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Hygiea is the fourth largest main belt asteroid and the only known asteroid whose 

surface composition appears similar to that of the dwarf planet Ceres1,2, suggesting a 

similar origin for these two objects. Hygiea suffered a giant impact more than 2 Gyr 

ago3 that is at the origin of one of the largest asteroid families. However, Hygeia has 

never been observed with sufficiently high resolution to resolve the details of its surface 

nor to constrain its size and shape. Here, we report high angular resolution imaging 

observations of Hygiea with the VLT/SPHERE instrument (~20 mas at 600 nm) that 

reveal a basin-free nearly spherical shape with a volume equivalent radius of 217 (±7) 

km, implying a density of 1944 (±250; 1-sigma) kg/m3. In addition, we determined a new 

rotation period for Hygiea, P~13.8h, that is half of the currently accepted value. 

Numerical simulations of the family forming event show that Hygiea’s spherical shape 

and family can be explained by a collision with a large projectile (Diameter~75-150 km). 

By comparing Hygiea’s sphericity with that of other solar system objects, it appears that 

Hygiea is nearly as spherical as Ceres, opening a possibility for this object to be 

reclassified as a dwarf planet. 

 

Albeit being an easy target for ground based observations owing to its large angular 

diameter, Hygiea is the least studied of the four asteroids with diameters greater than 400 km 

(Ceres, Pallas, Vesta and Hygiea; Fig. 1), whose large sizes may have allowed them to reach 

hydrostatic equilibrium early in their history. It follows that a number of its basic physical 

properties, such as its shape and spin state have not yet been reliably constrained.  

To constrain these physical properties, we performed - as part of our ESO large 

program4 - high angular resolution imaging observations of Hygiea with the SPHERE 

instrument on the Very Large Telescope (Paranal Observatory, Chile) at 12 different epochs 

in 2017 and 2018. We used the new-generation visible adaptive optics ZIMPOL5  in narrow 



band imaging mode (N_R filter; central wavelength = 645.9 nm). In order to restore the 

optimal angular resolution of each reduced image, we used the MISTRAL myopic 

deconvolution algorithm6 alongwith a parametric Point Spread Function7. We then applied the 

All-Data Asteroid Modeling (ADAM8) algorithm to our set of deconvolved images to 

reconstruct the 3D shape model and the spin of Hygiea. The shape reconstruction was 

complicated by discernible albedo variegation apparent in the images (see Methods). To take 

into account such phenomenon, the relative brightness of each facet with respect to the 

surrounding ones was treated as a free parameter (we allowed a maximum variegation of 

±30%) and  we further defined a smoothing operator as a regularization term to prevent large 

deviations between neighboring facets. The comparison between the twelve adaptive optics 

epochs and the corresponding shape model projections is shown in Fig. 2. 

Our best fits yielded semi-axes of 225 ± 5 km, 215 ± 5 km, and 212 ± 10 km and a 

volume equivalent radius of  217 ± 7 km. We found a rotational pole of right ascension 319 ± 

3°, declination -46 ± 3° and a rotation period of 13.82559 ± 0.00005 h, that is half of the 

previously reported and widely accepted value9. Our rotation period is compatible both with 

all lightcurves acquired so far for Hygiea including the ones acquired with the TRAPPIST 

telescopes in parallel to our SPHERE observations (supplementary figure 1) and the SPHERE 

images. The axial ratios including their uncertainties appear compatible with the equilibrium 

MacLaurin spheroid. The specific angular momentum L_norm = L/sqrt(G M3 R) = 0.070 ± 

0.002 is lower than the bifurcation point (0.304) where the equilibrium figure becomes a 

triaxial Jacobi ellipsoid10.  

Our shape and our best estimate of Hygiea’s mass, (8.32 ± 0.80) × 1019
 

kg 

(supplementary figure 2 and supplementary table 3), yield a density of 1944 ± 250 kg/m3. 

Such density is compatible, within errors, with Ceres’ density11 (2161.6 ± 2.5 kg/m3). Note 

that the reaccumulation process following the giant impact at the origin of the family (see 



hereafter) may have trigggered some level of macroporosity and the original density of 

Hygiea may be even closer to that of Ceres. The high water fraction inferred in both cases 

alongwith their similar spectral properties1,2 imply a formation location beyond the snowline 

for these two bodies. 

