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Abstract  

The Cardiovascular Continuum describes a sequence of events from cardiovascular risk factors 

to end-stage heart disease. It includes conventional pathologies affecting cardiovascular 

functions such as hypertension, atherosclerosis or thrombosis and has initially be considered 

from the "classical" metabolic point of view. This Cardiovascular Continuum, originally 

described by Dzau and Braunwald, has been extended by O’Rourke, taking into account the 

crucial role played by aging through elastic fibers degradation in appearance of vascular 

stiffness, another deleterious risk factor of the continuum. However, the participation of the 

elastin degradation products, named elastin-derived peptides, to the Cardiovascular Continuum 

progression has not be considered before. Data from our lab and others, clearly showed that 

these bioactive peptides are central regulator of this continuum, thereby amplifying appearance 

and evolution of cardiovascular risk factors such diabetes or hypertension, vascular alterations 

such as atherothrombosis and calcification, but also non-alcoholic fatty liver disease and non-

alcoholic steatohepatitis. The Elastin Receptor Complex has been shown to be a crucial actor 

in these processes. We propose here to summarize the participation of these elastin-derived 

peptides and the Elastin Receptor Complex in such events, and introduce a revisited 

Cardiovascular Continuum based on their involvement, and for which elastin-based 

pharmacological strategies could have a strong future. 
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Introduction: the cardiovascular continuum and metabolic 

disorders  

Nowadays, heart failure is no longer considered as a simple cardiovascular disease but 

as the consequence of complications involving diverse risk factors influencing a series of 

deleterious events. These later lead to the impairment of cardiovascular functions leading to 

end-stage heart disease. This concept, named Cardiovascular Continuum (CC), was proposed 

by two scientists, V. Dzau and E. Braunwald who have emphasized the importance of early 

identification and prevention of main risk factors leading to heart failure [1]. This model 

describes the progressive molecular and cellular damages of the cardiovascular system. They 

manifest as clinical diseases, where the risk factors are characterized by different metabolic 

disorders (dyslipidemia, obesity, hypertension, smoking, diabetes) and identified as the first 

events of this model. They initiate a cascade of mechanisms involving alteration of vasoactive 

mediators, inflammatory responses and remodelling of vascular extracellular matrix that affect 

different organs. All these pathological changes appear earlier in life and lead to tissue 

dysfunction causing the progressive emergence of cardiovascular diseases. Without treatment, 

these detrimental modifications trigger tissue injuries such as renal impairment, peripheral 

arterial insufficiency or stroke, and are associated with pathological remodelling. In the long 

run, an important degradation of vascular extracellular matrix is observed and participate in 

organs failure such as heart or kidney.  

Some of these CC-associated metabolic disorders can be grouped into the term of 

metabolic syndrome which is associated with the appearance of cardiovascular diseases and 

type 2 diabetes (T2D). This syndrome combines the major health issues of this century like 

abdominal obesity, insulin resistance, dyslipidemia and hypertension [2]. Abdominal obesity is 

characterized by adipocytes hyperplasia and hypertrophy mostly due to increased consumption 

of high-calorie food and reduced physical activity. A link between obesity and T2Dis clearly 

recognized since few decades where obesity and its chronic low-grade inflammation state 

promotes insulin resistance, an altered response to insulin by its target cells creating a chronic 

hyperglycemia [3]. These consumption pattern changes are also responsible for the imbalance 

between proatherogenic and antiatherogenic lipoprotein levels called dyslipidemia that promote 

lipid accumulation and atherogenesis. Hypertension is frequently associated with the three 

metabolic disorders described above [4]. Interestingly, majority of these symptoms have been 
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associated in the past decades with pathological extracellular matrix remodelling or during 

aging, and especially with elastolysis [5].  

Consequently, the classical model of CC has been extended considering a crucial factor, 

the aging of the vascular system. This has inspired another model, the Cardiovascular 

Continuum Extended, taking into account the Vascular Aging Continuum, proposed by M.O. 

O’Rourke [6]. In this model, fatigue and fracture of elastic lamellae in the proximal aorta are 

seen as a crucial events, and fundamentally participate to aortic stiffening, influencing 

deleterious fate of cerebral, kidney or heart tissues (Fig. 1).  

However, this extension of the CC only considered the elastic role of elastin in large 

arteries and does not take into account the ones played by the elastin degradation products, 

named elastin-derived peptides (EDP), able as we'll see later in the manuscript, to directly 

modulate this continuum. 

