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New Insights into Molecular 
Organization of Human 
Neuraminidase-1: Transmembrane 
Topology and Dimerization Ability
Pascal Maurice1, Stéphanie Baud1,2, Olga V. Bocharova3, Eduard V. Bocharov3, 
Andrey S. Kuznetsov3, Charlotte Kawecki1, Olivier Bocquet1, Beatrice Romier1, 
Laetitia Gorisse1,†, Maxime Ghirardi1, Laurent Duca1, Sébastien Blaise1, Laurent Martiny1, 
Manuel Dauchez1,2, Roman G. Efremov3,4,* & Laurent Debelle1,*

Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids 
from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by 
desialylation, has been consistently documented from the last ten years. Despite a growing interest of 
the scientific community to NEU1, its membrane organization is not understood and current structural 
and biochemical data cannot account for such membrane localization. By combining molecular 
biology and biochemical analyses with structural biophysics and computational approaches, we 
identified here two regions in human NEU1 - segments 139–159 (TM1) and 316–333 (TM2) - as potential 
transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides 
form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by 
co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 
region was shown to be critical for dimerization since introduction of point mutations within TM2 leads 
to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these 
results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, 
for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, 
control its dimerization and sialidase activity.

Sialidases, or neuraminidases, represent a family of exoglycosidases that remove terminal sialic acid residues 
from glycoproteins, glycolipids and oligosaccharides1. These enzymes are widely distributed and found in viruses, 
protozoa, bacteria, fungi, and vertebrates2. The human sialidase family contains four members: the lysosomal 
NEU1 (Swiss-Prot:Q99519), cytosolic NEU2, and membrane-bound NEU3 and NEU41,3. Each sialidase presents 
distinct substrate specificity and subcellular localization4. All of them are assumed to share the typical β-propeller 
structure organized in six blades, each composed of four antiparallel β-sheets, and the highly conserved motifs 
for their catalytic activity: the three Arg residues involved in binding of sialic acids, a Tyr/Glu nucleophile motif 
and an Asp residue serving as proton acceptor during the catalysis5. To date, NEU1 has been the most studied sial-
idase, notably because NEU1 deficiency is linked to genetic diseases, sialidosis and galactosialidosis6. Sialidosis, 
caused by a NEU1 deficiency, is a fulminant disease that develops before birth; the patients are stillborn or die 
soon after birth7. In contrast, galactosialidosis is caused by protective protein/cathepsin A (PPCA) deficiency 
with a combined secondary near-complete deficiency of NEU1. The biochemical hallmark of both lysosomal 
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storage disorders is the progressive accumulation of sialylated glycoproteins, glycopeptides and oligosaccharides 
in lysosomes of many cell types, as well as excretion of sialyloligosaccharides in body fluids. The involvement of 
NEU1 in lysosomal diseases clearly demonstrates that NEU1 functions as a lysosomal enzyme and is supported 
by its optimal acidic pH for catalysis4.

Nevertheless, a plasma membrane-bound NEU1, controlled by the phosphorylation of its C-terminus, has 
been also reported8. At the plasma membrane, NEU1 has been shown to be required for signal transduction and 
elastogenesis through the elastin receptor complex9–11 and to be involved in the modulation of insulin receptor 
signaling12,13, regulation of integrin beta 414, TLR415, Trk A16, PDGF-BB and IGF receptors17, EGF and MUC1 
receptors18 and more recently CD3119. Consequently, NEU1 now emerges not only as a catabolic enzyme but also 
as a key actor involved in cell signaling regulation20. Despite a growing interest of the scientific community to 
NEU1, its organization and dynamics in membrane are not understood. It is established that NEU1 is routed to 
the lysosomal compartment where it forms a multi-enzyme complex with PPCA and β-galactosidase7. PPCA acts 
as a chaperone for NEU1 preventing its premature oligomerization21 and PPCA/NEU1 association is required 
for proper addressing to the lysosome and for its sialidase activity22. How NEU1 translocates to the plasma 
membrane in association with PPCA, or not, is not known. In addition, its membrane topology is still puzzling. 
Indeed, NEU1 sialidase activity can be measured at the cell surface indicating that its active site would be extra-
cellular. Besides, the phosphorylation of its C-terminus indicates that NEU1 contains an intracellular domain. 
Nevertheless, no current sialidase molecular model can account for these two features. Given the critical roles 
played by membrane-bound NEU1, the present study was designed to characterize the organization and assembly 
of human NEU1 in membrane using a combination of biology-based, biophysical and computational approaches.

Results
Analysis of amino acid sequence of human NEU1 reveals putative TM regions.  The human NEU1 
sequence (Q99519) was subjected to bioinformatic analysis in order to delineate potential transmembrane (TM) 
domains. Three prediction algorithms (TMpred, TopPred, ProtScale) were used and underlined that the protein 
sequence contains hydrophobic stretches that could possibly cross the plasma membrane (Fig. 1). All the algo-
rithms evidenced three possible domains: one in the putative signal peptide sequence23, one between bacterial 
neuraminidase repeats (BNR) 1 and 2 and another one in the C-terminal part of NEU1. Analysis of sequence 
hydrophobicity identified these three regions as rather hydrophobic, although according to TopPred algorithm, 
the second TM fragment (residues 148–168, NEU1/TM1) is less probable than the other two (25–45, NEU1/TM0 
and 316–336, NEU1/TM2).

A pool of NEU1 is present at the plasma membrane of COS-7 cells in the absence of PPCA.  
Wild-type human NEU1-Flag was co-expressed in COS-7 cells together with human PPCA, which has been 
shown to be required for correct folding, compartmentalization and catalytic activation of NEU1 in lyso-
somes6,23. Transient expression of NEU1-Flag gives rise to multiple protein species of molecular weight between 
40 and 55 kDa due to differential glycosylation of NEU124 (Fig. 2A). Cell surface protein labelling with the 
non-permeable reagent EZ-Link® sulfo-NHS-LC-biotin allowed the recovery of NEU1-Flag in the biotinylated 
plasma membrane fraction but not of PPCA (Fig. 2A). Similar results were obtained in human macrophages that 
endogenously express both NEU1 and PPCA (Fig. 2B). In addition, monomers and presumably dimers of NEU1 
were recovered (Fig. 2A,B). Immunofluorescence experiments performed on permeabilized COS-7 cells showed 
intracellular staining of NEU1-Flag and staining at the cell membrane as attested by some co-localization areas 
with integrin beta 1 (Fig. 2C). When looking for PPCA, co-localization areas with NEU1-Flag were observed 
inside the cells but not at the plasma membrane (Fig. 2D). Finally, some co-localization areas were also observed 
with lysosomes (Fig. 2E).

Strikingly, detection of NEU1-Flag by anti-Flag antibodies could only be achieved in permeabilized cells 
(Fig. 2C–E) and similar results were obtained by flow cytometry with two other constructs, HA-NEU1 and 
NEU1-HA, in which the HA tag was located at the N- or C-terminus of NEU1, respectively. Although these two 
functionally active constructs (Fig. 2F) were recovered in the plasma membrane fraction (Fig. 2G), no label-
ling could be observed in non-permeabilized cells (Fig. 2H). In contrast, prior permeabilization of COS-7 cells 
increased the percentage of HA-positive cells (Fig. 2H).

Taken together, these results demonstrate that monomers and presumably dimers of NEU1 are present at the 
membrane, in the absence of any detectable association with PPCA, and suggest that both extremities of NEU1 
are oriented towards the cytosol.

In order to shed light on the molecular structural details of NEU1 interaction within the membrane and 
its ability to dimerize in the membrane-bound state, we focused on the most probable TM region (TM2) 
316PVVAAGAVVTSSGIVFFS333 (NEU1/TM2) delineated based on the sequence analysis (Fig. 1). The second 
putative TM region 148TGVVFLFYSLCAHKAGCQVAS168 (NEU1/TM1) was also studied and the third one 
(NEU1/TM0) omitted because of its localization within the predicted signal peptide sequence. We explored 
their conformational preferences and potency to self-association in membrane-mimicking environment using a 
combination of biophysical and simulation methods. First, direct experimental structural data were obtained in 
membrane mimicking media using NMR spectroscopy and circular dichroism (CD). This was done for the pro-
duced 15N-labeled recombinant fragments R305DVTFDPELVDPVVAAGAVVTSSGIVFFSNPAHPEFR341 (named 
as hNEU1/TMS2) and D130GDVPDGLNLGAVVSDVETGVVFLFYSLCAHKAGSQVASTMLV WSKDDGVS180 
(named as hNEU1/TMS1) encompassing the predicted helical TM segments (underlined residues with adjacent 
regions being potentially also transmembrane). The results helped in refinement of the boundaries of TM seg-
ments – for this purpose the peptide sequences were taken rather longer than it is required to span the membrane. 
Then, the peptides were subjected to molecular dynamics (MD) simulations in model membranes - explicit dipal-
mitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylcholine (POPC) bilayers in order to probe 
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structural stability of the proposed α-helical conformation in heterogeneous lipid-water milieu. Finally, because 
the ability of Neu-1/TMS2 to associate in membrane was shown by NMR analysis, we explored spatial structures 
of putative dimers formed by NEU1/TM2. This was done using two independent approaches: (i) MD simulations 
in DPPC bilayer; (ii) PREDDIMER calculations followed by MD relaxation and free energy calculations in POPC 
(see Methods).