We observed Hygiea with sub-Earth latitudes near 50°S (first epoch) and 24°S (second 

epoch) so that the visible surface extended from 66°N through 90°S, leading to ~95% surface 

coverage. Surprisingly, none of our images and their associated contours (supplementary 

figure 3) revealed the large impact basin expected from the large size of the Hygiea family3,12 

(volume-equivalent diameter (Deq) of the family members ~ 100 km; see Methods). In 

comparison, Vesta possesses a large impact basin that is clearly observable from the 

ground13,7 (Fig. 1) although its family is smaller in volume than Hygiea’s family by a factor of 

~8 (Deq ~ 50 km)12. To quantify the overall absence of a large basin on Hygiea, we fit 

Hygiea’s 3D shape model with an ellipsoid and subsequently measured the radial difference 

between the two shapes. We also calculated the volume fraction of excavated material as 

|Volume_Body – Volume_Ellipsoid| / Volume _Body. We performed the same calculations 

for Ceres and Vesta. Our calculations show that the large-scale topography of Hygiea is 

similar to that of Ceres, implying a global lack of large impact basin across its surface. They 

also reveal that – similarly to Ceres - Hygiea’s shape is very close to that of an ellipsoid. In 

the case of Vesta, the existence of a large depression is clearly observed in the histogram 

(supplementary figure 4).  

To investigate the origin of Hygiea’s nearly spherical shape as well as the absence of a 

large impact basin, we used a smoothed particle hydrodynamics (SPH) code14-16 to simulate 

the family-forming event. Our code is well adapted to simulate collisions of rotating and self-

gravitating asteroids. We assumed monolithic basaltic material, the Tillotson equation of 

state17, the von Mises yield criterion18 to account for plastic deformations and the Grady-Kipp 



model19 for fragmentation. The self-gravity has been implemented using the Barnes-Hut 

algorithm20. All input parameters are listed in supplementary table 5. Prior to running the 

simulations, our code was tested against previous studies14, and we also carefully verified the 

stability of rotating objects as well as the validity of the gravity approximation by comparing 

it to the `brute-force’ approach. 

We performed a large number of simulations testing various projectile diameters (dimp 

range: 70-150 km), impact angles (ϕimp range :15-60 deg),  and initial rotation periods for the 

target (Ppb range: 3-∞ h). Large values for the projectile diameter were required to match the 

large size of the Hygiea family. We further used a range of impact speeds from 5 up to 7 

km/s. Both fragmentation and reaccumulation phases were computed by the SPH algorithm to 

resolve the shape of the largest remnant (i.e. Hygiea). Only for the final reaccumulation we 

switched to a more efficient N-body algorithm, using hard-sphere and perfect-merging 

approximations, to obtain a synthetic family and its size frequency distribution (SFD).  The 

numerical model is described in detail in Methods. 

A first outcome of our simulations is that Hygiea’s final shape is highly spherical, 

regardless the diameter of the impactor (in the 75-150 km size range) and the impact angle 

(Fig. 3). In particular, all pre-existing surface features have been erased implying that the 

observed absence of a large impact basin on Hygiea is a natural outcome of the family 

forming impact. We further used the SFD of the observed family to better constrain the 

parameters of the giant collision. It appears that the observed SFD can be matched either by 

head-on (0-30 deg) dimp = 75 km impacts, or alternatively oblique (30-60 deg) dimp = 150 km 

impacts, although only the head-on impacts form one or few intermediate-sized (40 

km<D<100 km) fragments; no such fragments are formed for impact angles greater than 45º. 

Given that the second largest body of the family [(1599) Giomus; see Methods] is indeed an 

intermediate-sized fragment, the head-on impact is more plausible. It follows that the 



impactor had likely dimp ~ 100 km. Our simulations imply that the impact fully damaged the 

parent body and resulted in substantial reaccumulation21. When Hygiea formed, macroscopic 

oscillations drove the material to behave as a fluid22, naturally resulting in the formation of a 

rotational equilibrium nearly spherical object (Fig. 3). Accordingly, the effective friction of 

the damaged material had to be negligible for Hygiea (see Methods). Some departures from a 

rotational equilibrium can occur only if the material regains its strength, e.g. when acoustic 

fluidization is stopped23,24. Indeed, we detect global oscillations of the shape in our 

simulations (see supplementary figure 5), which logically occur on the keplerian time scale, 

i.e. 2.4 hours. Using a,b,c for semi-axes of a dynamically equivalent ellipsoid, we can explain 

the observed b/a and c/b ratios provided the fluidization stopped after approximately 4 hours.  

