R. L. Sabina, D. Patterson, and E. W. Holmes, 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells, J Biol Chem, vol.260, pp.6107-6114, 1985.

J. Ceschin, C. Saint-marc, J. Laporte, A. Labriet, C. Philippe et al., Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAr) transporters, J Biol Chem, vol.289, pp.16844-16854, 2014.

D. G. Hardie, AMPK-sensing energy while talking to other signaling pathways, Cell Metab, vol.20, pp.939-952, 2014.

D. M. Gonzalez-girones, C. Moncunill-massaguer, D. Iglesias-serret, A. M. Cosialls, A. Perez-perarnau et al., AICAR induces Bax/Bak-dependent apoptosis through upregulation of the BH3-only proteins Bim and Noxa in mouse embryonic fibroblasts, Apoptosis, vol.18, pp.1008-1016, 2013.

A. F. Santidrian, D. M. Gonzalez-girones, D. Iglesias-serret, L. Coll-mulet, A. M. Cosialls et al., AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells, Blood, vol.116, pp.3023-3032, 2010.

Y. C. Tang, B. R. Williams, J. J. Siegel, and A. A. , Identification of aneuploidy-selective antiproliferation compounds, Cell, vol.144, pp.499-512, 2011.

C. Bardeleben, S. Sharma, J. R. Reeve, S. Bassilian, P. Frost et al., Metabolomics identifies pyrimidine starvation as the mechanism of 5-aminoimidazole-4-carboxamide-1-beta-riboside-induced apoptosis in multiple myeloma cells, Mol Cancer Ther, vol.12, pp.1310-1321, 2013.

G. Robert, B. Sahra, I. Puissant, A. Colosetti, P. Belhacene et al., Acadesine kills chronic myelogenous leukemia (CML) cells through PKC-dependent induction of autophagic cell death, PLoS One, pp.4-7889, 2009.

P. Ly, S. B. Kim, A. A. Kaisani, M. G. Wright, W. E. Shay et al., , 2013.

, Aneuploid human colonic epithelial cells are sensitive to AICAR-induced growth inhibition through EGFR degradation, Oncogene, vol.32, pp.3139-3146

B. A. Weaver and D. W. Cleveland, Does aneuploidy cause cancer?, Curr Opin Cell Biol, vol.18, pp.658-667, 2006.

D. Guo, I. J. Hildebrandt, R. M. Prins, H. Soto, M. M. Mazzotta et al., The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis, Proc Natl Acad Sci U S A, vol.106, pp.12932-12937, 2009.

S. Theodoropoulou, K. Brodowska, M. Kayama, Y. Morizane, J. W. Miller et al., Aminoimidazole Carboxamide Ribonucleotide (AICAR) Inhibits the Growth of Retinoblastoma In Vivo by Decreasing Angiogenesis and Inducing Apoptosis, PLoS One, 2013.

V. A. Narkar, M. Downes, R. T. Yu, E. Embler, Y. X. Wang et al., AMPK and PPARdelta agonists are exercise mimetics, Cell, vol.134, pp.405-415, 2008.

E. Van-den-neste, B. Cazin, A. Janssens, E. Gonzalez-barca, M. J. Terol et al., Acadesine for patients with relapsed/refractory chronic lymphocytic leukemia (CLL): a multicenter phase I/II study, Cancer Chemother Pharmacol, vol.71, pp.581-591, 2013.

E. E. Vincent, P. P. Coelho, J. Blagih, T. Griss, B. Viollet et al., Differential effects of AMPK agonists on cell growth and metabolism, Oncogene, vol.34, pp.3627-3639, 2015.

X. Liu, R. R. Chhipa, S. Pooya, M. Wortman, S. Yachyshin et al., Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK, Proc Natl Acad Sci U S A, vol.111, pp.435-444, 2014.

B. Guigas, N. Taleux, M. Foretz, D. Detaille, F. Andreelli et al., AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside, Biochem J, vol.404, pp.499-507, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478741

K. R. Laderoute, K. Amin, J. M. Calaoagan, M. Knapp, T. Le et al., 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments, Mol Cell Biol, vol.26, pp.5336-5347, 2006.

Y. Fx and K. L. Guan, The Hippo pathway: regulators and regulations, Genes Dev, vol.27, pp.355-371, 2013.

C. G. Hansen, T. Moroishi, and G. Kl, YAP and TAZ: a nexus for Hippo signaling and beyond, Trends Cell Biol, vol.25, pp.499-513, 2015.