The regions 139–159 and 316–333 of NEU1 form stable helical structures in DPC environment 
and homodimerize.  The 1H/15N-heteronuclear NMR spectra clearly demonstrated that, being embedded 
into membrane-mimicking n-dodecylphosphocholine (DPC) micelles, both hNEU1/TMS2 and hNEU1/TMS1 
fragments were mostly folded into a helical conformation having the characteristic dispersion from 7.5 ppm to 
9.5 ppm for the 1H-chemical shifts of the amide groups (Fig. 3). In both cases, CLEANEX experiment revealed 
that about 20 amide protons are less water-accessible than the adjacent residues, probably due to effective shield-
ing from solvent caused by hydrogen-bonding within the TM helix and/or by insertion of this region into the 
DPC micelle. This observation was in a reasonable agreement with the CD data and MD simulations (see below) 
indicating about 45–50% of the α-helical structure (Figs 3 and 4A). Increasing the detergent hydrocarbon tails 
from 12 up to 16 carbons (by using Fos-Choline-16 instead of DPC) does not essentially change the pattern 
of solubilization in the membrane-mimicking environment for both fragments although some local changes 
are however observed in both TM helix structures (Supplementary Fig. S1). According to sequential NOE con-
nectivities observed in the 1H/15N-NOESY-HSQC spectra, four transmembrane glycine residues G321/G328 and 

Figure 1.  Sequence analysis of human NEU1. Light gray, putative signal peptide. Bold red, internalization 
signal. Blue boxes, BNR repeats. Red box, FRIP motif. Orange bold, confirmed glycosylation site. Bold blue, 
active site residues. Bold green, residues interacting with the substrate. TMpred, prediction of transmembrane 
domain by the TMpred tool. TopPred, topology prediction of membrane protein by the TopPred tool. Positions 
predicted in a TM domain with a high level of confidence are marked ‘O’, those with a lower level are maked 
‘U’. K&D, hydrophobic sequence (score > 1.5) predicted using the Kyte and Doolittle ProtScale tool. Positions 
predicted as hydrophobic are labeled ‘H’.
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Figure 2.  NEU1 is present at the plasma membrane in the absence of PPCA. (A,B) Western blot on the 
plasma membrane proteins (biotinylated fraction) of (A) COS-7 cells co-transfected with NEU1-Flag and PPCA 
(1:2) and probed with a mouse monoclonal anti-Flag or -cathepsin A antibody, or (B) human macrophages, 
endogenously expressing both NEU1 and PPCA, and probed with a rabbit polyclonal anti-NEU1 and mouse 
monoclonal anti-cathepsin A antibody. A representative pattern of (A) three and (B) two experiments is shown. 
(C–E) Confocal images of (C) NEU1-Flag and integrin beta 1, or (D) NEU1-Flag and cathepsin A, or (E) 
NEU1-Flag and lysosome distribution in permeabilized COS-7 cells co-transfected with NEU1-Flag and PPCA 
(1:2). (F) Sialidase activity measured from adherent COS-7 cells co-transfected with NEU1-Flag, NEU1-HA, or 
HA-NEU1 and PPCA (1:2). Plates were incubated with 200 μM 2-O-(p-nitrophenyl)-α-d-N-acetylneuraminic 
acid substrate in MES 20 mM, pH 4.5. Sialidase activity was measured at 405 nm and results expressed as 
mean ± SEM of 3 independent experiments, each run in duplicate and normalized to the control (w/o); e.g. 
cells transfected with PPCA and empty vector. ***p < 0.001. (G) Western blot on the biotinylated fraction of 
COS-7 cells co-transfected with HA-NEU1 or NEU1-HA and PPCA (1:2), and probed with a rabbit monoclonal 
anti-HA antibody. A representative pattern of three experiments is shown. (H) Detection by flow cytometry 
of HA-NEU1 or NEU1-HA co-expressed in COS-7 cells with PPCA (1:2). Cells were permeabilized, or not, 
by 0.1% saponin and both constructs detected using a Dylight 488-conjugated mouse monoclonal anti-HA 
antibody. A representative pattern of three experiments is shown.
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G140/G149 were unambiguously identified in NEU1/TMS2 and NEU1/TMS1, respectively. Nevertheless, a weak 
cross-peak was observed in the CLEANEX spectrum for G328 amide group, indicating facilitated exchanges with 
water protons that could be related either to water penetration into the 325TSSG328 polar patch on the surface of 
the proposed TM helix that can be inherent to serine-rich TM motifs25 and/or to local helix bending resulting in 
exposure of this region from micelle to bulk water. In addition, the preliminary analysis of the NOE connectivities 
revealed tentative regions of the helical NEU1 TM segments as L313-S333 and L139-A159.

The 1H/15N-TROSY NMR spectrum of hNEU1/TMS2 embedded in DPC micelles at D/P = 110 displayed 
an additional set of cross-peaks as compared with the signals expected based solely on the amino acid sequence 
(three boxes in the top right corner of Fig. 3A). These additional cross-peaks were not detected in the spectrum 
at D/P = 200. According to biotinylation results, the new set of cross-peaks could result from self-association 
(presumably dimerization) of NEU1/TMS2 in the micelles saturated by the peptide. As the minimal distinguish-
able chemical shift difference between signals of two states in the 1H/15N-TROSY spectrum is about 20 Hz, the 
monomer-dimer transition is supposed to be a slow process (on the millisecond timescale). The dimer (or oli-
gomer) population was increased rapidly with decrease of D/P values as typical for weak dimerized helical TM 
domains of different proteins26,27. Unfortunately, at D/P < 100, the NEU1/TMS1 sample was unstable and pre-
cipitated perhaps due to oligomerization. D/P-dependent occupancy of the states also implies that the fragments 
are associated with the micelle. Thus, the acquired NMR and CD data proved that both NEU1/TMS2 and NEU1/
TMS1 fragments penetrate into the hydrophobic core of the membrane-mimicking DPC micelle and fold into a 
helical conformation.

These direct experimental structural data provide a solid ground for molecular modeling of the both TM 
segments of NEU1. Thus, it became possible to precise their boundaries. While the peptide NEU1/TM2 remains 

Figure 3.  NMR and CD spectra of hNEU1/TMS2 and hNEU1/TMS1 fragments in membrane-mimicking 
environment. (A,B) Overlaid NMR spectra in blue and red (the 1H/15N-HSQC and CLEANEX NMR 
spectra, respectively) of (A) NEU1/TMS2 and (B) NEU1/TMS1 fragments embedded into DPC micelles at 
the detergent/protein molar ratio (D/P) of 200. Amide cross-peak dispersion in the 1H/15N-HSQC spectra is 
typical for membrane helical proteins62. Amount of water-exposed amide groups monitored by the CLEANEX 
spectra suggests that about 20 residues of each fragment are located within the micelle. According to NOE 
connectivities, four transmembrane glycine residues G321/G328 and G140/G149 were identified in NEU1/TMS2 
and NEU1/TMS1, respectively. In the top of panel A, sequential NMR spectra in green within three boxes 
present the glycine regions of the 1H/15N-TROSY NMR spectra acquired for NEU1/TMS2 embedded into 
micelles at D/P varied from 110 to 50. The doubling of the amide group cross-peaks of the transmembrane G321 
and G328 residues indicates a slow monomer-dimer (or oligomer) transition of NEU1/TMS2 in the membrane-
mimicking environment. At D/P = 200 some amide cross peaks of both fragments have a minor component 
presumably due to slow cis/trans transitions of V133-P134, D310-P311 and H337-P338 peptide bonds in the flexible 
solvent-exposed N- and C-termini. In the case of NEU1/TMS1, a signal broadening is observed due to 
intermediate conformational exchange processes or/and some oligomerization. In the bottom of panels A and B, 
the CD spectra, shown in yellow, reveal the 50% and 46% of the α-helical structure of NEU1/TMS2 and NEU1/
TMS1, respectively.
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the same as predicted based on the sequence analysis (see above), serious corrections were made for NEU1/TM1 
segment. According to NMR data, the most probable membrane-spanning part is the sequence 139–159, whereas 
the predictions prompted the segment 148–158. One favorable consequence of this change is exclusion of K161 
from TM region. On the other hand, two rather polar residues – D145 and E147 – appear in the TM domain. 
Nevertheless, the aspartate and glutamate residues are occasionally found in TM segments of different proteins, 
e.g. as gain-of-function mutations, which probably enhance the membrane receptor dimerization28,29. Stability 
and membrane insertion of the NEU1/TM1 helix would depend on the protonation state of the side chain car-
boxyl. Since D145 and E147 are located quite in the central TM part of NEU/TM1, which is buried from the bulk 
water, their pKa values should increase, resulting in protonation of the side chain carboxyls even under physio-
logical conditions (at pH ~7)30. Indeed, our NMR data revealed that the identified NEU1/TMS1 helix penetrates 

Figure 4.  Monitoring of local secondary structure and contacts between NEU1/TM2 peptides. (A) Average 
secondary structure and standard deviations were computed for the twenty-four independent simulations 
performed in DPPC. (B) Time evolution of the secondary structure corresponding to the simulation with 
a starting conformation angle equal to 30 degrees. Green indicates residues in a turn structure, pink in an 
α-helix structure and white in a coil structure. The nature of the peptides is indicated on the y-axis (P1 or 
P2). (C) Contact map obtained over the last 10 ns of the trajectory corresponding to a starting conformation 
angle of 30 degrees. For each pair of residues, the average smallest atomic distance was computed over the last 
1000 snapshots of the trajectory. The contacts displayed in the central square correspond to contacts within 
the membrane. (D) Snapshot extracted from a simulation highlighting the presence of a H-bond between 
two serine residues (S326-S327). (E) Key-residues (bold letters) involved in contacts between the two helices 
according to the analysis of the twenty-four contact maps.
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into the hydrophobic part of the micelle, suggesting protonation of D145 and E147 at pH 6.6. In the organism, the 
membrane surface potential, lipid composition of the cell membrane, ion concentration, and, possibly, extracellu-
lar domain conformation affect the pKa values of D145 and E147 and, thus, the stability and membrane insertion 
of the NEU1/TM1. Noteworthy, the inside of a lysosome where NEU1 is usually functioning is rather acidic  
(pH ~ 5)4. Hence, ionization state of these residues can represent a regulation level of the NEU1 activity.

