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Summary

Nitrogen is an essential nutrient for plants because it represents a major constituent of numerous cellular

compounds, including proteins, amino acids, nucleic acids and lipids. While N deprivation is known to have

severe consequences for primary carbon metabolism, the effect on chloroplast lipid metabolism has not been

analysed in higher plants. Nitrogen limitation in Arabidopsis led to a decrease in the chloroplast galactolipid

monogalactosyldiacylglycerol (MGDG) and a concomitant increase in digalactosyldiacylglycerol (DGDG),

which correlated with an elevated expression of the DGDG synthase genes DGD1 and DGD2. The amounts of

triacylglycerol and free fatty acids increased during N deprivation. Furthermore, phytyl esters accumulated

containing medium-chain fatty acids (12:0, 14:0) and a large amount of hexadecatrienoic acid (16:3). Fatty acid

phytyl esters were localized to chloroplasts, in particular to thylakoids and plastoglobules. Different

polyunsaturated acyl groups were found in phytyl esters accumulating in Arabidopsis lipid mutants and in

other plants, including 16:3 and 18:3 species. Therefore N deficiency in higher plants results in a co-ordinated

breakdown of galactolipids and chlorophyll with deposition of specific fatty acid phytyl esters in thylakoids

and plastoglobules of chloroplasts.

Keywords: phytyl ester, nitrogen deficiency, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, chloro-

plast, chlorophyll.

Introduction

In contrast to animals, yeast and many bacteria, higher

plants contain large amounts of phosphorus-free glyco-

glycerolipids: monogalactosyldiacylglycerol (MGDG),

digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldia-

cylglycerol (SQDG). Glycoglycerolipids are not distributed

ubiquitously across the subcellular compartments. MGDG,

DGDG and SQDG are particularly enriched in chloroplasts.

Their high abundance in thylakoids of leaves led to the

hypothesis that galactolipids have important functions in

photosynthesis (reviewed by Benson, 1971; Douce and

Joyard, 1980). Indeed, analysis of Arabidopsis mutants

deficient in MGDG (mgd1) or DGDG (dgd1, dgd2) synthesis

revealed that galactolipids are essential to support growth

and photosynthesis (Dörmann et al., 1995; Jarvis et al.,

2000; Kelly et al., 2003). Under optimal conditions, the

amounts of galactolipids in extraplastidial membranes are

very low. However, during phosphate deprivation, biosyn-

thesis of SQDG and DGDG and the expression of sulfolipid

and galactolipid genes are upregulated (Awai et al., 2001;

Essigmann et al., 1998; Härtel et al., 2000; Kelly and Dör-

mann, 2002; Kelly et al., 2003). Under phosphate-limiting

conditions, DGDG replaces phospholipids in plastidial and

extraplastidial membranes (Andersson et al., 2003; Härtel

et al., 2000; Jouhet et al., 2004).

In contrast to phosphate deficiency, not much is known

about the impact of other nutrient deficiency stresses on

membrane lipid composition in higher plants. Nitrogen is

one of the most important macronutrients and is often

limiting for plant growth. It is taken up via the roots as nitrate

or ammonia, and nitrate is reduced to nitrite and ammonia,
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which is subsequently employed for amino acid synthesis

(for reviews see Crawford, 1995; Stitt, 1999). Nitrogen defi-

ciency causes strong changes in N and C metabolism, and in

particular affects the abundance of amino acids and proteins

(Scheible et al., 2004; Wang et al., 2003). Furthermore, N

deprivation affects chlorophyll content and the abundance of

thylakoid membranes in chloroplasts of algae and cotton

(Garcı́a-Ferris et al., 1996; Malavolta et al., 2004). However,

the impact of N deficiency on membrane lipid turnover in

chloroplasts, or the fate of acyl groups released from

membrane lipids, have not been analysed in higher plants.

To study the effect of nutrient supply on the regulation of

lipid biosynthesis and turnover, the lipid composition and

expression of galactolipid genes were determined in Ara-

bidopsis plants grown under N deficiency and compared

with phosphate deficiency. From these studies, it became

clear that DGDG synthesis is stimulated in plants during

nutrient-deficiency conditions other than phosphate depri-

vation. Furthermore, large amounts of acyl groups removed

from galactolipids are deposited as fatty acid phytyl esters

(FAPEs) during N deprivation, and these esters are localized

to thylakoids and plastoglobules of chloroplasts.

Results

Nitrogen deficiency affects galactolipid composition in

leaves

Phosphate deprivation is known to alter membrane lipid

composition in plants, because it leads to a decrease in the

amounts of phospholipids while DGDG and SQDG increase

(Essigmann et al., 1998; Härtel et al., 2000). Therefore it was

important to demonstrate that N deprivation did not affect

the phosphate status of the plant. For this reason, the con-

tents were determined of chlorophyll, fatty acids and inor-

ganic phosphate in plants grown without N, phosphate or

magnesium (Figure 1). Magnesium deprivation was em-

ployed as an alternative means to reduce the abundance of

chlorophyll and of the entire photosynthetic machinery.