In contrast to Hygiea, the Rheasilvia basin on Vesta resulted from an impact by a D~65 km 

sized projectile25. In this case, we suppose that, as Vesta is ~3 times more massive than 

Hygeia, the impact energy was not sufficient to completely shatter it and the collision ended 

up being an excavation event.  

The nearly spherical shape of Hygiea led us to evaluate the possibility to classify this 

object as a dwarf planet. Any main belt asteroid satisfies right away three of the four 

characteristics required for an object being labelled a dwarf planet, namely a celestial body 

that (a) is in orbit around the Sun, (b) has not cleared the neighbourhood around its orbit, and 

(c) is not a satellite. The last requirement is to have sufficient mass for its self-gravity to 

overcome rigid body forces so that it assumes a hydrostatic equilibrium nearly round shape. 

To properly quantify this last and essentially main criterion, we measured the sphericity26 of 

Hygiea (see Methods) for comparison with that of the terrestrial planets, the two dwarf planets 

Pluto and Ceres, and a few asteroids (Fig. 4). It appears that Hygiea is nearly as spherical as 

Ceres (ψHygiea~0.9975; ψCeres~0.9988). Hygiea could thus be classified as a dwarf planet, so far 



the smallest in the solar system. We anticipate the discovery of several new dwarf planet 

candidates when 3D shape models become available for D>400 km trans-Neptunian objects.   

 

Methods 

Revision of Hygiea’s rotation period 

 

As part of our ESO large program4 (ID 199.C-0074; PI: P. Vernazza), we acquire 

complementary lightcurves when the pole solution of our target is not well constrained and/or 

when we are not able to reconstruct its 3D shape with ADAM8 possibly indicating a wrong 

estimate of its pole solution or of its rotation period. This is exactly the case for Hygiea. Since 

1991 (ref 9), multiple authors have all reported a rotation period of 27.6 h for Hygiea27, but 

there has always been a lack of densely sampled phased lightcurves for this object.  

We therefore planned our observations assuming a 27.6h rotation period and we observed 

Hygiea with TRAPPIST-North and –South28 over a ~40 nights timeframe. The phased 

lightcurve started to show an ordinary double-sinusoidal shape as our observations were going 

on. However, the lightcurve appeared to be perfectly symmetrical which is very unlikely. We 

then phased the data using the half period of ~13.8h, which produced a very convincing fit 

with a single peak lightcurve (supplementary figure 1). Assuming this new rotation period, we 

were able to reconstruct Hygiea’s 3D shape model as well as to constrain its spin. In addition, 

the phasing  of our VLT/SPHERE images acquired at several epochs became correct with 

such new rotation period which wasn’t the case with the older one.  

 

How round is Hygiea? 



 

Contour extraction 

We used a first approach, namely contour extraction7, in order to highlight the sphericity of 

Hygiea. We compare in  supplementary figure 3 the contours of our Hygiea images with those 

of a sphere, revealing – on average - a minimal difference between the two. It is important to 

stress that the contours obtained with VLT/SPHERE are precise at the pixel level7.  

 

Calculation of the sphericity 

To constrain Hygiea’s sphericity and compare it to that of other solar system bodies including 

planets and minor bodies (asteroids, comets), we applied a sphericity formula26 to our 3D 

shape model. Following this formula, the sphericity is a function of the surface area and of the 

volume. However, the surface area is very sensitive to the surface topography and of the 

resolution of the 3D shape model. Therefore, performing a direct comparison of the sphericity 

of various objects having very different 3D shape model resolutions and/or topographies 

would lead to incorrect results. To overcome this problem and in order to perform a self 

consistent comparison, we computed the real spherical harmonic expansion coefficients (10th 

order) of the 3D shape model for each object4,29-40 (Pettengill et al. 1991, Thomas et al. 1994, 

Hudson et al. 2000, Ostro et al. 2000, Smith et al. 2001, Jorda et al. 2012, Preusker et al. 