The aforementioned results clearly demonstrate advantages of the present combined – experimental and theo-
retical – approach, especially in identification of relatively undistinguishable TM domains (like TM1) in proteins. 
Therefore, subsequent simulations were carried out for the peptides having TM cores 139–159 and 316–333.

MD simulations predict that NEU1/TM2 preserves stable helical conformation in DPPC and 
POPC membranes and dimerizes.  The use of MD simulations throughout this study had four aims:  
(i) check if TM helices were stable in a membrane-like environment; (ii) explore the ability of two individual 
peptides to self-associate in membrane; (iii) characterize TM dimers with respect to TM monomers in terms 
of helix-helix packing, free energy of dimerization and dimer stability; and (iv) correlate the predicted models 
for dimerization with MD data analysis. For these issues, various dimeric conformations were explored starting 
from different mutual dispositions of non-interacting NEU1/TM2 helices in POPC and DPPC membranes in 
coarse-grained (CG) and full-atomic representations, respectively. In the first case, massive rapid screening of the 
peptides’ configurational space was done. The objective here was to check whether the monomers stay isolated or 
associate. The results obtained in the course of 144 independent CG MD 1-μs trajectories clearly demonstrated 
efficient spontaneous dimerization of TM2 helices in lipid bilayer. Thus, in the vast majority of cases, stable dimers 
were formed already within first microseconds of CG MD (Supplementary Fig. S2A). Interestingly, after certain 
times, the dimers do not dissociate although at the adaptation stage both monomers and dimers were observed. 
Furthermore, most of the dimers were clustered in only four groups of structure with almost parallel packing of 
the helices but varying dimerization interfaces. As shown in Supplementary Fig. S2B, the most populated state 
revealed the helix packing similar to the lowest energy one obtained using independent all-atom simulations (the 
so-called model 2, see below). The accumulated rather large overall MD statistics (144 μs) strongly supports our 
hypothesis about dimerization of NEU1 TM2 segments. On the other hand, taking into account relatively short 
CG simulation times (1-μs trajectories), these results seem to be insufficient yet to elaborate precise 3D models 
of the dimers. This was further done using complementary all-atom techniques (see below). Nevertheless, the 
largest cluster of the dimers revealed an interface (residues S327, V330, F331) similar to that predicted via two 
independent all-atom MD techniques (see below).

In the first of them, twenty-four full-atomic MD runs in DPPC were performed for two TM2 helices with their 
main axes conserved parallel (Supplementary Fig. S3). The average content of α-helix was about 49% along the 
simulations (Fig. 4A). Analysis of time evolution of all the systems shows that the starting α-helical structure was 
very stable and did not break (Fig. 4B). Contact maps presenting the average smallest distance between residues 
were computed over the 250 nanoseconds of each simulation (Fig. 4C). These maps show that peptides get closer 
for particular angle values between the helices, namely 0°, 30°, 120°, and 330°. Moreover, the amino acids partic-
ipating in contacts were mostly situated in the C-terminal region of the helix (Fig. 4C). Combining the results of 
the twenty-four simulations, the following amino acids were delineated as recurrent in the interaction interface 
between the two helices: T325, S326, S327, I329, V330, F331, F332, and S333 (Fig. 4E). Among these residues, 
S326 and S327 were evidenced as being able to form intermolecular hydrogen bonds (Fig. 4D).

Sequence-based PREDDIMER calculations reveal two putative dimer structures for NEU1/
TM2.  Sixteen possible conformations of a NEU1/TM2 (P316-S333) dimer were generated using three inde-
pendent runs of PREDDIMER31 with varying TM sequence fragment length. Geometrical parameters like cross-
ing angle and distance between the helix axes were inspected to determine different groups of conformers. As a 
result, nine groups were selected. Some of them included several structures from different starting geometries 
and others were represented by single structures. For further study, we took two structures representing the mean 
conformations from the largest groups (Fig. 5; Supplementary Table S1).

Monomers of NEU1/TM1 and NEU1/TM2 and dimers of NEU1/TM2 are stable in POPC 
bilayer.  The stability of single NEU1 TM monomers was first examined with the help of full-atom MD simu-
lations in POPC bilayer. For NEU1/TM1, the influence of D145 and E147 protonation state was also tested. It was 
demonstrated that the negatively charged residues D145 and E147 are not stable in the membrane environment 
(data not shown). By contrast, for the protonated state, the stable conformation was found with large tilt angle of 
the helix axis (Supplementary Fig. S4A).

For NEU1/TM2, only N- and C-terminal residues are partially unfolded at the end of the simulation but the 
main part of the α-helix including region of interest P316-S333 remains intact (Supplementary Fig. S4B). There 
was also a change in the tilt angle to adopt the hydrophobic length of NEU1/TM2 peptides to the membrane 
thickness.

The two possible dimer structures of NEU1/TM2 obtained using PREDDIMER (Supplementary Table S1) 
were also studied in full-atom MD simulations in POPC bilayer. Like the corresponding monomers, these dimers 
preserve their geometrical parameters and secondary structure during 100 ns MD run. Only N- and C-terminal 
residues were partially destabilized, while the region P316-S333 remained intact (Supplementary Fig. S4C). 
Moreover, good preservation of the crossing angle in dimers led us to the assumption that these two confor-
mations may appear in native-like conditions. Noteworthy, for model 2, inter-helical hydrogen bonds were 
detected. The most stable was H-bond between residues S326 of both helices, and less stable were S333-N334 and 
N334-H337. To investigate the dimers’ strength, we calculated the free energy of helix association in membrane.
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Free energy of NEU1/TM2 homodimerization in POPC bilayer.  The series of MD runs were analyzed 
in terms of the mean force acting between NEU1/TM2 monomers in POPC bilayer. As the distance between 
centers of mass was selected as a reaction coordinate, we plotted the force projection on this axis against the dis-
tance, and integrated this function. Free energy graphs are shown in Fig. 6. Model 2 reveals much lower energy 
minimum corresponding to approximately −27 kJ/mol at the distance of 1.1 nm, while model 1 is more tightly 
packed and has only −13 kJ/mol energy minimum at 0.8 nm distance. We predicted that both interfaces allow 
favorable dimer formation with different properties and strength, but model 2 seems to be more reliable because 
it is twice more stable and also allows inter-helical hydrogen bond formation.

Point mutations in the region 316–333 affect NEU1 dimerization.  To confirm that the region 
NEU1/TM2 represents a dimerization interface for NEU1, point mutations were introduced in this sequence. 
A319V and V330A mutations were performed in order to change the hydrophobicity pattern while potentially 
inducing few modification of the structure. G321I and G328I mutations were realized in order to provoke more 
dramatic structural changes via addition of a hydrophobic side chain in a putative region of tight helix-helix 
packing. The four NEU1-Flag mutants were constructed and first checked for their expression and subcellular 
localization in COS-7 cells. As shown in Fig. 7A, the different NEU1-Flag mutants were recovered in the plasma 
membrane fraction as wild-type NEU1-Flag, indicating that each point mutation had minor effects on targeting of 
NEU1 mutants to the plasma membrane. Densitometric analysis of their relative expression in the plasma mem-
brane fraction was compared to wild-type NEU1-Flag and showed no significant variation except for V330A-Flag 
mutant. As for wild-type NEU1-Flag (Fig. 2D), immunofluorescence experiments on NEU1-Flag mutants 
showed both intracellular staining with some co-localization areas with PPCA (Fig. 7B) and lysosomes (Fig. 7C), 
but also staining at the cell periphery (Fig. 7D) with no evidence for co-localization with PPCA (Fig. 7B). Here 
again, no staining was observed in non-permeabilized cells suggesting that the C-terminus extremities of the 
membrane-bound NEU1-Flag mutants are located inside the cells. Subcellular compartmentalization of the dif-
ferent NEU1-Flag mutants was finally investigated by subcellular fractionation using a detergent-free differential 
centrifugation protocol. The heavy (classically plasma membrane, mitochondria, rough endoplasmic reticu-
lum), light (classically smooth endoplasmic reticulum, free polysomes) and cytosolic fractions were recovered. 
As expected, COX IV (mitochondria marker) was found in the heavy fraction, calnexin (CXN, endoplasmic 
reticulum marker) in both heavy and light fractions as previously reported32, and actin (cytosol marker) in the 
cytosolic fraction, thereby confirming fractionation efficiency. When looking at the different NEU1-Flag mutants, 
their repartition within the different subcellular fractions was comparable to wild-type NEU1-Flag, here again 
indicating that each point mutation had minor effects on subcellular localization of NEU1 mutants (Fig. 7E). 
Checking for the presence of PPCA revealed that PPCA was only detected in HM fraction, further demonstrating 
that NEU1 can be present in some subcellular fractions in the absence of PPCA (Fig. 7E). Taken together, all these 
results demonstrate that each NEU1-Flag mutant behave as wild-type NEU1-Flag in terms of expression levels, 
plasma membrane targeting and subcellular localization.