Phosphate limitation resulted in a decrease in the contents

of chlorophyll, fatty acids and inorganic phosphate. Growth

without N also affected chlorophyll and fatty acid content,

but similar to Mg deficiency, had no measurable effect on

phosphate (Figure 1). The reduction in fatty acid content

during N deprivation suggested that about 25% of chloro-

plast lipids were degraded. Electron microscopy was used to

assess the impact of N or phosphate deficiency on chloro-

plast ultrastructure in leaf mesophyll cells (Figure 2). Phos-

phate deprivation resulted in the enlargement of starch

granules in the stroma (Figure 2c). Nitrogen deficiency had a

severe impact on chloroplast ultrastructure, because a high

number of large starch granules and electron-dense

plastoglobules accumulated in the stroma (Figure 2b). The

thylakoid membrane system was barely visible because it

was distorted and obscured by the starch granules. Taken

together, while no effect on phosphate content was ob-

served, N deficiency resulted in a decrease in fatty acid

content and severe alterations in chloroplast ultrastructure.

Membrane lipid composition was determined in leaves

during nutrient stress (Figure 3). Nitrogen deficiency re-

sults in a decrease in MGDG from approximately 50 to

35 mol% with a concomitant increase in DGDG from 15 to

23 mol% and in phospholipids from 35 to 42 mol%. Despite

the alteration in galactolipid composition, fatty acid pat-

terns of MGDG and DGDG were not altered in plants grown

without N (Table 1). To address the question of whether N

deprivation has a specific impact on the abundance of N-

containing glycerolipids (phosphatidylethanolamine, PE;

phosphatidylcholine, PC; phosphatidylserine, PS), root

membrane lipid composition was analysed. Roots are

enriched in phospholipids because they lack the galactol-

ipid-rich thylakoid membranes of chloroplasts. Lipid com-

position in roots of plants grown without N did not change

(Figure 3b). Therefore, in contrast to phosphate depriva-

tion, N starvation does not result in the replacement of N-

containing glycerolipids with glycolipids.

(a)

(b)

(c)

Figure 1. Nitrogen deficiency causes a decrease in chlorophyll and total fatty

acids, but has a minor impact on phosphate content.

Arabidopsis WT plants were raised on MS medium for 2 weeks and

subsequently grown on medium containing different amounts of N, P or

Mg, for an additional time of 10 days. (a) Total chlorophyll was measured

photometrically; (b) total fatty acids were measured by GC; (c) inorganic

phosphate was quantified according to Itaya and Ui (1966). Note that growth

at 6.5 mM N represents full nutrition (control).
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Nitrogen deficiency causes a reduction in total fatty acids

and in the ratio of MGDG to DGDG (Figures 1b and 3c). The

Arabidopsis mutant nia1nia2, affected in nitrate reductase, is

unable to convert nitrate into nitrite and thus shows an N-

deficient phenotype when grown with nitrate but in the

absence of ammonia. The MGDG:DGDG ratio in nia1nia2

was reduced from 2.5 to 1.8 when plants were transferred

from ammonia-containing to ammonia-free medium (Fig-

ure 3c). Therefore the strong reduction in the MGDG:DGDG

ratio observed in WT plants grown without N was corrobor-

ated by measuring galactolipids in nia1nia2 plants raised on

nitrate. Wild-type plants grown in the absence of phosphate

or Mg also showed a reduction in the MGDG:DGDG ratio,

indicating that the preferential reduction in MGDG can

originate from different nutrient-deficiency conditions.

Alterations in galactolipid gene expression in

nitrogen-deprived plants

The changes in galactolipid composition observed during N

deprivation prompted us to analyse the expression of genes

involved in galactolipid synthesis. Expression of MGDG

(a)

(b)

(c)

Figure 2. Nitrogen deficiency affects chloroplast ultrastructure in Arabidop-

sis.

Chloroplasts from leaf mesophyll cells of Arabidopsis WT plants raised in the

absence of nitrogen ()N) or phosphate ()P) were analysed by electron

microscopy. (a) Full nutrition; (b) plants deprived of N; (c) plants deprived of

phosphate. Bar ¼ 1 lm.

(a)

(b)

(c)

Figure 3. Lipid composition in leaves and roots during nitrogen deprivation.

(a, b) Two-week-old Arabidopsis plants were transferred to medium with

(black bars) or without (grey bars) nitrogen, and lipids from leaves (a) or roots

(b) were extracted, separated by TLC and quantified by GC.

(c) The MGDG:DGDG ratio was determined in leaves of plants grown in the

absence of nitrogen ()N), phosphate ()P) or magnesium ()Mg). nia1nia2

mutant plants deficient in nitrate reductase were raised on medium with or

without ammonia. Data represent mean � SD of three measurements. The

experiment shown in (a, b) was repeated with two different plant cultivations,

with similar results.
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synthases (MGD1, MGD2, MGD3) and DGDG synthases

(DGD1, DGD2) was recorded by Northern blot. In accordance

with previous reports, phosphate deprivation resulted in

stimulation of the expression of MGD2, MGD3, DGD1 and

DGD2 (Awai et al., 2001; Kelly and Dörmann, 2002; Kelly

et al., 2003). Expression of MGD2 and MGD3 during N defi-

ciency was not altered (Figure 4a). However, expression of

DGD1 and DGD2 was markedly increased, and this increase

depended on the concentration of N in the growth medium

(Figure 4b). Magnesium deficiency also resulted in an in-

crease in DGD1 and DGD2 expression.