2012, Jaumann et al. 2012, Farnham 2013, Preusker et al. 2014, 2016, Vernazza et al. 2018, 

Viikinkoski et al. 2018). By doing so, we produced 3D shape models that reproduce well the 

overal shape of our objects ignoring the small scale topographic variations. An example of the 

procedure is highlighted in supplementary figure 6. As a final step, we applied the formula of 

the sphericity to these spherical harmonics models.  

 



Hygiea’s reflectance map 

 

The best-quality SPHERE images were combined together into a cylindrical-projection map 

in order to study the main geological features of Hygiea. We call it a reflectance map because 

it contains both albedo and shadow information. Indeed, the limited number of observed 

geometries and the resolution of the images do not allow to accurately correct for illumination 

of local topography. As a consequence, we cannot always separate albedo information from 

shadowing effects.  

The quality of each sequence of observations was evaluated according to three criteria: 1) the 

angular size of Hygiea at the time of the observation, 2) the presence, or not, of deconvolution 

artefacts in the images, and 3) the consistency of the location of the main albedo features on 

the surface of Hygiea across the full sequence of images. According to these criteria, the first 

two epochs of observations, 2017-06-23 and 2017-07-20 were found to provide the highest 

image quality. The images for these two epochs also exhibit the highest variability in 

reflectance seen across the surface of Hygiea, and include most of its main albedo features. 

We therefore chose to use only these images to maximize the resolution and reliability of our 

map, despite the fact that they only sample about one third of the total surface covered by our 

complete set of observations.  

A photometric correction was applied to each image in order to correct the overall 

illumination gradient7. The asteroidocentric longitude and latitude of each pixel was measured 

using the ADAM shape model, and its value projected using an equidistant cylindrical 

projection. The individual maps built from the complete set of selected images were then 

combined together, using their overlapping regions to adjust their brightness level7. The 

combined map was finally normalized to the average geometric albedo of Hygiea of 7.2%.  



The resulting reflectance map is shown in supplementary figure 7. It exhibits a wide range of 

values, with more than 20% variability with respect to the average, though shadowed regions 

enhance this variability. Several bright spots are clearly identifiable, the brightest one, located 

near λ=290º, ϕ = −30º, showing a 10% brightness enhancement with respect to the average 

reflectance. The large dark region at λ=60º, ϕ = 0º is most likely a shadowed region, as it is 

located near the asteroid limb on the second sequence of images.  

For comparison, we further show a reflectance map of Ceres (supplementary figure 7), built 

from our SPHERE observations following the same method as described above for Hygiea. 

Ceres was observed at one epoch as benchmark target for our observing program, the NASA 

Dawn mission providing us with the ground truth for that object. Similarly to Hygiea, we used 

only the best-quality image acquired for that object when building its map. This image 

contains Ceres’ main albedo feature, the bright spot located in the Occator crater. Ceres is 

slightly brighter than Hygiea in average albedo (pv=0.09 versus pv=0.07). The range of 

reflectance values revealed by our observations for these two bodies is very similar, with 

about 20% variability. Ceres’ bright spot in the Occator crater, located around λ=240º, ϕ = 

20º, shows a 20% brightness enhancement with respect to Ceres’ average. To conclude, alike 

for the density and the spectral properties, the reflectance/albedo properties of Hygiea and 

Ceres are highly similar. 

 

Cratering on Hygiea 

 

From our set of images, we could identify only two unambiguous craters, with respective 

diameters of 180 ± 15 km and 97 ± 10 km (supplementary figure 8). This low number of 

identified craters contrasts with the large number of craters recognized at the surface of Pallas 



(Fig. 1) and that of (4) Vesta7 and (7) Iris41. Whereas this may be understood as 

Hygiea’surface being younger than that of the aforementioned bodies, it is unlikely to be the 

only explanation given that Hygiea’s surface age (i.e. estimated formation time of the family) 

is estimated to be at least 3 Gyrs old3. Both the crater morphology and to a lesser extent the 

reflectance properties of the surface play an important role in the contrast between the crater 

rim and crater floor.  Whereas bowl shaped craters will be easily identifyable from the ground 

leading to a clear contrast between the crater floor/walls and the crater rim, the same won’t be 

true in the case of complex craters with a flat floor. Most likely, our observations imply a 

paucity of large (D>30 km which corresponds to our detection limit) bowl shaped craters in 

the case of Hygiea. This is an additional common feature between Hygiea and Ceres. In the 

case of Ceres, the Dawn mission has unambiguously revealed a heavily cratered surface42  

where most D>10-15km craters are’nt bowl shaped but flat floored.  By analogy with Ceres, 

this strongly supports the presence of water ice in the subsurface of Hygiea. The presence of 

water ice in the subsurface would also favor the relaxation of the surface topography as 

observed on Ceres43 thus rending the remote sensing identification of craters on Hygiea more 

difficult.  