Co-immunoprecipitation experiments were next performed from crude membrane preparations of trans-
fected COS-7 cells. When NEU1-Flag was co-expressed with NEU1-HA, co-immunoprecipitation of NEU1-HA 
with wild-type NEU1-Flag was clearly detected (Fig. 8A). However, when co-immunoprecipitations were per-
formed with the NEU1-Flag mutants, the co-immunoprecipitation of NEU1-HA was abolished (Fig. 8A). These 
results demonstrate that NEU1 can form dimers in membrane and that introducing point mutation in the region 

Figure 5.  Side views of NEU1/TM2 dimer structures generated by the PREDDIMER software. NEU1/TM2 
homodimer models 1 (top) and 2 (bottom). Average conformations obtained from the equilibrated part of MD 
trajectory are shown. The following scheme of residue coloring is employed: green, small and polar; yellow, 
aliphatic; violet, aromatic; blue, positively charged; red, negatively charged.



www.nature.com/scientificreports/

9Scientific Reports | 6:38363 | DOI: 10.1038/srep38363

316–333 of NEU1 disrupts dimerization. Moreover, direct interaction between NEU1 monomers was confirmed 
by split-ubiquitin yeast two hybrids (Fig. 8B).

Disruption of NEU1 dimerization is associated with decrease in membrane sialidase activ-
ity.  We finally investigated if disruption of NEU1 dimerization may affect membrane sialidase activity. The 
latter one was therefore measured from crude membranes of COS-7 cells co-expressing PPCA and the different 
NEU1 mutants. To avoid any interference with the Flag tag, the mutants were expressed in COS-7 cells as 
non-tagged constructs. As shown in Fig. 8C, although expression of PPCA alone had no effect on sialidase activity 
measured in membrane compared to non-transfected cells, co-expression with NEU1 significantly (by 2, 6 times) 
increased sialidase activity. When the NEU1 mutants were co-expressed with PPCA, a significant decrease  
(80–85%) in membrane sialidase activity was noted (Fig. 8D). To further confirm that this reduced sialidase 
activity was not due to variation in PPCA expression and/or modification of NEU1/PPCA interaction in our 
membrane preparations, the expression level of PPCA was systematically checked and co-immunoprecipitations 
were performed. No variation in PPCA expression was observed (Fig. 8D) and no interaction between NEU1 
constructs and PPCA was detected (Fig. 8E) as reported above (Figs 2A,D and 7B).

Discussion
The role of NEU1 as a component of the lysosomal complex has been described for decades. NEU1 is localized in 
lysosomes, where its catalytic activity requires its close association with PPCA and β-galactosidase. In contrast, 
NEU1 involvement in cellular regulatory mechanisms has been demonstrated only recently concomitantly with 
the discovery of a plasma membrane-associated pool of NEU1 in several cell types. At the cell surface, NEU1 
has been shown to regulate sialylation of several receptors and their underlying signaling pathways9,10,12,14–19. 
However, the mechanisms through which NEU1 might translocate to the plasma membrane, its association with 
PPCA, its orientation and organization within the membrane are poorly understood and subject to several dis-
crepancies. For instance, the presence of a NEU1-mediated sialidase activity at the cell surface suggests that the 
active site of NEU1 is extracellular and is conflicting with the acidic optimum pH of the enzyme. In addition, a 
tyrosine-containing lysosomal targeting motif in the C-terminus of NEU1 (residues 412–415) has been reported 
in COS-7 cells, human skin fibroblasts and lymphocytes8. Upon tyrosine phosphorylation of this motif, NEU1 
is redistributed to the cell surface. Taken together, these data suggest that NEU1 C-terminus is intracellular and 
that NEU1 may contain TM domain(s). However, when looking at the different structural models reported so far 
for NEU1 that were based on the crystal structure of cytosolic NEU2, no model can account for such orientation.

In this study, we demonstrated that part of NEU1 is indeed recovered at the plasma membrane of COS-7 cells, 
with both its C- and N-termini most likely lying in the cytosol. Unexpectedly, PPCA was not detected in the bioti-
nylated fraction suggesting that PPCA neither contains extracellular epitopes nor is co-eluted with NEU1 from 
the plasma membrane fraction. Importantly, these results were obtained from both COS-7 cells overexpressing 
NEU1 and PPCA and from human macrophages expressing both proteins endogenously, and suggest the exist-
ence of an active pool of NEU1 in membrane outside a complex with PPCA, as already reported in erythrocytes33. 
This finding was strengthened by our immunofluorescence and co-immunoprecipitation experiments.

Assuming such a membrane topology, we investigated whether NEU1 may contain TM domains as amino acid 
sequence analysis of human NEU1 showed that helical regions of hydrophobic nature could be present. Spatial 
structure and dimerization ability of the peptides containing the predicted most probable TM segments were 
further studied in direct biophysical experiments using NMR and CD methods. It was found that both peptides 
penetrate into the hydrophobic core of the membrane-mimicking detergent micelles with different length of the 
hydrophobic tails and fold into a helical conformation. Some local changes in both TM segments have been how-
ever observed depending on the length of the hydrophobic tails. This does not change the overall conclusion that 
both TM segments fold in a helical conformation in a membrane-like environment but requires further inves-
tigations to better understand the influence of the different membrane mimetics on the TM structure. Based on 

Figure 6.  Potential of mean force (PMF) profiles for NEU1/TM2 in POPC bilayer generated using MD 
simulations with umbrella sampling. Energy profiles for the homodimer of NEU1/TM2, models 1 and 2 are 
shown in black and red, respectively. Distance between centers of mass of the peptides is taken as a reaction 
coordinate. Statistical errors are indicated with vertical lines.
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Figure 7.  Characterization of the NEU1-Flag mutant expression in COS-7 cells. (A) Top, western blot on the 
biotinylated fraction of COS-7 cells co-transfected with the different NEU1-Flag mutants and PPCA (1:2), and 
probed with a mouse monoclonal anti-Flag antibody. A representative pattern is shown. Bottom, quantification 
of the relative expression of the NEU1-Flag mutants in the biotinylated fraction by densitometry analysis. 
Relative expression was calculated as amount of NEU1-Flag mutant recovered in the biotinylated fraction over 
expression level in cell lysate and normalized to the control (NEU1-Flag). Results are expressed as mean ± SEM 
of 4 independent experiments. **P < 0.01. (B–D) Confocal images of (B) NEU1-Flag mutants and cathepsin 
A, or (C) NEU1-Flag mutants and lysosome, or (D) NEU1-Flag mutants and integrin beta 1 distribution 
in permeabilized COS-7 cells co-transfected with NEU1-Flag mutants and PPCA (1:2). (E) Subcellular 
distribution of the different NEU1-Flag mutants. Co-transfected COS-7 cells were lysed and subfractioned in 
heavy membrane (HM), light membrane (LM) and cytosolic (C) fractions. Equal amounts of proteins were 
subjected to SDS-PAGE and western blotting. Antibody directed against cytochrome c oxidase (COX IV), 
calnexin (CNX) and actin were used as markers of the different fractions. A representative pattern of three 
experiments is shown.
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Figure 8.  Point mutations in NEU1/TM2 strongly affect NEU1 dimerization and membrane sialidase 
activity. (A) The NEU1-Flag constructs were immunoprecipitated from crude membrane fractions of co-
transfected COS-7 cells using a mouse monoclonal anti-Flag antibody and co-immunoprecipitated NEU1-HA 
was monitored by western blot using a rabbit monoclonal anti-HA antibody. The figure is representative of 3 
independent experiments. (B) Direct interaction between NEU1 monomer was measured by split-ubiquitin 
yeast two-hybrid screen. Yeast cells were transformed with NubG and Cub (negative control), Nub and Cub 
(positive control) or NEU1-NubG and NEU1-Cub constructs. Yeast growth was challenged on minimal 
growth medium depleted of Trp and Leu by spotting four independent transformants on the different 
media. (C,D) Sialidase activity was measured in crude membrane fractions of COS-7 cells co-transfected 
with the different NEU1 constructs and PPCA (1:2). 50 μg/well of proteins were incubated with 200 μM of 
2′-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid substrate for 2 h at 37 °C in MES 20 mM, pH 4.5. 
(D) Sialidase activity was expressed as normalized NEU1-mediated sialidase activity; e.g. sialidase activity 
mediated by transfected NEU1 (wild type or mutants) over their expression levels revealed by polyclonal anti-
NEU1 antibody. Results are expressed as mean ± SEM of 3 independent experiments, each run in duplicate 
and normalized to NEU1 wt. ***p < 0.001. (E) The NEU1 constructs were immunoprecipitated from crude 
membrane fractions of co-transfected COS-7 cells using a rabbit polyclonal anti-NEU1 antibody and co-
immunoprecipitated PPCA was monitored by western blot using a mouse monoclonal anti- cathepsin A.
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NMR data, it was also concluded that the TM core of the peptides corresponds to regions 139–159 (NEU1/TM1) 
and 316–333 (NEU1/TM2). Therefore, the predicted boundaries of the former segment were considerably revised 
as compared with the sequence-based predictions. In addition, the peptide NEU1/TM2 was shown to be capa-
ble of dimerization in membrane-mimicking environment, thus indirectly confirming the results obtained with 
full-size NEU1 (co-immunoprecipitation from crude membrane preparations and direct interaction between 
NEU1 monomers by split-ubiquitin yeast-two hybrids). The second TM candidate (TM1, region 139–159) has 
lower potency of dimerization, but can also adopt stable α-helical conformation in membrane environment. 
Further detailed experimental studies of the dimerization specificity of NEU1 TM segments are required.