Accumulation of triacylglycerols, free fatty acids and fatty

acid phytyl esters

To study the fate of acyl groups derived from MGDG turn-

over during N deprivation, non-polar leaf lipids were separ-

ated by TLC and quantified by GC of fatty acid methyl esters

(Figure 5). In accordance with the reduction in MGDG con-

tent (Figure 3), the relative amount of glycolipids in leaves

decreased from 69 to 60 mol% during N deprivation. This

decrease was accompanied by an increase in phospholipids

and in non-polar lipids, in particular triacylglycerols, free

fatty acids and lipid esters. In Arabidopsis, MGDG is rich in

hexadecatrienoic acid (16:3) derived from the chloroplast-

localized pathway of lipid synthesis. Thus determining the

fatty acid composition of non-polar lipid classes was

expected to reveal the fate of MGDG-derived fatty acids. High

amounts of 16:3 were detected in the lipid ester fraction,

suggesting that a large amount of fatty acid derived from

MGDG breakdown was converted into lipid esters (Table 2).

Chlorophyll degradation during N deprivation (Figure 1)

results in the release of free phytol. To address the question

Table 1 Fatty acid composition of galactolipids after nitrogen
deprivation

MGDG (mol%) DGDG (mol%)

Control )N )P Control )N )P

16:0 1.0 1.7 4.4* 10.0 9.3 26.0*
16:1 0.7 0.5 1.6 0.2 0.2 2.9
16:2 1.2 0.9 0.5 0.5 0.3 0.5
16:3 33.5 33.3 26.4* 2.5 2.5 0.9
18:0 0.2 0.3 1.1 0.7 0.8 3.2
18:1 0.5 0.4 0.1 1.0 0.9 0.1
18:2 2.5 3.4 2.8 4.6 8.4 6.7
18:3 60.3 59.5 62.8 80.3 77.4 59.2*

Galactolipids were isolated by TLC from leaves of plants raised
without N or P. Fatty acid composition was analysed by GC of fatty
acid methyl esters. Data represent means of three measurements and
are derived from the plant cultivations (see Figure 3). SD was always
below <2 mol%. Values significantly different from control (P < 0.01)
are marked with an asterisk.

(a)

(b)

Figure 4. Expression of the two DGDG synthases DGD1 and DGD2 is

increased during growth under N deficiency.

Two-week-old plants were grown on medium lacking nitrogen ()N), phos-

phate ()P) or magnesium ()Mg). Northern blot analysis of total leaf RNA was

carried out with different probes as indicated. The rRNA bands of the gel

before blotting (stained with ethidium bromide) are shown as loading control.

(a) Expression of MGD2, MGD3, DGD1 and DGD2 is upregulated under

phosphate deprivation. DGD1 and DGD2 expression is increased under N

deficiency.

(b) Northern analysis of plants derived from a second, independent plant

cultivation demonstrated that the stimulation of DGD1 and DGD2 expression

depends on the N concentration in the medium.

Figure 5. Accumulation of non-polar lipids during nitrogen starvation.

Non-polar lipids were isolated from leaves of plants grown in the presence

(black bars) or absence (grey bars) of nitrogen. Lipids were separated by TLC

and quantified by GC. The relative amounts of glycolipids (MGDG, DGDG,

SQDG) and phospholipids (PG, PI, PC, PE) in the polar lipid fraction was

calculated from data presented in Figure 3. Values represent mean � SD of

three measurements. The experiment was repeated with lipids derived from

one additional plant cultivation, with the same results.
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whether phytol might be incorporated into the lipid ester

fraction, lipid esters were isolated by TLC and cleaved by

transmethylation. After silylation, GC–MS analysis revealed

the presence of phytol in lipid esters (data not shown). To

determine the composition of acyl groups, lipid esters were

isolated by TLC and analysed by GC–MS without derivatiza-

tion (Figure 6). A large peak was detected in the chromato-

gram of N-deprived plants that was barely detectable in

control leaves (Figure 6a). The fragmentation pattern of this

peak was consistent with the structure of hexadecatrienoic

acid phytyl ester (16:3-phytol). Additional lipid esters were

identified with mass spectra corresponding to saturated,

medium and long-chain FAPEs (10:0-phytol, 12:0-phytol,

14:0-phytol, 16:0-phytol). FAPE standards were chemically

synthesized and their retention time and mass spectra

analysed by GC–MS. Because 16:3 was not commercially

available, the mass spectrum of the putative 16:3-phytol peak

was compared with that of a synthetic a-linolenic acid phytyl

ester (18:3-phytol; Figure 6c). The two mass spectra were

almost identical, with the exception of two fragments derived

from the fatty acid and the molecular mass ion, which were

larger by 28 (C2H2) in 18:3-phytol than in 16:3-phytol.

Therefore the predominant fatty acid alcohol ester accumu-

lating in N-deprived plants was identified as 16:3-phytol.

Localization of FAPEs to plastoglobules and thylakoids of

chloroplasts

The fact that the two constituents of FAPEs, fatty acids and

phytol, are derived from galactolipid and chlorophyll cata-

bolism, respectively, suggested that these lipid esters

localize to chloroplasts. Furthermore, the increase in num-

ber and size of plastoglobules after N deprivation (Figure 2b)

indicated that these lipid structures represent a potential site

of FAPE deposition. To determine the subcellular localiza-

tion of phytyl esters experimentally, chloroplasts were iso-

lated from Arabidopsis plants grown on soil. After

chloroplast rupture, fractions enriched in plastoglobules,

envelope membranes and thylakoids were separated by

sucrose-density centrifugation. Western blots for marker

proteins were carried out to confirm the identity of the

chloroplast fractions (Vidi et al., 2006). Total phytyl esters

and total fatty acids were measured by GC–MS and GC,

respectively, and the ratio of total FAPEs to total fatty acids

was calculated (Figure 7). The largest amount of phytyl

Table 2 Fatty acid composition of non-polar lipids after nitrogen deprivation

Diacylglycerol (mol%) Free fatty acid (mol%) Triacylglycerol (mol%) Lipid ester (mol%)