We propose here to summarize and discuss the roles played by elastin, elastolysis, EDP 

production and engagement of their cognate receptor, the Elastin Receptor Complex (ERC), in 

the regulation of cardiovascular risk factors and CC flow. Finally, based on recent results from 

our lab and others, we propose a re-revisited CC through EDP and ERC participation, in which 

ECM-based pharmacology could have a strong application.  

  

Elastin remodelling, elastin-derived peptides and the Elastin 

Receptor Complex  

Elastin biosynthesis 

Tissue-specific cell behaviour is influenced by the biochemical and biophysical 

properties of the extracellular matrix (ECM). The molecules that composed the ECM, including 

collagens, elastin, proteoglycans, laminins and fibronectin, and the manner they are assembled 

establish the structure and the organization of the resultant ECM. Elastin is an essential 

component of numerous human tissues and plays a critical role in elasticity of skin, lungs and 

arteries. Several cell types synthesize and secrete elastin such as endothelial cells and 

fibroblasts. These cells produce elastin as a precursor, tropoelastin, which is transported outside 

the cells [7]. The elastin biosynthesis starts during the foetal stage and reaches a peak just before 

birth. The process of elastogenesis, which consists in formation of elastic fibers, decreases 

during early life to disappear at puberty [8]. Elastic fibers are composed of fibrillin-rich 
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microfibrils surrounding an insoluble and amorphous core of elastin [5]. Elastin has a half-life 

of about 70 years [9]and its production is low or inexistent during adulthood [8]. Furthermore, 

elastogenesis begins by the translation of the elastin gene (ELN gene) and after splicing, mature 

tropoelastin mRNA is exported out of the nucleus to be translated into tropoelastin in the rough 

endoplasmic reticulum (RER)[8]. The polypeptides formed consist in different tropoelastin 

isoforms with a molecular weight of about 70 kDa containing a N-terminal signal sequence of 

26 amino acids which is cleaved when the protein is transferred in the RER lumen [10].Then, 

tropoelastin is associated with a chaperone, the Elastin Binding Protein (EBP) to prevent 

coacervation and premature degradation [11, 12]. The EBP-tropoelastin complex is secreted by 

the Golgi apparatus into the extracellular space and interacts with the rest of the Elastin 

Receptor Complex (ERC) composed of the Protective Protein/cathepsin A (PPCA) associated 

with the transmembrane sialidase, Neuraminidase-1 (Neu-1). The association of EBP with the 

rest of the complex, triggers an increase in sialidase activity of Neu-1, leading to the 

desialylation of microfibrils. This process unmasks galactosyl moiety of galacto-sugars that 

binds EBP on its galactolectin site which induces the release of tropoelastin. This tropoelastin 

monomer can be then aligned and incorporated into the growing elastic fiber [12] whereas EBP 

is recycled to interact with another tropoelastin molecule [12, 13].  

Elastin remodelling and elastin-derived peptides 

Matrix ageing is characterized by an increase in non-enzymatic protein post-

translational modifications such as glycation or carbamylation and by an increase in proteolytic 

activities. Proteolysis of ECM macromolecules leads to the production of ECM-derived 

peptides that present new biological activities. These peptides, called matrikines, represent 

promising pharmaceutical targets. Elastin is a good example of such ECM macromolecules 

subject to proteolysis. Indeed, during ageing, elastin is submitted to remodelling and 

fragmentation by proteolysis and by several factors contributing to elastin fragility as 

mechanical fracture, calcification, glycation, carbamylation and peroxidation [5]. Elastin 

degradation is achieved by enzymes called elastases, which include serine-, cysteine-, and 

metalloproteinases. In the serine protease family, neutrophil elastase (NE1), proteinase 3 (PR3), 

and cathepsin G (CG), which are stored in neutrophil azurophilic granules, have been greatly 

documented [14], as well as four members of the cysteine cathepsin family (L,S, K and V) [13]. 