Based on the unambiguous structural data, we explored in more detail conformational preferences of the two 
TM peptides in model membranes via computational experiments. MD simulations in explicit lipid bilayers of 
different nature (“rigid” DPPC and “fluid” POPC) clearly demonstrated stability of the helical conformation of 
the monomers. Furthermore, we focused on the region 316–333 (TM2) and demonstrated by a combination of 
independent molecular modeling approaches (massive coarse-grained MD screening from independent starts, 
systematic MD-search and MD-based free energy calculations) that this domain may self-associate and form 
homodimers in membrane-like environments (DPPC and POPC).

Although our approach was designed and applied to the peculiar pool of NEU1 present at the plasma mem-
brane, similar organization could also be reasonably envisaged for the lysosomal pool of NEU1. Nevertheless, one 
should be cautious about the nature and the composition of the lysosomal membrane that can be different from 
the plasma membrane. TM topology and dimerization of NEU1 have never been reported so far. By studying the 
interaction between soluble recombinant NEU1 and PPCA, Bonten et al. have reported that in the absence of 
PPCA, NEU1 can self-associate into inactive chain-like oligomers21. PPCA presumably competes with NEU1 for 
the same binding site and can reverse the self-association of NEU1. If these findings apply to this peculiar fraction 
of NEU1 present at the plasma membrane remains to be shown. Indeed, the majority of NEU1 is intracellular and 
only a very small fraction is found at the plasma membrane. The absence of any detectable interaction between 
PPCA and NEU1 all along our study rather suggests that this mechanism of interaction between NEU1 and 
PPCA may not apply to membrane-bound NEU1. How this pool of NEU1 is targeted to the plasma membrane 
and how PPCA contributes to this process remain to be further studied. It is tempting to speculate a different 
mechanism of trafficking, where NEU1 could somehow dissociate from PPCA and move to the membrane or 
remains associated in the PPCA-NEU1-βGal complex to move to the lysosomes. By introducing point mutations 
in the region 316–333 of NEU1, we also reported that disruption of NEU1 dimerization was associated with a sig-
nificant decrease in membrane sialidase activity. Therefore, these results strongly suggest that NEU1 dimerization 
might be required for catalytic activity of the enzyme within the membrane and identify the region 316–333 as a 
critical domain involved in this process.

When looking at the structural homology-built model of NEU1 shown in Fig. 9, we agree that the proposed 
TM domains seem not compatible with such model and the well-known β-propeller structure. However, as men-
tioned previously, all the NEU1 models reported so far are built from the crystal structure of the human cytosolic 
NEU2. Importantly, among human sialidases, the overall amino acid identity of NEU1 to the other sialidases 
is relatively low (19–24%) whereas NEU2, NEU3, and NEU4 show 34–40% homology to each other4. The two 
regions proposed as transmembrane α-helices (TM1 and TM2) are found either in β-sheets or in loops, according 
to the β-propeller structure accepted so far. Therefore, this organization would result into the catalytic residues 
being separated by the lipid bilayer: R78 (a member of the arginine triad), D103 (involved in substrate recogni-
tion and catalysis) and Y370 (involved in catalysis) would be on the cytosolic side, whereas R280, R341 (the other 
members of the arginine triad) and E264 (involved in substrate recognition and catalysis) would be outside the 
membrane.

Importantly, beta-propeller folds have remarkable structural plasticity and are prone to strand-swapping 
between blades, large insertions of entire functional beta-sheet domains, thus making possible assembling of 
functional supramolecular beta-propeller units34,35. Therefore, one can speculate that the dissecting of the usual 
beta-propeller fold (as shown in Fig. 9) by introducing two TM segments is compensated by dimerization of 

Figure 9.  NEU1 structural model and localization of the two potential TM domains. (A) Top and (B) side 
view projections of the homology-based NEU1 model. Beta-sheets are shown in yellow, alpha-helices in red and 
loops in green for the “extracellular” part (between TM domains). Potential TM domains are colored in cyan, 
and the N- and C-terminal parts are colored in gray. Residues that may form catalytic center (determined by 
similarity) are shown in magenta for the “extracellular” part and in blue for N- and C-terminal part.
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NEU1 both in extracellular and cytoplasmic parts. Indeed, the corresponding sequences (between TM1/TM2 and 
N/C-terminal regions, respectively) reveal high propensity to form beta-structural blades – this follows from the 
results given by fold recognition techniques (not shown). In NEU1 dimers, the sizes of these two parts become 
sufficient to adopt a proper full-size beta-propeller fold on the both sides of the plasma membrane. Obviously, 
this is just a hypothesis, which tries to reconcile the common view on structural organization of sialidases and 
our new experimental data about TM topology of NEU1. Further works are required to confirm this hypothesis.

In conclusion, this study raises important questions about our current understanding of NEU1. As underlined 
by Giacopuzzi et al.2, NEU1 has several sequence specificities, notably in the region 316–333, which make it a 
unique enzyme in the sialidase family. Consequently, alternative folding could be considered even though the 
NEU1 conformation would be most probably not very different from a strict six-bladed beta propeller. Finally, we 
shall now reconsider the current molecular models obtained for NEU1 in keeping with the likely presence of this 
dimerization TM domain (TM2) and envisage that a second one (TM1), is also present.

Materials and Methods
Plasmid constructs.  cDNA encoding human PPCA was kindly provided by Pr Alessandra d’Azzo and sub-
cloned in pcDNA3 vector. NEU1 cDNA was from ImaGenes GmbH (Berlin, Germany). The NEU1-Flag construct 
was obtained using NEU1 cDNA as template and the Phusion High-Fidelity DNA Polymerase (ThermoScientific). 
Restriction sites for HindIII and BamHI were introduced by PCR. After digestion by the respective restriction 
enzymes, the resulting insert (NEU1) was ligated into the p3XFlag-CMVTM-14 vector (Sigma) encoding three 
adjacent Flag epitopes at the C-terminus of the fusion protein. The different NEU1-Flag and NEU1 mutant con-
structs were obtained by PCR-based site-directed mutagenesis. Internal primers were used to generate the A319V, 
G321I, G328I, G328S and V330A mutations. The HA-NEU1 and HA-NEU1-Flag constructs was obtained by 
introduction of a 2xHA tag after the predicted signal peptide (AA 1–47)23 of NEU1 using the QuickChange II 
site-directed mutagenesis kit (Agilent Technologies). All cDNA sequences were confirmed by sequencing.

Antibodies.  Mouse monoclonal anti-Flag M2, rabbit polyclonal anti-Flag and anti-calnexin antibodies were 
from Sigma. Rabbit monoclonal anti-HA antibody was purchased from Cell Signaling and rabbit polyclonal 
anti-NEU1 (H-300), mouse monoclonal anti-cathepsin A, and goat polyclonal anti-actin antibodies from Santa 
Cruz. Mouse monoclonal anti-COX IV antibody was from Abcam and purified rat anti-human CD29 (integrin 
beta 1) from BD Biosciences. Dylight 488 conjugated-mouse monoclonal anti-HA antibody was purchased from 
ThermoFisher Scientific and Alexa Fluor 488 or 568-conjugated donkey anti-mouse, rat or rabbit antibodies from 
Invitrogen.

Cell culture and transfections.  COS-7 cells were cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10%(v/v) fetal bovine serum, 100 units/mL penicillin, 0.1 mg/mL streptomycin at 37 °C in a 
humidified atmosphere at 95% air and 5% CO2. Transient transfections were performed with JET-PEI (Polyplus 
Transfection), according to the manufacturer’s protocol.