Nþ N) Nþ N) Nþ N) Nþ N)

16:0 60.2 � 4.2 70.3 � 6.5 47.6 � 3.8 45.3 � 0.7 52.9 � 0.6 75.6 � 3.3* 62.9 � 2.9 48.9 � 2.3*
16:1 4.9 � 0.6 1.7 � 0.6* 2.8 � 1.0 0.7 � 0.2 3.8 � 0.8 0.8 � 0.4* 3.2 � 1.3 2.7 � 1.2
16:2 7.9 � 1.0 7.0 � 2.3 1.1 � 0.5 0.5 � 0.2 5.0 � 0.8 3.6 � 1.7 6.8 � 2.7 6.7 � 2.6
16:3 2.7 � 1.0 1.3 � 0.2 1.2 � 0.3 0.4 � 0.2 7.6 � 1.7 1.1 � 0.1* 5.5 � 2.5 19.4 � 2.5*
18:0 16.7 � 0.3 14.6 � 0.5* 36.3 � 4.2 52.6 � 0.6* 22.7 � 3.4 14.5 � 2.2 16.0 � 3.4 5.2 � 2.1*
18:1 1.1 � 0.3 0.9 � 0.4 3.9 � 0.2 0.4 � 0.2 1.3 � 0.4 0.2 � 0.0 3.2 � 1.7 1.3 � 0.2
18:2 5.4 � 3.3 0.8 � 0.4 2.6 � 0.4 0.1 � 0.0 1.7 � 0.5 0.8 � 0.3 0.4 � 0.2 6.7 � 3.2*
18:3 1.9 � 0.1 2.8 � 1.4* 4.1 � 1.3 0.2 � 0.1 6.0 � 0.9 3.5 � 0.4* 1.8 � 0.6 10.2 � 1.0*

Non-polar lipids were isolated by TLC from leaves of plants grown with or without N. Fatty acids of individual lipids were determined by GC of
methyl esters. Data represent means � SD of three measurements derived from the plant cultivations (see Figure 5). Values significantly different
from control (P £ 0.05) are marked with an asterisk.

Figure 6. Increase in FAPE content after nitrogen deprivation.

Lipid esters isolated by TLC from leaves of Arabidopsis WT plants after N

deprivation were identified by GC–MS.

(a) Total ion chromatograms of plants grown in the presence (bottom) or

absence (top) of N. Note that 16:0-phytol has a retention time very similar to

16:3-phytol, forming a shoulder on the right side of 16:3-phytol.

(b) Mass spectrum of plant 16:3-phytol (peak at 32.5 min of )N chromato-

gram).

(c) Mass spectrum of synthetic 18:3 standard.

(d) Fragmentation pattern of 16:3-phytol.
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esters was associated with the pooled fraction F1 (plasto-

globules; Figure 7a). Fractions F1 (plastoglobules) and F2

(mostly plastoglobules) contained >50% of total fatty acid

phytyl esters of the chloroplast. Fraction F3 (envelopes and

thylakoids) contained about 10%, and the last two fractions

(F4, some envelopes and thylakoids; F5, mostly thylakoids)

about 34% of FAPE. The ratio of phytyl esters to total fatty

acids (nmol per nmol) was highest in plastoglobules (F1;

Figure 7b). A ratio of 0.17 indicates that about 17% of total

fatty acids were bound to phytyl esters, therefore fatty acid

phytyl esters represent a major lipid class in plastoglobules.

Fatty acid phytyl esters in Arabidopsis mutants affected in

lipid synthesis

Quantification by GC–MS revealed that the total amount of

phytyl esters in Arabidopsis increased from 5 to approxi-

mately 200 nmol g)1 FW during N deprivation (Figure 8a).

16:3-phytol constituted about 50% of phytyl esters, the

remainder being saturated medium-chain FAPEs (10:0, 12:0,

14:0) and 16:0-phytol (Figure 8c). Different Arabidopsis mu-

tants affected in chloroplast lipid metabolism were em-

ployed to study the biochemical pathway of FAPE synthesis.

Because 10:0, 12:0 and 14:0 are intermediates of plastidial

fatty acid de novo synthesis, medium-chain fatty acids in

phytyl esters might be directly derived form acyl–acyl carrier

protein (acyl-ACP) by thioesterases prior to incorporation

into phytyl esters. The acyl-ACP thioesterase FatB in Ara-

bidopsis is specific for 16:0 and medium-chain acyl groups

(Bonaventure et al., 2003), and thus represents a possible

enzymatic step in the pathway of FAPE synthesis. Meas-

urements of FAPEs in the Arabidopsis fatB mutant (Bona-

venture et al., 2003) revealed no differences in the total

amounts or composition of phytyl esters (Figure 8c). Thus

hydrolysis of acyl-ACPs by the FatB thioesterase is not a

prerequisite, but it is possible that acyl-ACPs serve directly

as substrates for phytyl ester synthesis.

Because 16:3 is highly abundant in MGDG, this galactol-

ipid represents a potential precursor for 16:3-phytol produc-

tion. MGD1 is the major MGDG synthase in Arabidopsis, and

in the corresponding mgd1 mutant the amount of MGDG is

reduced to about 50% of WT (Awai et al., 2001; Jarvis et al.,

2000). FAPE measurement in the mgd1 mutant revealed that

the amount of 16:3-phytol was not changed, indicating that

the decrease in MGDG content was not limiting for 16:3-

phytol synthesis (Figure 8c). However, the block in MGDG

synthesis in mgd1 is only partial, and it is possible that a

more severe reduction in MGDG content affects phytyl ester

synthesis.