Among metalloproteinases, matrix metalloproteinases such as MMP-2, MMP-7, MMP-9 or 

MMP-12 clearly present elastolytic activity and are involved in elastic fibers remodelling [15, 

16]. Interestingly, elastin degradation generates bioactive EDP named elastokines which harbor 
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the GxxPG motif. This motif adopts a type VIII -turn conformation necessary for the 

bioactivity of these peptides. EDP have been described to possess different effects on various 

cell types like endothelial cells, monocytes and smooth muscle cells [15, 17]. For example, the 

most described elastokine is the VGVAPG peptide (encoded by exon 24 of human tropoelastin) 

but other bioactive motifs have been identified by Heinz et al. such as GVYPG, GFGPG and 

GVLPG [18]. Moreover, MMP-7, -9, and -12 are able to generate longer bioactive EDP as 

YTTGKLPYGYGPGG, YGARPGVGVGGIP, and PGFGAVPGA peptides [16]. Finally, a 

recent study characterized NE1 action on aortic elastin and identified other sequences such as 

GAGGFPGYGV [19]. 

  The Elastin Receptor Complex (ERC) 

After elastin fragmentation, produced EDP exert several biological effects by binding 

to their cell surface receptors. Several putative receptors for EDP have been identified as 

galectin-3 [20] and V3 and V5 integrins [21, 22]. However, in the context of the present 

review, we will focus on the most prominent receptor of these elastokines, the ERC, known to 

be the most signalling mediator of EDP. 

ERC is a heterotrimeric receptor composed of a peripheral 67kDa subunit called elastin-

binding protein (EBP), which binds elastin-derived peptides, a 55 kDa protective 

protein/cathepsin A (PPCA) and a 61 kDa membrane-bound neuraminidase, Neu-1 [23]. The 

EBP subunit consists in an enzymatically spliced variant of lysosomal -galactosidase [12] and 

presents two functional binding sites encompassing the elastin site on which EDP binding 

induces signalling pathways, and the galactolectin site whom occupation by galactosugars is 

associated with EDP delivery and dissociation of the complex [24]. Brassart et al. showed that 

among many EDP, only those with the GxxPG consensus sequence possess a conformation that 

allows binding to the EBP subunit [17, 25]. Binding of EDP to EBP induces Neu-1 activation 

which catalyzes the local conversion of GM3 [N-acetylneuraminic--(2-3)-galactosyl--(1-4)-

glucosyl-(1-1’)-ceramide] ganglioside I nto lactosylceramide (LacCer), a second messenger of 

ERC signalling pathways [26]. Indeed, EDP binding is able to activate several intracellular 

signalling pathways depending on the cell type: for instance, in fibroblasts, EDP activates the 

MEK1/2/ERK1/2 pathway through a signal dependent on protein kinase A and 

phosphoinositide 3-kinase  (PI3K) [27]. Another example concerns endothelial cells: a 

PI3K/Akt/endothelial nitric oxide synthase/nitric oxide/protein kinase G module involved in 

ERK1/2 activation has been described to be activated by EDP [28]. Last, in smooth muscle 
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cells, cell proliferation mediated by EBP involves activation of Gi proteins in a concomitant 

manner with opening of calcium L-Type channels [29]. 

In these signalling processes, Neu-1 plays a central role and a lot of effort has been made 

to further elucidate its participation in ERC signalling. Beside its role in the generation of the 

second messenger LacCer described above, its catalytic activity has been shown to be 

dependent on an original dimerization process. In this way, two potential dimerization 

sequences, corresponding to two transmembrane domains (148-168 and 316-333 residues), 

have been identified within Neu-1 and point mutations in the 316-333 transmembrane domain 

inhibit significantly dimerization and sialidase activity of Neu-1 [30]. Moreover, a growing 

literature also shows that Neu-1 plays a major role in the regulation of many membrane 

receptors by desialylation such as the insulin receptor, c-Met, IGFR or PDGFR [31-33]. 

Taking together, all these data suggest that Neu-1 has to be seen as a crucial regulator 

of the membrane signallosome from the lipids but also from the protein point of view.  

It is however important to note that even if the signalling processes triggered by EDP 

through the ERC could be responsible for the majority of EDP-related biological effects, other 

biological processes could involve receptor-independent phenomema. These points will be 

discussed in the following parts of the manuscript and are summarized in Fig. 2. 

Elastin and elastin-derived peptides involvement in metabolic 

syndrome  

Since the first formal definition by Reaven in 1988 [34] under the term “syndrome X”, 

the metabolic syndrome has not stopped evolving. Thereby, the definitions proposed by 

international organizations such as the World Health Organization (WHO), European Group 

for Study of Insulin Resistance (EGIR), National Cholesterol Education Program (NCEP) or 

the American Association of Clinical Endocrinologists (AACE) include a set of criteria 

comprising hypertrophy of abdominal adipose tissue, visceral adiposity first but also, insulin 

resistance, glucose tolerance disorders, dyslipidemia and high blood pressure. The combination 

of these different factors, on a same patient, increases T2D risk and/or cardiovascular diseases. 