Biotinylation experiments.  COS-7 cells grown in 10 cm plates were co-transfected with 2 μg of the differ-
ent NEU1 cDNA constructs together with 4 μg of PPCA cDNA for 48 hours. Alternatively, human macrophages 
differentiated from monocytes by human M-CSF (100 ng/mL, 1 week, Preprotech) were used. Adherent cells were 
washed three times in PBS, incubated with 0.5 mg/mL of EZ-Link® sulfo-NHS-LC-biotin (ThermoScientific) for 
30 min at 4 °C, and quenched with 100 mM glycine (30 min, 4 °C). The cells were then scraped in TEM buffer 
(75 mM Tris, 2 mM EDTA, 12 mM MgCl2, protease inhibitor cocktail, 10 mM NaF, 2 mM Na3VO4, pH 7.5) con-
taining 1% Triton X-100, sonicated and incubated under gentle end-over-end mixing (3 h, 4 °C) for solubilization 
of membrane proteins. Lysates were centrifuged (20,000 g, 45 min, 4 °C) to pellet insoluble material and superna-
tants incubated with 20 μL streptavidin agarose beads (GE Healthcare) for 45 min at 4 °C to purify biotinylated 
membrane proteins. After several washes, biotinylated proteins were eluted from the beads by Leammli buffer 
and subjected to SDS-PAGE and immunoblotting. Immunoblottings were performed using the mouse monoclo-
nal anti-Flag antibody (1/1000), mouse monoclonal anti-cathepsin A (1/1000), or rabbit polyclonal anti-NEU1 
(1/1000) and immunoreactivity was revealed using a HRP-conjugated anti-mouse or -rabbit antibody (1/10,000) 
followed by enhanced chemiluminescence detection reagents (GE Healthcare) and visualized with the Odyssey 
Fc LI-COR scanner (ScienceTec).

Immunofluorescence.  COS-7 cells transiently transfected by 0.25 μg of the different NEU1-Flag cDNA con-
structs or HA-NEU1-Flag cDNA together with 0.5 μg of PPCA cDNA were grown on sterile coverslips in 24-well 
plates. 48 post-transfection, cells were washed three times in PBS, fixed with 2% paraformaldehyde in PBS for 
15 min and permeabilized, or not, by 0.2% Triton X-100 in PBS for 10 min. After blocking with 3% BSA in PBS 
for 1 h, cells were incubated with rabbit polyclonal anti-Flag (2 μg/mL) and mouse monoclonal anti-cathepsin A  
(1 μg/mL) or purified rat anti-CD29 (2 μg/mL) in PBS containing 0.3% BSA for 1 h at room temperature. 
Coverslips were then washed three times with PBS and incubated with Alexa Fluor 488-conjugated donkey 
anti-rabbit and Alexa Fluor 568-conjugated donkey anti-mouse or rat antibodies (1:1000) in PBS containing 
0.3% BSA for 1 h at room temperature. For colocalisation studies between NEU1-Flag and lysosomes, adherent 
cells were incubated for 16 h at 37 °C with a lysoTracker (CellLight® lysosomes-GFP, Molecular Probes). Then, 
cells were fixed and permeabilized as above and incubated with a monoclonal anti-Flag M2 (2 μg/mL) and Alexa 
Fluor 568-conjugated donkey anti-mouse antibodies (1:1000). Coverslips were mounted, visualized with a laser 
scanning microscope (LSM 710 NLO, Zeiss) and analyzed by Image J software.
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Flow cytometry.  COS-7 cells grown in 10 cm plates were co-transfected with 2 μg HA-NEU1, NEU1-HA 
or empty vector cDNA together with 4 μg PPCA cDNA. Forty-eight hours after transfection, cells were washed 
two times in PBS and recovered after incubation with 2 mM EDTA (10 min, 37 °C). Cells were then adjusted to 
1 million/tube and subjected to labelling following prior permeabilization, or not, by 0.1% saponin. The Dylight 
488 conjugated-mouse monoclonal anti-HA antibody was used at 1:50 and incubated for 30 min at 4 °C. After 
washes, cells were resuspended in PBS containing 1 mM EDTA and 1% PFA and analyzed with a LSR Fortessa 
flow cytometer (BD Biosciences). Acquisition and processing data from 50,000 cells were performed and analyzed 
using the BD FACSDIVA software (BD Biosciences). Cell population was gated using their forward and side scat-
ter characteristics. Positive labelling was determined by comparing the fluorescence of HA-NEU1 and NEU1-HA 
expressing cells versus empty vector expressing cells.

Subcellular fractionation.  COS-7 cells grown in 10 cm plates were co-transfected with 2 μg of the different 
NEU1-Flag cDNA constructs together with 4 μg of PPCA cDNA. Forty-eight hours after transfection, cells were 
washed twice with PBS and lysed in fractionation buffer (20 mM HEPES, 250 mM sucrose, 10 mM KCl, 1.5 mM 
MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, protease inhibitor cocktail, 10 mM NaF, 2 mM Na3VO4, pH 7.4). 
Cell lysate was then passed through a 25 G needle 10 times and centrifuged at 800 g for 5 min at 4 °C to remove 
nuclei and unbroken cells. The post-nuclear supernatant was centrifuged at 10,000 g (15 min, 4 °C) to collect the 
heavy membrane (HM) fraction (pellet), and then at 100,000 g for 1 h to obtain the light membrane (LM) fraction 
(pellet) and the cytosol (supernatant). Both HM and LM fractions were washed with fractionation buffer, resus-
pended by pipetting, passed through a 25 G needle 10 times, and centrifuged again as above. After centrifugation, 
the pellets were resuspended in Laemlli buffer and the HM, LM and cytosol fractions were subjected to western 
blotting for detection of PPCA and the NEU1-Flag constructs. The endogenous markers used were: COX IV  
(as a mitochondrial protein), calnexin (as an ER protein), and actin (as a cytosolic protein).

Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) studies of NEU1 trans-
membrane fragments in membrane-like environment.  Bacterial expression and purification of the 
hNEU1/TMS2 fragment corresponding to the NEU1 residues R305-R341.  The plasmid construct is based on the 
pGEMEX-1 vector (Promega). The fragment of human NEU1 gene, corresponding to the residues R305-R341 
(named as hNEU1/TMS2), was amplified by PCR with flanking primers. Upstream to the hNEU1/TMS2 gene 
in the pGEMEX/TRX-hNEU1/TMS2 vector thrombin site was inserted. The thioredoxin (TRX) gene with down-
stream protease site and hNEU1 gene with thrombin insertion were recombinated. The recombinant product 
was hydrolyzed by RsrII and BamHI restrictases (the sites are located near 5′-end of the TRX gene and 3′-end of 
the hNeu1tm gene, correspondingly) and then ligated with the vector preliminary subjected to the hydrolysis by 
the same restrictases. DNA of the selected clones was sequenced within the insertion. E. coli Rosetta(DE3)/pLysS 
cells were transformed by the pGEMEX/TRX- hNeu1tm plasmid and then plated into dishes with ampicillin and 
chloramphenicol in concentrations 35 and 100 mg/mL, respectively, and then incubated at 37°С overnight. 250 
colonies from the plate were inoculated into 250 mL of auto-induction medium C-750501 (0.75% glycerol, 0.05% 
glucose, 0.01% lactose)36, containing 15NH4Cl (CIL, USA) for the production of the 15N-labeled peptide, and incu-
bated at 25 °C at 300 rpm on orbital shaker for 72 h. 250 mL of culture media were centrifuged and lyzed in 30 mL 
of buffer A containing 50 mМ Tris-HCl pH 8, 4 М urea, 0.25 М NaCl, 1% Triton X–100, 0.1 mМ phenylmethylsul-
fonylfluoride. Suspension was sonicated 10 times for 30 s of 60 W pulses on ice bath and centrifuged at 15,000 g 
for 20 min. The supernatant was applied on Ni-sepharose column preliminary equilibrated with buffer A. Column 
was washed with buffer B (the same as buffer A but without urea and PMSF) for removing urea and buffer C 
(the same as buffer B but with 20 mM imidazole) for removing nonspecifically bound proteins. Target protein 
was eluted with buffer E (the same as buffer B but with 200 mM imidazole). The eluted fractions were analyzed 
by tris-glycine electrophoresis in 12% gel. The eluate was diluted 5-fold with buffer D (50 mM Tris-HCl pH 8.0, 
0.5% Triton X-100) for subsequent proteolysis and subtractive chromatography. Hydrolysis of the hybrid protein 
was carried out at room temperature; 5 NIH activity units of thrombin were added and mixture was incubated 
for 16 h. After that solution was centrifuged at 15,000 g for 20 min. The supernatant was applied on Ni-sepharose 
column preliminary equilibrated with buffer D (20 mM Tris-HCl pH 8, 1% Triton X-100). The target protein, 
not bound to the column, was concentrated 3 times by vacuum drying, precipitated by addition of 1/10 (v/v) of 
trichoracetic acid (TCA). After 15 min incubation at −20 °С tubes were centrifuged at 12,000 g for 15 min. Then, 
precipitate was washed by acetone 3 times (with 15 min incubation at −20 °С between centrifugations) to remove 
detergent. The precipitate was dissolved in 1/1 (v/v) mixture of trifluoroethanol/water and lyophilized for storage 
or incorporation into membrane-mimetic milieu. Peptide purity was verified by SDS-page and by analyzing the 
1H/15N-HSQC NMR spectrum of the 15N-labeled peptide.