A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman et al., Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nat Genet, vol.29, pp.365-371, 2001.

G. Auf, A. Jabouille, S. Guerit, R. Pineau, M. Delugin et al., Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma, Proc Natl Acad Sci U S A, vol.107, pp.15553-15558, 2010.

H. Zhang, C. Y. Liu, Z. Y. Zha, B. Zhao, J. Yao et al., TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition, J Biol Chem, vol.284, pp.13355-13362, 2009.

I. Cebola, S. A. Rodriguez-segui, C. Cho, J. Bessa, M. Rovira et al., TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors, Nat Cell Biol, vol.17, pp.615-626, 2015.

F. Zanconato, M. Forcato, G. Battilana, L. Azzolin, E. Quaranta et al., Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth, Nat Cell Biol, vol.17, pp.1218-1227, 2015.

Z. Meng, T. Moroishi, and G. Kl, Mechanisms of Hippo pathway regulation, Genes Dev, vol.30, pp.1-17, 2016.

M. Sudol, Neuregulin 1-activated ERBB4 as a "dedicated" receptor for the Hippo-YAP pathway, Sci Signal, vol.7, p.29, 2014.

K. Strassburger, M. Tiebe, F. Pinna, K. Breuhahn, and A. A. Teleman, , 2012.

, Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP, Dev Biol, vol.367, pp.187-196

J. S. Mo, Z. Meng, Y. C. Kim, H. W. Park, C. G. Hansen et al., Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway, Nat Cell Biol, vol.17, pp.500-510, 2015.

H. T. Nguyen, X. Hong, S. Tan, Q. Chen, L. Chan et al., Viral small T oncoproteins transform cells by alleviating hippo-pathway-mediated inhibition of the YAP proto-oncogene, Cell Rep, vol.8, pp.707-713, 2014.

M. Shanzer, I. Ricardo-lax, R. Keshet, N. Reuven, and Y. Shaul, The polyomavirus middle T-antigen oncogene activates the Hippo pathway tumor suppressor Lats in a Src-dependent manner, Oncogene, vol.34, pp.4190-4198, 2015.

B. Daignan-fornier and B. Pinson, 5-Aminoimidazole-4-carboxamide-1--beta-D-ribofuranosyl 5'-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects, vol.2, pp.292-302, 2012.

P. Day, A. Sharff, L. Parra, A. Cleasby, M. Williams et al., Structure of a CBS-domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP and ZMP, Acta Crystallogr D Biol Crystallogr, vol.63, pp.587-596, 2007.

S. Visser and X. Yang, LATS tumor suppressor: a new governor of cellular homeostasis, Cell Cycle, vol.9, pp.3892-3903, 2010.

F. Zanconato, M. Cordenonsi, and S. Piccolo, YAP/TAZ at the Roots of Cancer, Cancer Cell, vol.29, pp.783-803, 2016.

K. F. Harvey, X. Zhang, and T. Dm, The Hippo pathway and human cancer, Nat Rev Cancer, vol.13, pp.246-257, 2013.

T. Moroishi, C. G. Hansen, and G. Kl, The emerging roles of YAP and TAZ in cancer, Nat Rev Cancer, vol.15, pp.73-79, 2015.

C. M. Pfleger, The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease, Curr Top Dev Biol, vol.123, pp.181-228, 2017.

B. Zheng and L. C. Cantley, Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase, PNAS, vol.104, pp.819-822, 2007.

C. C. Chou, K. H. Lee, I. L. Lai, D. Wang, X. Mo et al., AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis, Cancer Res, vol.74, pp.4783-4795, 2014.

H. S. Kim, M. J. Kim, E. J. Kim, Y. Yang, M. S. Lee et al., , 2012.

, Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression, Biochem Pharmacol, vol.83, pp.385-394

W. Wang, Z. D. Xiao, X. Li, K. E. Aziz, B. Gan et al., AMPK modulates Hippo pathway activity to regulate energy homeostasis, Nat Cell Biol, vol.17, pp.490-499, 2015.

G. Santinon, A. Pocaterra, and S. Dupont, Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways, Trends Cell Biol, vol.26, pp.289-299, 2016.

A. Britschgi, S. Duss, S. Kim, J. P. Couto, H. Brinkhaus et al., The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERalpha, Nature, vol.541, pp.541-545, 2017.

W. Li, S. M. Saud, M. R. Young, G. Chen, B. Hua et al., for cancer prevention and treatment, Oncotarget, vol.6, pp.7365-7378, 2015.