According to the pandemic evolutions of obesity but also of Non Alcoholic Steato Hepatitis 

(NASH), T2D, the metabolic syndrome might be at the center of cardiovascular diseases [35]. 

The main factors predisposing to the onset of metabolic syndrome are obesity and 

insulin resistance. Insulin has a major anabolic function leading to storage of lipidic and 
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glucidic substrates such as glucose uptake in the muscle, glycogen synthesis in the liver and the 

muscle, lipid synthesized and stored in adipose tissue, inhibition of hepatic glucose production. 

All these effects result from the insulin binding to a specific membrane receptor, the insulin 

receptor, highly expressed on the surface of hepatocytes, myocytes and adipocytes. Insulin 

resistance requires multiple mechanisms and one of the most studied involves phosphorylation 

of serine/threonine residues on the receptor, and especially Insulin Receptor Substrate (IRS) 

proteins. This phosphorylation ends the receptor physiological activity by inhibiting the insulin 

signal transmission, and in particular towards PI3 kinase metabolic pathway. Several metabolic 

molecules or signalling ones are able to induce insulin resistance. Thus, free fatty acids and 

glucose, proinflammatory cytokines as TNF (Tumor Necrosis Factor)- or IL (interleukin)-1, 

secreted for example by adipose tissue, are involved in insulin resistance.  

Interestingly, the glucose intolerance and hyperinsulinism, gradually developing, induce 

an important remodelling of extracellular matrix [36]. During adipocytes hypertrophy, the 

matrix is degraded by proteases to allow the increase in lipid droplet volume [37-39]. If matrix 

degradation is blocked by some genetic and pharmacological inhibitors of MMPs [40, 41] , the 

fat tissue cannot expand. Interestingly, as the MMPs, cathepsins are also highly expressed in 

adipose tissue of obese patients and contribute to the remodelling process through their 

proteolytic activity towards elastin and collagen. Alike MMPs invalidation, cathepsins K and L 

invalidations in mice, two described elastases, induce fat content loss [42, 43]. In obese patients, 

adipocyte expansion is fast and significant, and fibrosis onset is observed. Therefore, collagen 

and elastin overexpression, constitute a poorly controlled scar structure with inflammatory 

factors liberation and these fibrotic processes are also noticeable on the liver during NASH 

onset.  

In consequence, an increasing literature show that the ECM may be a major actor for 

the emergence of metabolic syndrome. Moreover, modifications of proteases expressions such 

as neutrophil elastase (NE), MMPs or Cathepsin S are involved in deregulations of glucidic and 

lipidic homeostasis, leading to the appearance of insulin resistance, obesity or still to hepatic 

steatosis. Similarly, expression deficit of elastin or microfibrils could also contribute to 

metabolic syndrome progression. Accordingly, it has been demonstrated in humans, a high 

correlation between neutrophil elastase activity / circulating EDP and the metabolic syndrome 

markers, such as HOMA, HbA1c, BMI, and the histological grading of fibrosis and hepatic 

steatosis [33]. Moreover, the absence of elastases expression as NE, MMP12, and Cathepsin S, 

seems to protect mice from obesity, NASH and insulin resistance and as previously mentioned, 
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these elastases are responsible for elastin fragmentation into bioactive EDP on human and mice 

[33, 44-47]. We have shown that the resulting EDP are able to lead to a transient glycemia 

increase, by modulating glucose uptake in target tissues, namely the muscle, the liver, and 

adipose tissue. The chronic treatments with EDP, mimicking the chronic accumulation of EDP, 

leads to a glucose intolerance, explained by an insulin resistance, and to an obesity and NASH 

[31, 33]. This induced metabolic syndrome, might be explained by the ERC inhibitory effect 

on tyrosine kinase receptors such as insulin receptor and HGFR, through the Neu-1 dependent 

desialylation of their extracellular domains modulating their signalling properties such as 

inhibition of Akt and Foxo1 pathways as well as inhibition of the LBK-1/AMPK signalling. 

Interestingly, the ERC inhibitors used such as DANA (sialidase inhibitor) or Chondroitin 

Sulfate (EBP antagonist) can limit the exogenous and endogenous EDP effects in the model. 