Cell-free expression and purification of the hNEU1/TMS1 fragment corresponding to the NEU1 residues 
D130-S180.  Plasmid constructs were obtained based on pGEMEX-1 expression vector (Promega). The fragment 
of human the hNeu1 gene, corresponding to the residues D130-S180 with the amino acid substitution Cys164Ser 
(named as hNEU1/TMS1), was amplified by PCR from overlapping primers with restriction sites at the 5′- ad  
3′-ends. PCR fragments were hydrolyzed by the restriction endonucleases NdeI and HindIII, and ligated with 
the vectors, treated with the same restrictases. Clones with the required insertions were selected by the PCR and 
sequenced within the insert. Plasmid construct expressed in continuous exchange cell-free (CECF) system with 
bacterial S30-extract and T7-polymerase which were obtained from E. coli Rosetta(DE3)PLysS strain (Novagen) 
according to the protocol37. The reaction was performed in 50-mL tubes using the 12.4 kDa dialysis membrane, 
closed from the both ends by the dialysis clips. The reaction mixture (RM)/feeding mixture (FM) ratio was 1/6. 
The reaction components incubated at 150 rpm in the Innova 44 R shaker at 34 °C during 16–20 h. The final con-
centrations of the components in RM were: 100 mM HEPES-KOH pH 8, 15 mM Mg(OAc)2, 80 mM KOAc, 20 mM 
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potassium acetylphosphate, 60 mM sodium creatine phosphate, 0.24% mass fraction of the total 13C15N-labeled 
algal amino acids (or 1 mM equimolar mix of the unlabeled amino acids), 0.1 mg/mL folinic acid, 1.2 mM ATP 
and 0.8 mM GTP, CTP and UTP, protease inhibitors without EDTA, 0.5% NaN3, 2 mM dithiothreitol, 2% polyeth-
ylene glycol with molecular mass 8 kDa, 0.3 unit/μL ribonuclease inhibitor, 0.12 mg/mL creatine kinase, 50 μg/μL  
plasmid DNA, 0.5 mg/mL total E. coli MRE600 RNA, 15N-labeled mix of 20 amino acids, 35% of the total vol-
ume S30 E. coli extract. The precipitate after the translation process was collected; the dialysis membrane was 
washed by 2 mL of the ultrapure water and centrifuged at 18 000 g during 15 min at 23 °C. The reaction mixture 
precipitate was washed by the buffer contained 10 μg/mL RNAse A, 20 mM Tris-HCl pH 8, 100 mM NaCl, and 
incubated at 30 °C with stirring during 30 min. Then it was centrifuged at 18 000 g during 20 min at 23 °C and 
solubilized in buffer contained 1% sodium lauroyl sarcosyl, 50 mM Tris-HCl pH 8, 50 mM NaCl and 1 mM EDTA. 
Chromatography buffer contained the same components except for EDTA. Size-exclusion chromatography run 
on the Tricorn 10/300 column filled with the Superdex 200 prep grade sorbent at the flow rate 0.5 mL/min. 0.8 mL 
fractions were collected and analyzed using 12% PAAG-electrophoresis in the Tris-tricine buffer system. After 
the chromatography, fractions containing the target protein were pooled and the protein was precipitated using 
trichloroacetic acid at the 1/10 vol ratio with the subsequent 3-times acetone washing. The precipitate was sol-
ubilized in the trifluoroethanol/water mix 1/1 (v/v) and used for incorporation into the micelles or lyophilized 
for a storage. Peptide purity was verified by SDS-page and by analyzing the 1H/15N-HSQC NMR spectrum of the 
15N-labeled peptide.

Solubilization of the hNEU1/TMS2 and hNEU1/TMS1 fragments in membrane-mimicking micellar environ-
ment.  The detergent micelles consisted of Fos-Choline-12 (having the acyl chain length of 12), usually called 
n-dodecylphosphocholine (DPС), and Fos-Choline-16 were used as a membrane-mimicking environment. The 
15N-labeled hNEU1/TMS2 and hNEU1/TMS1 fragments were incorporated into the detergent micelles with an 
effective detergent/protein molar ratio (D/P) varied from 50 to 200 at total detergent concentrations varied from 
80 to 21 mM, respectively. The peptide’s powder was first dissolved in 1/1 (v/v) trifluoroethanol-water mixture 
with addition of the detergents, then kept for several minutes in an ultrasound bath and lyophilized. After that, 
the dried 15N-labeled samples were dissolved at pH 6.6 in 400 μL of 20 mM phosphate buffer solution, containing 
0.15 μM sodium azide, 1 mM EDTA, and 5% D2O. In order to prevent intermolecular SS-bonding of C158, 2 mM 
of methyl ester derivative of TCEP (tris-2-carboxyethyl phosphine) was added to the hNEU1/TMS1 sample. 
In order to ensure uniformity of the micelle size, several freeze–thaw cycles were carried out, followed by son-
ication until the sample became transparent. The 0.5 mM 15N-labeled samples of hNEU1/TMS2 and hNEU1/
TMS1 in the monomeric (mainly) state was obtained at D/P of 200 (the typical micelle size is 60–80 molecules 
of DPC). In order to study the peptide dimerization in the membrane-mimicking environment, the titration of 
the 15N-labeled hNEU1/TMS2 sample having initial D/P of 50 at 21 mM total concentration of DPC was carried 
out by adding of small portions of concentrated micelle suspension up to final D/P of 110 with preservation of 
the protein concentration near 0.4 mM. Several freeze/thaw cycles were made for the sample at each D/P point. 
For lower D/P values, the dimer population of hNEU1/TMS2 is increased rapidly but precipitation of the peptide 
occurs within several hours.

CD spectroscopy.  CD spectra of the NMR sample of the monomeric hNEU1/TMS2 and hNEU1/TMS1 frag-
ments in DPC and Fos-Choline-16 micelles (at D/P of 200) were measured on spectropolarimeter J-810 (Jasco, 
Japan) in 0.1 mm quartz cuvette at 20 °С. The contribution of the empty detergent micelles was subtracted. The 
analysis of the CD spectra was performed with the CONTILL program38. The deconvolution of the CD spectrum 
of hNEU1/TMS2 embedded into DPC micelles revealed the presence of 50.4% of α-helix structure and 7.5%, 
16.7% and 25.4% of β-sheet, turn and coil structure, respectively, with NRMSD 0.04%. The deconvolution of the 
CD spectrum of hNEU1/TMS1 embedded into DPC micelles revealed the presence of 45.8% of α-helix structure 
and 9.8%, 16.4% and 27.9% of β-sheet, turn and coil structure, respectively, with NRMSD 0.02%. Similar second-
ary structure distributions were observed in the case of monomeric hNEU1/TMS2 and hNEU1/TMS1 incorpo-
rated into Fos-Choline-16 micelles (Supplementary Fig. S1).

NMR spectroscopy.  The 1H/15N-HSQC, 1H/15N-TROSY, 1H/15N-TOCSY-HSQC (with mixing time of 40 ms) 
and 1H/15N-NOESY-HSQC (with mixing time of 100 ms) NMR spectra39 were acquired for an identification 
of the conformation of 15N-labeled hNEU1/TMS2 and hNEU1/TMS1 in the membrane-mimicking environ-
ment at 40 °C on 800 MHz AVANCE III spectrometer (Bruker BioSpin) equipped with the pulsed-field gradi-
ent triple-resonance cryoprobe. Exchange rates between water and HN protons were analyzed by detection of 
cross-peaks in CLEANEX spectrum40, and observed cross-peaks were treated as an indication of water exposed 
amide groups.

Molecular modeling of NEU1/TM dimers.  Probing of self-assembling of NEU1/TM2 dimer via 
coarse-grained MD simulations in POPC.  The starting full-atom ideal α-helical conformation of 32-residue long 
peptide D310-R341 was constructed in PyMOL. Then, it was converted to coarse-grained representation using 
Martinize tool and Martini force field version 2.2 P41. Four flanking residues on both ends have been assigned to 
be coiled, while other residues were marked as α-helix. The structure was copied and displaced in XY plane by the 
distance of 2.5 nm (between the axes). Hydrated bilayer containing 188 POPC molecules, 1780 polarizable water 
particles and 6 sodium ions was generated using INSANE program42. Then, a set of 144 starting conformations 
was generated by rotating each helix around its axis with 30 degrees’ step followed by energy minimization and 
relaxation. MD simulations were carried out using GROMACS42 version 4.5. Simulation protocol was similar 
to that used elsewhere with Martini 2.2 P force field43. Integration step was 20 fs, each trajectory was 1 μs long. 
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Temperature of 310 K was controlled by V-rescale thermostat algorithm. Berendsen barostat with semi-isotropic 
pressure of 1 atm was used. Coulombic and van der Waals interactions were shifted at 1.2 nm.