To address the question whether 16:3 in phytyl esters can

be replaced with other unsaturated fatty acids, we analysed

a 16:3-free plant, act1. The act1 mutant contains only

negligible amounts of 16:3 due to a block in the plastid-

localized glycerol-3-phosphate acyltransferase (Kunst et al.,

1988). No 16:3-phytol was detected in act1 after N depriva-

tion, and the total amount of FAPEs was reduced (Fig-

ure 8a,c). The fact that the amounts of 18:3 or other

unsaturated fatty acids in the FAPE pool of act1 did not

increase suggests that 16:3-phytol synthesis is a highly

specific process in Arabidopsis.

Distribution of unsaturated fatty acids in phytyl esters of

different plant species

In contrast to Arabidopsis, which contains high amounts of

16:3 (‘16:3’ plant), other species have lost the capacity to

synthesize this fatty acid and therefore contain a-linolenic

acid (18:3) as the only triunsaturated fatty acid (‘18:3’ plants).

The high abundance of 16:3 accompanied by the absence of

18:3 in phytyl esters of Arabidopsis prompted us to analyse

the distribution of unsaturated acyl groups in phytyl esters in

(a)

(b)

Figure 7. FAPEs localize to plastoglobules and thylakoids of chloroplasts.

Chloroplasts isolated from soil-grown Arabidopsis plants were ruptured and

sub-plastidial fractions obtained by sucrose step-gradient centrifugation. The

content of the gradient fractions was confirmed by Western analysis (Vidi

et al., 2006) using antibodies raised to marker proteins and the fractions

pooled accordingly. Fractions F1 and F2 contained mostly plastoglobules; F3

was enriched in envelopes; F4 and F5 (green) contained envelope and

thylakoid membranes. FAPEs were measured by GC–MS.

(a) Total FAPEs (%) in the different subplastidial pooled fractions.

(b) Ratio of FAPEs (nmol) per total fatty acid (nmol).

The data presented are derived from one of two independent chloroplast-

isolation experiments which gave very similar results.
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different plants, including 16:3 and 18:3 species. In addition

to Arabidopsis, we selected one additional 16:3 species

(potato) and three 18:3 plants (pumpkin, rice and Lotus). In

all five species, N deprivation led to a drastic increase in

phytyl ester content to up to 500 nmol g)1 FW (Figure 8b).

The phytyl ester pool of all species contained medium-chain

acyl groups (10:0, 12:0, 14:0) and 16:0 after N deprivation.

However, large differences were found in the content of

unsaturated acyl groups. The major unsaturated fatty acids

in phytyl esters were 16:3 or 18:3; only very low amounts of

oleic acid (18:1) and linoleic acid (18:2) were found (data not

shown). In contrast to Arabidopsis (>50% 16:3-phytol),

potato contained only approximately 10% 16:3-phytol and

60% 18:3-phytol. All three 18:3 species were devoid of 16:3-

phytol. The amounts of 18:3-phytol were approximately 20%

in pumpkin and rice, and only approximately 2% in Lotus. In

the latter three species, considerable amounts of medium-

chain and 16:0 acyl groups accumulated in phytyl esters.

Therefore FAPE synthesis appears to occur in all higher

plants, but the acyl group composition shows strong varia-

tions in the different species.

Discussion

Nitrogen deficiency leads to reprogramming of the cellular

metabolism because the synthesis of numerous compounds

depends on N assimilation. Previous studies demonstrated

that N deficiency affects the abundance of chlorophyll and

thylakoid membranes and results in increased plastoglobule

size in Euglena, rice, sugar beet and cotton (Garcı́a-Ferris

et al., 1996; Kutı́k et al., 1995; Laza et al., 1993; Malavolta

et al., 2004). During N deprivation in Arabidopsis, a strong

decrease in MGDG content, with a concomitant increase in

DGDG, was observed (Figure 3). A decrease in total galact-

olipid content and a decrease in the MGDG:DGDG ratio on N

starvation have been described so far only for algae (López

Alonso et al., 2000; Mock and Kroon, 2002). A decrease in the

MGDG:DGDG ratio was also observed during Mg depriva-

tion (Figure 3), suggesting that the reduction in photosyn-

thetic units during nutrient stress affects the abundance of

thylakoid membranes with a decrease in the MGDG:DGDG

ratio. The specific reduction in MGDG during N deficiency

presumably stabilizes thylakoid membranes because, in

contrast to DGDG, which forms bilayers, MGDG is the only

non-bilayer-forming lipid in chloroplasts (Webb and Green,

1991).

The fatty acid composition of MGDG and DGDG remained

almost unchanged during N starvation (Table 1). In contrast,

phosphate deprivation resulted in an increase of 16:0 in

DGDG and a decrease of 16:3 in MGDG (Härtel et al., 2000;

Kelly et al., 2003), which might be attributed to the increased

expression of the MGDG synthases MGD2 and MGD3 (Awai

et al., 2001). Therefore phosphate deprivation results in a net

increase in galactolipid synthesis with the accumulation of

DGDG with a distinct fatty acid pattern. Under N deprivation,

however, MGD2 and MGD3 expression remained un-

(a) (b)

(d)(c)

Figure 8. FAPE composition in Arabidopsis and

in additional plant species during nitrogen depri-

vation.