 

Identifying the members of the Hygiea family 

 

Prior to running the SPH simulations, we carefully identified the Hygiea family members 

using the proper elements44 and the hierarchical clustering method45, with the limit relative 

velocity vcut = 60 m/s. We further used physical data to remove interlopers with incompatible 

spectra (supplementary figure 9 and supplementary table 4), color (using SDSS data46) or 

albedo (using WISE47 and AKARI48 data). We found 6857 family members and constructed 

their size-frequency distribution (SFD). Besides the usual largest remnant (Hygiea), there is 



one intermediate-sized asteroid, namely (1599) Giomus with D = 46 km whose near-IR 

spectrum is compatible with the one of Hygiea (supplementary figure 9). By summing up 

masses of fragments, we estimate the mass ejected during the collision is at least 1.7 % of the 

mass of (10) Hygiea. In comparison, the ejected mass of the Vesta family makes up only 0.5 

% of (4) Vesta, suggesting the Hygiea-forming impact was substantially more energetic. 

 

Numerical model 

 

Impact simulations have been carried out using our SPH/N-body code OpenSPH. The code 

can perform both SPH and N-body simulations. It thus allows to run a whole simulation, from 

an initial fragmentation to a final reaccumulation. In all simulations presented here, the 

duration of the SPH simulation is tSPH = 24 hours, which is sufficient for the largest remnant 

(as well as for the largest fragments) to gain a well-defined shape and damp any macroscopic 

oscillations. We then follow up with the N-body simulation for another tN-body = 10 days in 

order to obtain the final SFD of the synthetic family. The hand-off between the SPH and N-

body parts is done by simply changing the solver and modifying the particle radii, Ri = 

[3Mi/(4πρ)]1/3, in order to convert smoothed particles into hard spheres while preserving their 

masses and volumes. 

The SPH solver computes particle accelerations due to the stress tensor and self-gravity, 

shock heating, material yielding and fragmentation. It further includes the artificial viscosity 

term for proper treatment of shocks, the artificial stress to suppress tensile instabilities and the 

correction tensor for consistent bulk rotation49. The code can use either a frictionless rheology 

(von Mises criterion) or a more complex Drucker-Prager rheology15,50 which includes both 

internal friction for intact material and dry friction for damaged material. Motivated by the 



observed round shape of (10) Hygiea, we used the simpler frictionless model, as the friction 

clearly did not play a major role in the Hygiea-forming impact. For comparison, we also ran 

simulations with various friction coefficients. 

During N-body simulations, we searched for particle collisions, performing either an inelastic 

bounce or merging of collided particles, depending on their relative velocities and the spin 

rate of the merger. When particles merged, the resulting volume, velocity and spin rate of the 

merger was determined to conserve the total volume, momentum and angular momentum. 

Overlapping particles were treated the same way as collided particles; as we performed a late 

hand-off when relative velocities of particles inside individual fragments were already small, 

the respective particles underwent a quick merging and a precise handling of overlaps was not 

needed. Although merging erased the shape information, here we are only interested in 

fragment sizes and merging is thus a viable option.  

 

Rheology in SPH simulations 

 

In the simulations presented in the main text, we use the von Mises criterion. The yield stress 

is computed using 𝑌 = 1− 𝐷 𝑌! , were Y0 is a material-specific, but pressure-independent 

constant and D is the scalar damage. In this model, fully damaged material experiences no 

friction and essentially behaves as a fluid. 