Probing NEU1/TM2 dimer via MD simulations in DPPC.  To ensure native-like anchoring on the polar lipid-water  
interface, the potential TM2 peptide 316PVVAAGAVVTSSGIVFFS333 was extended with seven residues on 
both termini. MD simulations were thus performed on the 32-residue peptide 309FDPELVDPVVAAGA 
VVTSSGIVFFSNPAHPEF340 generated with the ribosome program (http://folding.chemistry.msstate.edu/~raj/
Manuals/ribosome.html). The central 19-residue fragment was constructed in α-helical conformation while the 
termini were built in a geometry shown in Supplementary Fig. S3A. The peptide was replicated, rotated around 
its main axis and translated in order to get two peptides with parallel axes (Supplementary Fig. S3B). The distance 
between the axes was equal to 2.0 nm. Twenty-four rotation angles were considered from 0° to 330°. Bilayer of 128 
dipalmitoylphosphatidylcholine (DPPC) molecules was downloaded from the Tieleman Website (http://wcm.
ucalgary.ca/tieleman/downloads) and the peptides were inserted using the InflateGRO script44. MD simulations 
were conducted using the GROMACS simulation package45 and GROMOS53A6 force field46. The two peptides 
were placed in boxes with side length varying from of 6.0 nm to 9.0 nm. Water (SPC model)47 and counter ions 
were added prior to the simulations. In order to relax the structures, 5000 steps of energy minimization were 
performed using the steepest descent algorithm. The systems were equilibrated for 5 ns at the temperature of 
322 K in the isothermal-isobaric ensemble. The equilibration steps were followed by MD simulations carried out 
for 250 ns, maintaining a pressure of 1 bar (Berendsen algorithm) and a temperature of 322 K (V-rescale algo-
rithm). Time step of 2 fs and the LINCS algorithm were employed48. Non-bonded interactions were calculated 
using the Particle Mesh Ewald (PME) algorithm with a cut-off at 1.2 nm for the Coulombic and van-der-Waals 
interactions49,50.

Sequence-based prediction of homodimer models for NEU1/TM2.  Possible models of NEU1/TM2 (316–336) 
homodimers were generated using the web-server PREDDIMER31 freely available at http://model.nmr.ru/preddi-
mer. To account for independent starting conditions and to assess the effect of the peptide termini, three sequence 
fragments were used for the calculation. To eliminate structural redundancy in the resulting set of models, cluster 
analysis was performed. Similarity between the conformers was assessed in terms of root-mean-square deviation 
(RMSD) between Ca atoms of the peptides, geometrical parameters of a dimer, interface of dimerization and 
hydrophobic properties distribution on the surface of a dimer51. The models with pairwise RMSDs calculated for 
Cα atoms within 0.2 nm were considered as identical.

Probing stability of NEU1/TM1 and NEU1/TM2 monomers and NEU1/TM2 dimer via MD in POPC.  Models 
of NEU1/TM1 and NEU1/TM2 monomers (residues D135-Q165 and D310-R341, respectively) were built in 
ideal α-helical conformation using PyMOL program. For NEU1/TM1 two protonation states of D145 and E147 
were selected. In the first model, these residues were taken in a charged form, and in the second one they were 
protonated and so uncharged. The two best models of NEU1/TM2 dimers generated by PREDDIMER were 
modified by addition of flanking residues at the N- and C-termini. These fragments were built as continuation 
of ideal α-helices to get the 32-residue long peptides: D310-R341 including TM region of interest. After that, 
the monomers and the dimer were inserted into pre-equilibrated hydrated palmitoyloleoylphosphatidylcholine 
(POPC) bilayer and the overlapping lipid and water molecules were removed. To get the system electrically neu-
tral, sodium ions were added by replacement of some waters. This procedure resulted in a system comprised of 
one or two peptides, 220–240 POPC molecules (depending on the selected peptide and conformation), about 
16000 water molecules (TIP3P model)52 and counterions. AMBER99SB-ILDN and SLipids forcefields53,54 were 
used in all MD simulations in the POPC membrane. 10000 iterations of steepest descent energy minimization 
were performed before the MD simulation followed by relaxation of bilayer with increasing temperature (from 
5 K to 315 K) and constrained positions of protein atoms (5 ns long). Electrostatic interactions were treated with 
the Particle-Mesh Ewald (PME) summation method with 1.0 nm cut-off. Van-der-Waals interactions were trun-
cated at the distance 1.4 nm. V-rescale thermostat with the reference temperature of 315 K was used, and the 
semi-isotropic pressure coupling was implemented using the Parinello-Rahman barostat55. Two independent 
100 ns MD trajectories were recorded for each system, and the mean structures of dimers were retrieved for the 
analysis. The stability of peptides was tested in terms of RMSD, preservation of geometrical parameters and sec-
ondary structure. Hydrogen bonds formation was also analyzed for dimers.

Free energy of helix-helix association in NEU1/TM2 homodimers.  The free energy of dimerization was calculated 
using the potential of the mean force approach with umbrella sampling56. The simulation parameters were the 
same as on the previous step. In total, 37 windows were generated for each system with different distance (from 
0.7 to 2.5 nm) between centers of masses of the monomers. In each window, 10 ns MD-relaxation was done, 
followed by a 50 ns production run, in which relative positions of the monomers were constrained to a given 
distance using a harmonic potential. Finally, the mean force acting on the monomers was calculated from the 
MD data and integrated to get the free energy profile of association. Other details of the simulations can be found 
elsewhere57.

Co-immunoprecipitations.  Co-transfected COS-7 cells grown in 10 cm plates were washed two times in PBS, 
resuspended in 1 mL cold TEM buffer (75 mM Tris, 2 mM EDTA, 12 mM MgCl2, protease inhibitor cocktail, 
10 mM NaF, 2 mM Na3VO4. pH 7.5). After sonication, crude membranes were pelleted by centrifugation at 
20,000 g during 45 min at 4 °C and solubilized during 3 h at 4 °C under gentle end-over-end mixing in 500 μL 
TEM buffer containing 1% CHAPS. Samples were then centrifuged at 20,000 g during 45 min at 4 °C and the 
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supernatant (solubilized crude membrane proteins) was recovered. Immunoprecipitations were performed using 
4 μg of mouse monoclonal anti-Flag or rabbit polyclonal anti-NEU1 pre-adsorbed on protein G sepharose beads 
(GE Healthcare) for 2 h at 4 °C. Immunoprecipitated proteins were eluted with Laemmli buffer and subjected to 
SDS–PAGE and immunoblotting. Immunoblottings were performed using the indicated antibodies and immu-
noreactivity was revealed using a HRP-conjugated secondary antibodies (1/10,000) followed by enhanced chemi-
luminescence detection reagents and visualized with the Odyssey Fc LI-COR scanner.

Split-ubiquitin yeast two hybrid.  The NEU1 cDNA was subcloned into pDONR221 before integration 
in the Split-Ubiquitin destination vectors. The Split-Ubiquitin vectors, pMetYC-DEST and pNX35-DEST, were 
used to produce the Met-repressible bait construct NEU1-Cub-PLV and prey construct NEU1-NubG, respec-
tively. NubWT fragment, pMetYC-DEST and pNX35-DEST vectors were kindly provided by Dr F. Chaumont 
(Institut des Sciences de la Vie, Université Catholique de Louvain, Belgium). Electroporation-competent THY.
AP4 yeasts were co-transformed as described previously58 with the Nub and Cub constructs of interest. Yeast 
colonies co-expressing the bait and prey constructs were recovered 48 h after transfer on vector selective media 
(CSM, −Leu−, Trp−) and used to inoculate liquid vector-selective media. The next day, growth assays were per-
formed as followed: yeasts co-expressing the Met-repressible bait construct NEU1-Cub-PLV and the prey con-
structs NEU1-NubG, NubG (negative control) or NubWT (positive control) were dropped in serial dilutions 
(0.5, 0.05 and 0.005 in water) onto plates on interaction-selective media (CSM −Leu−, Trp−, Ade−, His−) with, or 
not, addition of 5, 50 and 500 μM Met to repress expression of the bait. Growth was monitored after 48 h at 30 °C.

Sialidase activity.  Co-transfected COS-7 cells grown in 10 cm plates were washed two times in PBS and 
resuspended in 1 mL cold TEM buffer (75 mM Tris, 2 mM EDTA, 12 mM MgCl2, protease inhibitor cocktail, 
10 mM NaF, 2 mM Na3VO4. pH 7.5). After sonication, crude membranes were pelleted by centrifugation at 
20,000 g during 45 min at 4 °C and resuspended in 20 mM MES, pH4.5. Sialidase activity was assessed using the 
2′-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (BioSynth) as substrate. Assays were performed in 
triplicate (each run in duplicate) with 50 μg of crude membranes proteins and 200 μM of substrate for 2 h at 37 °C. 
Reactions were stopped by adding 1 M Na2CO3 and the fluorescence of each well was measured in triplicate using 
an Infinite F200 PRO microplate reader (TECAN). To assess the functionality of the NEU1-Flag, NEU1-HA, 
NEU1 and HA-NEU1 constructs (Fig. 2F), sialidase activity was directly measured in 12-well plates on adherent 
cells in the same conditions as described above except that the 2-O-(p-nitrophenyl)-α-D-N-acetylneuraminic 
acid (Sigma) was used as substrate.

NEU1 homology model generation.  Prediction of the human NEU1 3D structure was done by homol-
ogy modeling using the SWISS-MODEL software59–61 (accessible via the ExPASy web server) and the human 
NEU2 crystal structure (PDB 2F11) as template.

Statistical analysis.  Results are expressed as mean +/− SEM. Statistical significance was evaluated using 
one-way ANOVA followed by Dunnett’s multiple comparison test. P values of less than 0.05 were considered as 
statistically significant.
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