B. K. Kennedy and D. W. Lamming, The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging, Cell Metab, vol.23, pp.990-1003, 2016.

M. Laplante and D. M. Sabatini, 2012) mTOR signaling in growth control and disease, Cell, vol.149, pp.274-293

C. C. Dibble and B. D. Manning, Signal integration by mTORC1 coordinates nutrient input with biosynthetic output, Nature cell biology, vol.15, pp.555-564, 2013.

F. Tremblay and A. Marette, Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells, J Biol Chem, vol.276, pp.38052-38060, 2001.

O. J. Shah, Z. Wang, and T. Hunter, Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies, Current biology : CB, vol.14, pp.1650-1656, 2004.

O. J. Shah and T. Hunter, Turnover of the active fraction of IRS1 involves raptor-mTORand S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis, Mol Cell Biol, vol.26, pp.6425-6434, 2006.

F. Tremblay, S. Brule, S. Hee-um, Y. Li, K. Masuda et al., Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient-and obesity-induced insulin resistance, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.14056-14061, 2007.

L. Khamzina, A. Veilleux, S. Bergeron, and A. Marette, Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance, Endocrinology, vol.146, pp.1473-1481, 2005.

S. H. Um, F. Frigerio, M. Watanabe, F. Picard, M. Joaquin et al., Absence of S6K1 protects against ageand diet-induced obesity while enhancing insulin sensitivity, Nature, vol.431, pp.200-205, 2004.

M. Shum, K. Bellmann, P. St-pierre, and A. Marette, Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice, Diabetologia, vol.59, pp.592-603, 2016.

Y. Dagon, E. Hur, B. Zheng, K. Wellenstein, L. C. Cantley et al., kinase phosphorylates AMPK on serine 491 to mediate leptin's effect on food intake, Cell Metab, vol.16, pp.104-112, 2012.

V. Aguilar, S. Alliouachene, A. Sotiropoulos, A. Sobering, Y. Athea et al., S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase, Cell Metab, vol.5, pp.476-487, 2007.

G. W. Vainer, A. Saada, J. Kania-almog, A. Amartely, J. Bar-tana et al., PF-4708671 activates AMPK independently of p70S6K1 inhibition, PLoS One, vol.9, p.107364, 2014.

K. Sakamoto, A. Mccarthy, D. Smith, K. A. Green, D. Grahame-hardie et al., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, EMBO J, vol.24, pp.1810-1820, 2005.

J. T. Treebak, J. B. Birk, A. J. Rose, B. Kiens, E. A. Richter et al., AS160 phosphorylation is associated with activation of alpha2beta2gamma1-but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans, Am J Physiol Endocrinol Metab, vol.292, pp.715-722, 2007.

J. T. Treebak, S. Glund, A. Deshmukh, D. K. Klein, Y. C. Long et al., AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits, Diabetes, vol.55, pp.2051-2058, 2006.

F. Tremblay, M. Krebs, L. Dombrowski, A. Brehm, E. Bernroider et al., Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability, Diabetes, vol.54, pp.2674-2684, 2005.

R. Kjobsted, J. R. Hingst, J. Fentz, M. Foretz, M. N. Sanz et al., AMPK in skeletal muscle function and metabolism, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.32, pp.1741-1777, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02348651

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, J Clin Invest, vol.120, pp.2355-2369, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00495746

M. R. Owen, E. Doran, and A. P. Halestrap, Evidence that metformin exerts its antidiabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem J 348 Pt, vol.3, pp.607-614, 2000.

S. Andrzejewski, S. P. Gravel, M. Pollak, and J. St-pierre, Metformin directly acts on mitochondria to alter cellular bioenergetics, Cancer Metab, vol.2, p.12, 2014.

W. W. Wheaton, S. E. Weinberg, R. B. Hamanaka, S. Soberanes, L. B. Sullivan et al., Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis, vol.3, pp.2242-2265, 2014.

L. A. Villani, B. K. Smith, K. Marcinko, R. J. Ford, L. A. Broadfield et al., The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration, Mol Metab, vol.5, pp.1048-1056, 2016.

B. B. Seo, T. Kitajima-ihara, E. K. Chan, I. E. Scheffler, A. Matsuno-yagi et al., Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells, Proc Natl Acad Sci U S A, vol.95, pp.9167-9171, 1998.

K. Birsoy, R. Possemato, F. K. Lorbeer, E. C. Bayraktar, P. Thiru et al., Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides, Nature, vol.508, pp.108-112, 2014.

A. Deshmukh, F. Salehzadeh, S. Metayer-coustard, R. Fahlman, K. S. Nair et al., Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle, Cell Mol Life Sci, vol.66, pp.1457-1466, 2009.

C. M. Hasenour, D. E. Ridley, F. D. James, C. C. Hughey, E. P. Donahue et al., Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation, PLoS One, vol.12, p.170382, 2017.

W. L. Hou, J. Yin, M. Alimujiang, X. Y. Yu, L. G. Ai et al., Inhibition of mitochondrial complex I improves glucose metabolism independently of AMPK activation, J Cell Mol Med, vol.22, pp.1316-1328, 2018.

M. Y. El-mir, V. Nogueira, E. Fontaine, N. Averet, M. Rigoulet et al., Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I, J Biol Chem, vol.275, pp.223-228, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00390049

A. K. Madiraju, D. M. Erion, Y. Rahimi, X. M. Zhang, D. T. Braddock et al., Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase, Nature, vol.510, pp.542-546, 2014.

N. Boudaba, A. Marion, C. Huet, R. Pierre, B. Viollet et al., AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development, EBioMedicine, vol.28, pp.194-209, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01724235

B. Viollet, F. Andreelli, S. B. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity, J Clin Invest, vol.111, pp.91-98, 2003.

M. Pende, S. H. Um, V. Mieulet, M. Sticker, V. L. Goss et al., S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway, Mol Cell Biol, vol.24, pp.3112-3124, 2004.

S. Bedard, B. Marcotte, and A. Marette, Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase, Biochem J, vol.325, pp.487-493, 1997.

L. Lantier, R. Mounier, J. Leclerc, M. Pende, M. Foretz et al., Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.24, pp.3555-3561, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00484177

V. P. Houde, S. Brule, W. T. Festuccia, P. G. Blanchard, K. Bellmann et al., Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue, Diabetes, vol.59, pp.1338-1348, 2010.