Plants raised under full nutrition were transferred

to N-free medium and leaves were harvested for

FAPE measurement by GC–MS. Data represent

mean � SD of three measurements of plants

derived from two N-starvation experiments.

(a) Total amounts of FAPEs in Arabidopsis

mutants.

(b) Phytyl esters in different plant species

(c) FAPE composition in Arabidopsis mutants

(d) FAPE composition in different plant species.

A.t., Arabidopsis thaliana; S.t., potato; C.p.,

pumpkin; O.s., rice; L.j., Lotus japonicus.
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changed, which might explain why MGDG and DGDG fatty

acid compositions were not altered. Thus N deprivation

results in the conversion of a fraction of the already existing

MGDG to DGDG. Regulation of DGD1 and DGD2 expression

under N deprivation is independent of the phosphate status

of the plants (Figure 1). Furthermore, the fact that DGD1 and

DGD2, but not MGD2 and MGD3 expression are stimulated

during N deprivation suggests that regulation is different

from phosphate deprivation, which results in the induction

of all four genes (Awai et al., 2001; Kelly and Dörmann, 2002;

Kelly et al., 2003). The replacement of phospholipids with

glycolipids during phosphate deprivation leads to the

remobilization of phosphate from the membranes. It has

been estimated that one-third of organic phosphate is bound

to phospholipids (Poirier et al., 1991), therefore the remobi-

lization of phosphate from membranes is important for

phosphate homeostasis. In contrast, N deprivation did not

affect the amounts of N-containing glycerolipids (PC, PE and

PS). The amount of N in PC, PE and PS is low (about

1.7 lmol N g)1 FW considering 25% total PC, PE, PS content

in leaves; Figure 1 and 3). Considerable amounts of N are

found in chlorophyll (approximately 6.0 lmol N g)1 FW;

Figure 1); free amino acids (0.3 lmol g)1 FW; calculated

from Carrari et al., 2005); and protein-bound amino acids

(11 mg protein g)1 FW, equivalent to approximately

100 lmol N g)1 FW). The low N content in glycerolipids

might explain why N deprivation does not affect the

amounts of PC, PE and PS, but rather results in the

remobilization of N from protein-bound amino acids.

A strong increase in triacylglycerol, free fatty acids and

lipid esters was observed during N deprivation (Figure 5).

Similarly, protoplastation or senescence also resulted in a

strong increase in non-polar lipid synthesis (Browse et al.,

1988; Kaup et al., 2002). Presumably, fatty acids derived

from galactolipid breakdown are not immediately degraded

but accumulate in non-polar lipids, in particular lipid esters

(Figure 9). FAPEs were previously found in dinoflagellates

(Cranwell et al., 1985, 1990), mosses (Buchanan et al., 1996;

Gellerman et al., 1975) and bacteria (Rontani et al., 1999),

but their function remained unknown. Furthermore, phytyl

esters have been identified in higher plants including Acer

platanoides, parsley, Phaseolus, grasses, and some Amazo-

nian species (Anderson et al., 1984; Csupor, 1971; Gellerman

et al., 1975; Peisker et al., 1989; Pereira et al., 2002). Phytyl

esters accumulate in the Arabidopsis chilling sensitive

mutant 1 (Patterson et al., 1993). The identification of phytyl

esters in WT Arabidopsis, and its drastic increase during N

deprivation and senescence (Figure 6; Ischebeck et al., 2006)

clearly demonstrate that FAPEs represent a class of stress-

regulated higher plant lipids. The phytol moiety of FAPEs is

presumably derived from chlorophyll degradation. The

amount of tocopherol, another phytol-dependent lipid, also

increases in leaves under N limitation (11.5 � 1.0 and

22.7 � 3.0 lg g)1 FW for þN and )N conditions, respect-

ively). Previous studies have already indicated that phytol

from chlorophyll degradation might be employed for toco-

pherol synthesis (Ischebeck et al., 2006; Peisker et al., 1989;

Rise et al., 1989; Valentin et al., 2006).

FAPEs were localized to chloroplasts, and were partic-

ularly enriched in plastoglobules (Figure 7). In addition to

plants raised on soil (Figure 7), chloroplasts were also

isolated from leaves of N-deprived plants. However, due to

the extremely low yield, chloroplasts from N-starved plants

had to be prepared by protoplastation, which might affect

lipid composition (Browse et al., 1988). Very similar results

were obtained, as presented in Figure 7: the majority of

FAPEs in chloroplasts of N-deprived plants localized to

plastoglobules and thylakoids (data not shown). To assess

the distribution of membrane lipids and non-polar lipids,

chloroplast fractions were also analysed by TLC. In agree-

ment with previous studies (Tevini and Steinmüller, 1985),

high proportions of non-polar lipids and only low amounts

of galactolipids were detected in plastoglobules. In contrast,

galactolipids were predominant in thylakoids (data not

shown). Interestingly, tocopherol cyclase, a key enzyme of

tocopherol synthesis, as well as high amounts of tocopherol,

were localized to plastoglobules of chloroplasts (Austin

et al., 2006; Vidi et al., 2006; Ytterberg et al., 2006). Therefore

FAPEs and tocopherol both localize to plastoglobules, where

they might accumulate during senescence or abiotic stress.

FAPEs and tocopherol might represent a transient sink for

the deposition of fatty acids and phytol, which, in their free

form, might destabilize the bilayer membrane of thylakoids

due to their detergent-like characteristics.