Thereby, we have been able to show that the emerged Non Alcoholic Fatty Liver Disease 

(NAFLD) on db/db mice (mouse model to study metabolic syndrome) might be highly reduced 

by ERC inhibitors, but also by elastases inhibitors. NE activity blockade, limits the elastic fibers 

fragmentation and EDP production, but also glucose intolerance or lipids accumulation on the 

liver [48]. 

Elastin and elastin-derived peptides involvement in hypertension 
 

Hypertension is a disease that is characterized by an abnormal and persistent increase in 

arterial pressure. It affects mostly the heart and blood vessels and constitutes a major cause of 

heart failure, kidney diseases and Cerebrovascular accident (CVA). 90 to 95% of hypertensive 

patients suffer from primary hypertension, meaning that their arterial pressure is constantly 

higher than normal rates, but without clear cause. The 5 to 10% remaining suffer from 

secondary hypertension that has an identifiable cause. Many factors provoke secondary 

hypertension such as renal blood flow obstruction, hypersecretion of aldosterone or adrenaline 

and noradrenaline. However, hypertension is a diagnostic that is frequently associated to obesity 

or/and T2D (in more than 60% of the cases). This T2D- associated hypertension, constitutes a 

risk factor for cardiovascular diseases. The macrovascular complications in arteries are twice 

more frequent on diabetic patients than in the non-diabetic one. The physiopathology of T2D 

vascular complications is complex and multifactorial, and still not very well-known. Moreover, 

T2D is also considered as a vascular accelerated aging model. It has been demonstrated that 

hyperglycemia and hyperinsulinemia [49, 50] play a key role on endothelium function, ROS 

production and arterial pressure. However, other factors might contribute to the arterial pressure 
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regulation. As mentioned, ECM remodelling has been described as an important element in the 

diabetes progression [31, 51, 52], so it could be a key factor in vascular complications [53, 54]. 

Indeed, the elastin fragmentation and function loss has a mechanical impact on the vessel, 

decreasing its compliance making it stiff [55]. Patients affected with supravalvular aortic 

stenosis (SVAS) or Willliams-Beuren syndrome (WBS) with a genetic deficiency of elastin 

show an arterial hypertension. This observation was also made using elastin haplo-insufficient 

murine models (Eln+/-), where the animals show a significant increase of arterial pressure with 

a mean arterial pressure 25-30 mmHg higher than their wild-type counterparts [55, 56]. On the 

contrary, elastogenesis induction  in mice with elastic fibers alteration (aged mice, Eln +/-, 

diabetic mice (non-published results)), allows vascular function restoration and limits arterial 

hypertension [57, 58]. As mentioned previously, elastin fragmentation and EDP production can 

be accelerated in case of hyperglycemia, leading consequently to arterial pressure modification 

[59]. Nevertheless, the literature data show that EDP tested ex vivo to an isolated organ are in 

favor of a vasodilation, suggesting a protective effect for arterial pressure [60]. Indeed, these 

peptides lead to an endothelial NOS activation and NO production, in favor of smooth muscle 

cells relaxation in rat. However this NO-dependent vasodilation induced by EDP is lost during 

aging, but could be restored in aged animal by a high glucose level [53]. This loss could be 

partially explained by a parallel free radical production. Indeed, the NO is quickly deactivated 

by the presence of superoxide ion, rapidly combined to form peroxynitrite, a highly oxidant 

molecule. Furthermore, occurring also with aging, the net NO production decreases, linked to 

a loss of calcium homeostasis and a NOS inhibitor increases, the dimethyl arginine. 

Consequently, the resulting endothelial dysfunction could also contribute to vascular stiffness 

due to the loss of NO-triggered participation in arterial compliance as well as structural 

remodelling [61]. In case of insulin resistance and associated hyperglycemia, a similar role 

could be attached to EDP, namely vasodilating effect that could compensate the hypertension 

induced by the elastic fibers loss. However, according to EDP and ERC inhibitory effect on the 

insulin receptor present in tissues as adipocyte or skeletal muscle, a different role could be 

proposed. Indeed, the endothelial cell, main vascular target for insulin resistance, possesses at 

its surface insulin receptors described as activators of NO pathway [62]. This leads to a 

vasodilation on a smaller scale than acetylcholine and muscarinic receptors. Therefore, these 

observations assume that activated ERC by EDP, could amplify the elastin fragmentation effect. 
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Elastin and elastin-derived peptides involvement in 

