of océan températures, or population dynamics 

in ecology.
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600 Appendix 1: A varying mean for Z

601 In section 2.2, the mean of Z is assumed to be constant. This assumption

602 may not be consistent with the mean plume computed as the average of the

603 simulations and used as an external drift in this study:

ï\Z{x) } = m{x) = ^'£Zt{x). (.1)

P= 1

604 To take into account this computed drift, a slightly different method is

605 examined. In KNV as présented in section 2.2, a constant mean for Z leads

606 to the following unbiasedness condition:

N

I> = L ('2)
0=1

607 If the mean of Z dépends on the location x in the modeling domain, the 

6os unbiasedness conditions becomes:

N
'Y^Xam(xa) = m(x0). (.3)
0=1

609 The variance of the kriging error is given by:

N N N

Var[Z*(x0) - Z(x0)] = EE ^ ^ (J(Xq j To) ;a=l 6=1 a=l

(•4)

610 where C(x,x/) is the numerical covariance between x and xJ:

i ^

C{x,xJ) = ~Y).Zp(x) - m(x)][Zp(x/) - m(x% (.5)
p= i

611 Hence the kriging System:
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where C = \C(xa> a^)] is the matrix of covariances between each couple 

of observations, M = [m(xa)] is the vector containing the empirical means 

of Z at observation locations, Cb = [C(xa,xo)] is the vector of covariance 

between the target and the observations and m-o = m(xo) is the mean of Z 

at the target point.

The estimâtes of the reference plume and the additional plume hâve be 

computed with this slightly different approach. The results are almost iden- 

tical to those obtained when considering that the mean of Z is constant over 

the modeling domain (Figure 10). This method, which lowers the assumption 

of the stationary of T, is more complex to implement than the one described 

in section 2.2 and does not seem to perform better.

Appendix 2: Uncertainties in the input parameters

The modeling of the uncertainties in the input parameters to the nu- 

merical code (these parameters are denoted Y in section 2.2) focuses on the 

hydraulic parameters fields. Thus, those fields are randomised, while the 

rest of the input parameters is kept constant for ail simulations. To take into 

account the uncertainties in the experimental variograms computed from 

observations of sand, silt and clay contents (for approach 1) or from MvG 

parameters (for approach 2), the parameters of the variogram model are ran

domised. For each réalisation, the parameters of the variogram model used 

to simulate the fields are drawn from the following probability distributions:
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1. the sill is sampled from a gaussian distribution centered on the sill of 

the experimental variogram with a ± 20% range of variation;

2. the vertical range is sampled from a gaussian distribution centered on 

the vertical range of the experimental variogram with a ± 20% range 

of variation;

3. the horizontal range is sampled from a triangular distribution with a 

mode equals to the horizontal range of the experimental variogram and 

the minimum and maximum values respectively to twice the vertical 

range and ten times the vertical range. It leads to a stronger dispersion 

than for the vertical range, since the inference of the horizontal range 

is less accurate than the vertical range due to the sampling scheme;

4. the behavior of the variogram at short distances is randomly chosen 

between 3 cases: a cubic model without nugget efïect, an exponential 

model without nugget efïect or an exponential model with a nugget 

efïect (between 0 and 5% of total sill).
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Table 1
Click here to download Table: Table 1.doc

Table 1: MAE [Bq.m 3h2oL RMSE [Bq.rn^o] and MRE [-] for both sampling scénarios and for the 

référencé test case. Scénario SI corresponds to 918 unknown grid ce Ils (119 observations) and 
scénario S2 corresponds to 969 unknown grid cells (68 observations).

SI S2
OK KED KNV OK KED KNV

MAE 61 53 29 173 71 47
RMSE 161 138 89 348 174 147
MKE -4.6 -2.8 -2.2 -47 -6.8 -0.8



Table 2
Click here to download Table: Table 2.doc

Table 2: MAE [Bq.rtï 3h2oL RMSE [Bq.m^eco] and MRE [-] for both sampling scénarios and for the 

additionaltest case.

SI S2
OK KED KNV OK KED KNV

MAE 72 119 43 139 140 82
RMSE 184 230 125 302 355 233
MRE -4.8 -31 -2.2 -5.6 -4.2 -2.7



Table 3
Click here to download Table: Table 3.doc

Table 3: MAE [Bq.m^o] for both sampling scénarios and both test cases, by drfferentiating KNV-1 
and KNV-2 from K NV.

Référencé test case Addrtional test case
SI S2 SI S2

KNV-1 30 58 163 484
KNV-2 32 41 44 92
KNV 29 47 43 82
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