The mechanism of FAPE production in higher plants

remains unclear. All plant species analysed in this study

accumulate saturated, medium-chain acyl groups (10:0,

12:0, 14:0) and 16:0 in phytyl esters during N deprivation,

Figure 9. Lipid changes observed during nitrogen deprivation.

During N deprivation, degradation of MGDG results in the release of free fatty

acids, in particular 16:3 and 18:3. Additional DGDG is synthesized from MGDG

after induction of DGD1 and DGD2. Fatty acids released from MGDG are

incorporated into triacylglycerol, or esterified to phytol which is released

during chlorophyll degradation. Furthermore, medium-chain acyl-ACPs could

serve as precursors for FAPE synthesis. However, the nature of the substrates

and the mechanism of FAPE synthesis is unknown.
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suggesting that they might be derived from plastidial fatty

acid synthesis (Figure 9). In addition, unsaturated acyl

groups, in particular 16:3 or 18:3, were detected in the

phytyl ester fraction. Only low amounts of 18:3-phytol

accumulate in the Arabidopsis act1 mutant, although MGDG

in act1 contains large amounts of 18:3 instead of 16:3.

Therefore the incorporation of 16:3 into phytyl esters is a

highly specific process in Arabidopsis. Further evidence for

the high specificity of phytyl ester synthesis for unsaturated

acyl groups came from the analysis of additional species

including 16:3 and 18:3 plants. Comparison of Arabidopsis

and potato, two 16:3 plants, showed that only in Arabidop-

sis, 16:3 is predominant in phytyl esters, whereas 18:3-

phytol is most abundant in potato. Potato contains even

more 18:3-phytol than the authentic 18:3 plants pumpkin,

rice or Lotus, the latter being basically devoid of 18:3-phytol.

These results suggest that two pathways of FAPE synthesis

might exist in plants: one specific for medium-chain and 16:0

acyl groups derived from plastidial fatty acid de novo

synthesis; and a second pathway that is highly specific for

16:3 or 18:3 in the different plant species (Figure 9). Our data

clearly demonstrate that during N deprivation galactolipids

are subject to lipid turnover, and the acyl groups released in

this process are to a large extent incorporated into FAPEs.

Furthermore, these processes depend on the activity of

specific enzymes present in different plant species. The

genes encoding enzymes of FAPE synthesis and their

functions remain unknown, and will be the focus of future

studies.

Experimental procedures

Plants and growth conditions

Arabidopsis thaliana plants (ecotype Columbia) were grown on
Murashige and Skoog (1962) medium (MS) with 2% (w/v) sucrose,
20 mM MES–KOH pH 5.6, at 120 lmol m)2 sec)1 light (16 h per day).
Arabidopsis mutants were as described elsewhere (fatB, Bonaven-
ture et al., 2003; mgd1, Jarvis et al., 2000; act1, Kunst et al., 1988).
After 2 weeks, plants were transferred to synthetic media contain-
ing: 0.8% agarose, 1% sucrose, 2.5 mM KNO3, 1 mM MgSO4, 1 mM

Ca(NO3)2, 1 mM NH4NO3, 1 mM KH2PO4, 25 lM Fe-EDTA, 35 lM

H3BO3, 7 lM MnCl2, 0.25 lM CuSO4, 0.5 lM ZnSO4, 0.1 lM Na2MoO4,
5 lM NaCl, 5 nM CoCl2 (Estelle and Somerville, 1987). For phosphate
deprivation, KH2PO4 was omitted from the medium. Media for
N-deprivation experiments were based on synthetic medium with
0 mM N [0 mM Ca(NO3)2, 1 mM CaCl2, 0 mM NH4NO3, 0 mM KNO3,
2.5 mM KCl], 0.65 mM N [0.1 mM Ca(NO3)2, 0.9 mM CaCl2, 0.1 mM

NH4NO3, 0.25 mM KNO3, 2.25 mM KCl], 6.5 mM N (complete syn-
thetic medium, see above) or 65 mM N [10 mM Ca(NO3)2, 0 mM

CaCl2, 10 mM NH4NO3, 25 mM KNO3, 0 mM KCl].
The nia1nia2 double mutant (G¢4-3) defective in the two nitrate

reductase genes NIA1 and NIA2 (Wilkinson and Crawford, 1991,
1993; Nottingham Arabidopsis Seed Centre, UK) was germinated on
MS medium, and 3 weeks later transferred to ammonia-containing
medium [synthetic medium with 0 mM Ca(NO3)2, 1 mM CaCl2,
2.5 mM NH4NO3, 0 mM KNO3 1 mM KCl] or ammonia-free medium
[synthetic medium with 0 mM Ca(NO3)2, 1 mM CaCl2, 0 mM NH4NO3,

5 mM KNO3, 2.5 mM KCl]. The medium for nia1nia2 was adjusted to
pH 6.5 because nia1nia2 growth is strongly affected at pH < 6.0
(Wang et al., 2004).

Plants of Lotus japonicus were germinated on MS medium, and
after 3 weeks transferred to N-free medium (see above). Potato
(Solanum tuberosum Désirée), rice (Oryza sativa) and pumpkin
(Cucurbita pepo Gelber Zentner) plants were raised in the glass-
house on sand fertilized with complete nutrient solution (Pacovsky
and Fuller, 1988), and after 5 weeks transferred to pots watered with
N-deficient solution. Leaf samples were taken 4–8 weeks later, when
plants showed clear symptoms of N deprivation (reduced growth,
yellowish leaves).