atherothrombosis 

The dynamic balance between synthesis and proteolysis of extracellular matrix proteins 

contributes to the development of atherosclerosis. Altered amounts of elastin and improper 

assembly, modification of elastic fibers, and elastin fragmentation are associated with the 

disease. Damaged or degraded elastic fibers are generally not repaired and replaced by 

collagens and proteoglycans that stiffen the arterial wall. During atherosclerosis, vascular 

smooth muscle cells and macrophages  can produce tropoelastin that however fails to cross-link 

into mature elastic fibers due to dysregulation of lysyl oxidase or any of the components of the 

microfibrillar scaffold required for correct fiber assembly [56, 63-67]. Due to its mineral 

scaffolding function, elastin is prone to calcification during atherosclerosis. Although elastin 

calcification without visible structural alterations can be observed in human carotid arteries 

obtained by endarterectomy [68], a correlation between elastin degradation and vascular 

calcification has been demonstrated in human and in several animal models and structural 

alteration of elastin precedes calcification of elastic fibers [68-72]. In addition, elastokines, by 

themselves, are capable of increasing expression of typical bone proteins in rat aortic smooth 

muscle cells which may contribute to vascular calcification [73]. Elastin is also subject to 

glycation and carbamylation [74, 75]. These non-enzymatic post-translational modifications 

that are exacerbated during chronic kidney diseases, may modulate elastin stiffness. Whether 

glycation and/or carbamylation of elastin affect its susceptibility to proteolysis and have direct 

impact on atherosclerosis progression remains to be further demonstrated.  

Using Eln+/- mice bred with atherosclerosis-prone mice that have 60% of wild-type 

elastin levels, stable hypertension, and decreased aortic compliance, the Wagenseil's group has 

recently evaluated if elastin insufficiency and associated increase in arterial stiffness could be 

involved in atherosclerosis plaque deposition. From their studies, it was concluded that 

increased blood pressure and reduced aortic compliance are not direct causes of increased aortic 

plaque accumulation [76, 77]. Rather, and even if elastic fibers and artery stiffen during 

atherosclerosis, additional insults such as elastin fragmentation and presence of circulating 

elastokines are required to alter plaque accumulation [78]. Dysregulation of extracellular 

proteases by inflammatory cytokines, growth factors, oxidative stress and hypoxia produced 

during atherosclerosis, contributes to elastin fragmentation and production of elastokines [79]. 

MMP (MMP-2, -7, -9, -12) and cathepsin (K, L, S) -deficient mice bred with atherosclerosis-
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prone mice show reduced elastin fragmentation and decreased atherosclerosis [80, 81]. 

Moreover, ApoE-/- mice harboring heterozygous mutation in the fibrillin-1 gene (C1039G+/-) 

and exhibiting improper elastin structure and elastin fragmentation display unstable plaques 

and plaque rupture [14, 82]. Overall, these animal models demonstrate that preservation of 

elastic fibers integrity is correlated with reduced atherosclerosis progression.  

Direct evidence for a role of elastokines in atherosclerosis was provided by the study of 

Gayral et al in which chronic administration of EDP or the VGVAPG peptide in atherosclerosis-

prone mice increases atherosclerotic plaque deposition. Moreover, the use of chimeric LDLR-/- 

mice, a model with catalytically defective Neu-1 exclusively in haematopoietic cells obtained 

by bone marrow transplant from CathA/Neu-1-deficient mice to irradiated LDLR-/--recipient 

mice, showed interesting data. Indeed, this model, combining severe endogenous elastin 

fragmentation and marked reduction of Neu-1 activity, show reduced atherosclerosis deposition 

and decreased monocyte and lymphocyte infiltrates into the plaques. This has demonstrated, 

for the first time, the key role played by these elastokines, the ERC and its Neu-1 subunit in 

atherosclerosis progression [54]. Another evidence for a role of the elastokines and the ERC in 

atherosclerosis comes from Dale et al reporting that EDP and the VGVAPG peptide are capable 

of inducing macrophage polarization towards a pro-inflammatory M1 phenotype [83]. More 

recent data have also revealed that these elastokines enhance oxidized LDL uptake into 

macrophages through the ERC and its Neu-1 subunit (Kawecki et al, CMLS, revision pending). 