Measurements of lipids, chlorophyll and phosphate

Total fatty acids in leaves were transmethylated and quantified by
GC-flame ionization detection (FID) using pentadecanoic acid (15:0)
as internal standard according to Browse et al. (1986). Lipids were
extracted from frozen leaves with 2 vol chloroform/methanol/formic
acid (1:1:0.1) and 1 vol 1 M KCl, 0.2 M H3PO4. Membrane lipids were
separated by TLC (Dörmann et al., 1995a,b). Non-polar lipids were
first purified by chromatography on silica columns (Kieselgel 60;
Merck http://www.vwr.com) developed with chloroform/methanol
(2:1) prior to separation by TLC with hexane/diethylether/acetic acid
(85:15:1). Lipids were isolated from the plate and, after transme-
thylation, quantified by GC. Chlorophyll and inorganic phosphate
were measured photometrically according to Lichtenthaler (1987)
and Itaya and Ui (1966), respectively.

Northern analysis

Total RNA was isolated from Arabidopsis leaves, separated by ag-
arose gel electrophoresis and blotted onto Nylon membranes
(Sambrook et al., 1989). For hybridization, cDNA fragments derived
from Arabidopsis galactolipid synthase genes were used: MGD1,
MGD2, MGD3 (Awai et al., 2001; Jarvis et al., 2000); DGD1, DGD2
(Kelly and Dörmann, 2002).

Electron microscopy

Leaves were fixed for 2 h with glutaraldehyde (2.5%) in sodium–
potassium phosphate buffer (0.1 M, pH 7.0) including paraformal-
dehyde (2%) and tannic acid (0.2%). After washing with phosphate
buffer, samples were incubated for 12 h in osmium tetroxide (1% in
50 mM sodium–potassium phosphate buffer, pH 7.0). After washing
with phosphate buffer, they were dehydrated in a graded series of
ethanol followed by propylene oxide, incubated in a mixture of
propylene oxide/ERL (v/v) and pure ERL (Spurr, 1969), and poly-
merized overnight at 60�C. Ultra-thin sections were contrasted with
uranyl acetate and lead citrate. Transmission electron micrographs
were obtained with a Siemens 101 at 80 kV electron microscope
(Siemens http://www.siemens.com).

Analysis of FAPEs by GC–MS

The lipid ester fraction isolated by TLC of non-polar leaf lipids was
extracted with chloroform/methanol (2:1), and the organic solvent
evaporated with nitrogen gas. Lipid esters were dissolved in hexane
and injected directly into GC–MS. GC–MS was carried out on an
Agilent HP6890 Series GC with 5973 inert mass selective detector
according to Ischebeck et al. (2006). Standards of FAPEs were syn-
thesized from phytol (Aldrich http://www.sigmaaldrich.com) and
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different fatty acids (pentadecanoic acid, 15:0; palmitic acid, 16:0;
oleic acid, 18:1; a-linolenic acid, 18:3; Sigma, http://www.sigma-
aldrich.com/) according to Gellerman et al. (1975). For quantifica-
tion of FAPEs, a total lipid extract was obtained from leaves and
15:0-phytol added as internal standard. Lipids were directly injected
into GC–MS, and FAPEs quantified using peak areas of total ion
chromatograms. Because the peaks of 16:3-phytol and 16:0-phytol
overlap, the amount of 16:0-phytol was calculated using extracted
ion chromatograms of m/z ¼ 278.3.

Chloroplast fractionation

Chloroplasts from Arabidopsis plants raised on soil were isolated
after homogenization of leaves according to Vidi et al. (2006). After
hypotonic rupture of chloroplasts, sub-plastidial compartments
were separated by centrifugation using a standard sucrose density
gradient as described by Vidi et al. (2006). Western blot analysis
[using antibodies against plastoglobulin 35 (PGL35); translocator at
the outer chloroplast envelope 75 (TOC75); chlorophyll a binding
protein (CAB)] was carried out to assess the distribution of plasto-
globules, envelopes and thylakoids. The results of Western blots
were analogous to those of Figure 2 of Vidi et al. (2006), and the
gradient fractions were pooled accordingly. The gradient fractions
1–6 (F1) and 7–13 (F2) contained mostly plastoglobules; envelopes
and low amounts of thylakoids were found in fractions 14–19 (F3);
fractions 20–23 (F3) contained envelopes and thylakoids, and frac-
tions 24–29 (F5) mostly thylakoids (Vidi et al., 2006). Lipids were
extracted from the five fraction pools with chloroform/methanol
(2:1), and total fatty acids and FAPEs were quantified by GC–FID and
GC–MS, respectively.
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Essigmann, B., Güler, S., Narang, R.A., Linke, D. and Benning, C.

(1998) Phosphate availability affects the thylakoid lipid composi-
tion and the expression of SQD1, a gene required for sulfolipid
biosynthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA,
95, 1950–1955.

Estelle, M.A. and Somerville, C. (1987) Auxin-resistant mutants of
Arabidopsis thaliana with an altered morphology. Mol. Gen.
Genet. 206, 200–206.

Garcı́a-Ferris, C., de los Rı́os, A., Ascaso, C. and Moreno, J. (1996)
Correlated biochemical and ultrastructural changes in nitrogen-
starved Euglena gracilis. J. Phycol. 32, 953–963.

Gellerman, J.L., Anderson, W.H. and Schlenk, H. (1975) Synthesis
and analysis of phytyl and phytenoyl wax esters. Lipids, 10, 656–
661.
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