High expression of Neu-1 has been reported in peripheral blood mononuclear cells of patients 

with acute myocardial infarction (MI) and in macrophages present on the intima layer, within 

calcified regions and within the adventitia of the plaque region in human carotid arteries 

obtained by endarterectomy [34]. Enhanced Neu-1 expression induces a pro-inflammatory 

phenotype, triggers production and release of cytokines and chemokines in monocytes and 

promotes phagocytosis and cytokine expression in macrophages [34]. Whether the expression 

of the two other subunits of the ERC (EBP, PPCA) is also increased during atherosclerosis 

remains to be shown. However, this increased expression of Neu-1 in atherosclerotic lesions 

and in circulating monocytes of MI patients suggests that inhibition of Neu-1 might represent 

a promising strategy for managing atherosclerosis. Interestingly, ApoE-deficient mice that 

express hypomorphic levels of Neu-1 have reduced serum levels of VLDL and LDL cholesterol, 

decreased infiltration of inflammatory cells into lesions and reduced atherosclerosis [84].  

Asymptomatic atherosclerosis may lead to acute events, mostly due to plaque rupture 

and secondary thrombosis. In addition to their role in elastogenesis and vascular architecture, 

many of the components of elastic fibers-associated microfibrils, such as Fibulin-1, MAGP1 
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and Emilin-2, have been shown to regulate hemostasis and thrombosis [85-87]. Direct evidence 

for a role of the elastokines in thrombosis came from the study of Kawecki et al. [88]. In their 

study, EDP and the VGVAPG peptide decrease platelet aggregation induced by several 

agonists, reduce platelet interactions with collagen under arterial shear conditions, and increase 

time for occlusive arterial thrombosis and tail bleeding in wild-type mice. These effects involve 

a direct action of these elastokines on circulating platelets and the ability of EDP to disrupt 

plasma von Willebrand factor interaction with collagen. Further works are now needed to 

address the role of these elastokines in thrombotic events occurring after plaque rupture and/or 

erosion. 

 

Elastin and elastin-derived peptides involvement and myocardial 

ischemia/reperfusion injury 

Myocardial ischemia (MI) originates from progressive narrowing of the atherosclerotic 

coronary arteries and compromises blood and oxygen supply to the heart, leading to ischemia 

of downstream tissues. In the context of acute occlusion following atherosclerotic plaque 

rupture, total interruption of blood supply to the myocardium leads to acute MI. Restoring blood 

flow by reperfusion strategies is therefore required to minimize the size of myocardial injury 

and to preserve cardiomyocyte contractility. Paradoxically, reperfusion triggers an oxidative 

burst, calcium overload, and mitochondrial damage that collectively induce cardiomyocyte 

apoptosis and necrosis, resulting in irreversible damage described as myocardial ischemia-

reperfusion (I/R) injury [89].  

The myocardium contains few elastic fibers and elasticity of the myocardium is mainly 

due to cardiomyocyte muscle bundles. Although elasticity of infarcted regions mostly depends 

on the ratio of muscle fibers to fibrotic tissue and the density of collagen cross-links, elastin is 

believed to play an important role in infarcted regions to prevent scar expansion, left ventricle 

enlargement and improve ejection fraction [90]. Indeed, after infarction, fibrosis occurs and the 

scar may expand if the ventricular wall lacks elasticity. The expression of recombinant elastin 

within the myocardial infarction has been shown to lead to the above mentioned improvements 

through the beneficial maintenance of tissue elasticity. Development of magnetic resonance 

imaging (MRI) approaches and MRI contrast agents such as the gadolinium-based 

elastin/tropoelastin-specific contrast agent (Gd-ESMA) have helped in evaluating 

tropoelastin/elastin remodeling in MI and post-MI scar remodeling in mouse models of MI [91, 

92]. Both tropoelastin and elastin are present within the infarct scar and higher contrast-to-noise 
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ratio (CNR) values for Gd-ESMA, showing a clear tropoeastin/elastin presence, are correlated 

with improved ejection fraction of mice after MI. These points demonstrated that higher the 

elastin amount is observed in the scar, better the heart function is preserved. 

Myocardial I/R injury is a strong inducer of ECM remodeling [93] and several MMP 

are temporally overexpressed during myocardial I/R injury [94]. As suggested by several 

studies using MMP inhibitors or MMP-deficient mice [95, 96], MMP play a central role in 

disease progression after I/R injury. Increased expression of elastases was reported in animal 

models of MI, such as MMP-2, MMP-9 and Cathepsin S [64, 65, 97, 98], and elastolysis was 

observed in early ischemia of porcine myocardium [99]. Whether EDP might exert 

cardioprotective effects during myocardial I/R injury was evaluated by A. Robinet et al. [100]. 

Using the Langendorff ex vivo model, A. Robinet et al elegantly demonstrated that EDP protects 

the myocardium against I/R injury in rats. Presence of EDP during reperfusion maintains left 

ventricular diastolic pressure to the normal levels observed in this ex vivo assay (< 50 mm Hg) 

and improves recovery of rate-pressure product and mean coronary flow during the reperfusion 

period. Myocardial infarct size is also significantly decreased in the presence of EDP. These 

cardioprotective effects of EDP were attributed to the ERC and involve EDP-mediated NO 

release and activation of the Reperfusion Injury Salvage Kinase (RISK) pathway. This pathway 

includes a group of pro-survival protein kinases and is a combination of two parallel cascades, 

PI3K-Akt and MEK1-ERK1/2. The RISK pathway confers powerful cardioprotection when 

activated specifically at the time of myocardial reperfusion and is shared by most 

cardioprotective therapies [66]. Cardioprotective effects of EDP were also observed in pre-

conditioned hearts, when EDP were administrated prior to ischemia insult. Indeed, in these 

conditions, EDP still improve rate-pressure product to nearly total recovery, and such beneficial 

influence is also observed on left ventricular diastolic pressure, myocardial infarct size and 

creatine kinase release [100]. Overall, these data argue in favor of a cardioprotective effect of 

elastin and EDP during myocardial I/R injury. However, it is important to note that this 

cardioprotective effect has only been demonstrated in an ex vivo model that does not take into 

account other in vivo associated processes such as inflammation. Indeed, it has been clearly 

demonstrated for years that reperfusion of ischemic cells results in an oxygen radical burst 

actively participating to the injury [101]. Considering that EDP are highly active towards 

inflammatory cells and ROS production [5], the in vivo beneficial effects of elastin peptides in 

the context of ischemia/reperfusion remain to be demonstrated.  
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Conclusion 

During aging and related processes, the elastin network suffers several alteration 

leading, among others processes, to the production of elastin-derived peptides (Fig. 2). EDP 

and ERC participation to the regulation of the CC is now clear and their involvements have to 

be further studied. Among their different biological effects, even if they could present beneficial 

effects, these later appeared very scarce compared to their deleterious role. They clearly affect 

the evolution of the CC and a revisited CC through their participation has to be considered (Fig. 

3). They could be highly important as pharmacological targets but EDP role as predictive or 

prognostic factors has also to be definitively considered.  

In conclusion, the different works summarized here strongly suggest that ECM and more 

precisely elastin-based pharmacological strategies could have a strong future to fight against 

cardiovascular and metabolic diseases.  
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Figure Legends 

Figure 1 : The Vascular Aging Continuum (adapted from O’Rourke [6]). This continuum 

presents interconnected events from cardiovascular risk factors such as diabetes or 

hypertension, to end-stage heart disease. It has been extended through the role played by aging 

that is mostly seen through the scope of elastic fibers degradation, leading arterial stiffness and 

its participation to the deleterious continuum. 

Figure 2 : Elastin remodelling and functional consequences in metabolic and 

cardiovascular diseases. Elastin remodelling during aging and related processes leads to 

diverse elastin modifications and to EDP release. These peptides affect metabolic and 

cardiovascular diseases through ERC-dependent and independent effects. In green are indicated 

the ERC-engagement dependent effects. AMPK, Adenosine Monophopshate-activated Protein 

Kinase; CK, Creatin Kinase; EDP, Elastin-Derived Peptides; ERC, Elastin Receptor Complex; 

HGFR, Hepatocyte Growth Factor Receptor; IR, Insulin Receptor; LKB1, Liver Kinase B1;  

LVEDP, Left Ventricular Diastolic Pressure; PTM, Post-Translational Modifications; NO, 

Nitric Oxyde; oxLDL, oxidized Low Density Lipoprotein; RISK, Reperfusion Injury Salvage 

Kinase; ROS, Reactive Oxygen Species; RPP, Rate Pressure Product.  

Figure 3 : The Vascular Aging Continuum revisited through EDP and ERC participation. 

Following elastolysis, EDP are produced and directly affects several processes involved in the 

cardiovascular continuum form risk factors to vascular pathologies. Most of their effects 

through the engagement of the ERC are deleterious and are highlighted in red, although some 

scarce beneficial roles have been documented (in green). 
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