To model friction of granular material (which would be especially important for asteroids and 

impacts much smaller than in Hygiea’s case), we also implemented the Drucker-Prager 

rheology15,50 in our code. It defines the yield strength of intact material as: 

𝑌! = 𝑌! +
𝜇!𝑃

1+ 𝜇!𝑃 𝑌! − 𝑌!
 



where µi is the coefficient of internal friction, Y0 the cohesion (yield strength at zero pressure) 

and Ym the von Mises plasticity limit. For fully damaged rock, the yield strength is 

proportional to the pressure: 

𝑌! = 𝜇!𝑃 

where µd is the coefficient of dry friction, which is related to the angle of repose. In the 

intermediate state where 0 < D < 1, the yield strength is given by a linear interpolation, 

𝑌 = 1− 𝐷 𝑌! + 𝐷𝑌!. 

The final shape of the largest remnant is affected by the coefficient of dry driction. However, 

using the model with non-negligible friction, µd > 0.1, yields a very poor match to the 

observed round shape of (10) Hygiea (see Supplementary figure 10). This issue has been 

previously recognized by studies of cratering events24,25 and is commonly explained by 

introducing the acoustic fluidization. In the block model of acoustic fluidization, yield 

strength is further modified as: 

𝑌!"# = 𝜇! 𝑃 − 𝑃!"# + 𝜂!𝜚𝜖 

where Pvib is the vibrational pressure, calculated from the maximum vibrational particle 

velocity51, ηl the effective viscosity of fluidized material, 𝜖 the strain rate. The vibrational 

velocity is exponentially attenuated after the impact, however, the time scale of this process is 

a free parameter. Instead of using the block model directly, we prefer the von Mises model, 

with a similar free parameter, i.e. the time scale of acoustic fluidization after which the body 

regains its strength. This model matches the observed shape very well (see main text Figure 3 

and Supplementary Figure 10). 

 

Parameters of the SPH simulations  

 



We considered both the target and the impactor to be monolithic bodies with an initial density 

of the material ρ0= 2000 kg/m3, corresponding to the present-day density of Hygiea. We 

assumed material properties of basalt14,16.   The pressure and the sound speed were determined 

using the Tillotson’s equation of state, assuming bulk modulus A= 2.67×1010 Pa, and specific 

energies for incipient and complete vaporization uiv= 4.72×106 J/kg and ucv = 1.82×107 J/kg, 

respectively. The strength model used the von Mises yield criterion with shear modulus µ= 

2.27×1010 Pa, elasticity limit Y0= 3.5×109 Pa and specific melting energy umelt = 3.4×106 J/kg. 

To account for material fragmentation, we used the Grady-Kipp model with Weibull 

coefficient k= 4×1029 and Weibull exponent m = 9. In our simulations, the target had N ~ 

4×105 particles, the spatial resolution being therefore around ~6 km which is sufficient to 

resolve hundreds of the family members. The number of particles for the impactor was chosen 

so as to obtain the same particle density as the target. The equations were integrated using a 

predictor-corrector method, time step of which has been limited by the CFL criterion with 

Courant number C= 0.2. A subset of our simulations and the used paraemters are diplayed in 

supplementary figure 5. Finally, the cumulative size-frequency distributions (SFD) of 

synthetic families are compared to the SFD of the observed Hygiea family in supplementary 

Figure 11. 

 

Data availability 

As soon as papers for our large program are accepted for publication, we make the 

corresponding reduced and deconvolved AO images and 3D shape models publicly available 

at http://observations.lam.fr/astero/.  

 

Code availability 



The code used to generate the 3D shape is freely available at 

https://github.com/matvii/ADAM. The code used to perform the SPH simulations is freely 

available at https://gitlab.com/sevecekp/sph.  
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Figures 

 

Figure 1: VLT/SPHERE deconvolved images of the four largest main belt objects. The 

relative sizes are respected and the scale is indicated on the plot.   



 

Figure 2: Comparison between the deconvolved images of Hygiea (bottom panels) and 

the corresponding shape model projections (top panels). Hygiea’s spin axis (red) is also 

shown.  



 

Figure 3: SPH simulations reveal a nearly spherical shape for Hygiea following post-

impact reaccumulation. SPH simulations were ran to simulate the giant collision at the 

origin of the prominent Hygiea family with a focus on the post-impact shape of the largest 

remnant, namely Hygiea. For an accurate representation of the surface, we generated it as an 

isosurface of the density using the ray marching algorithm, rather than rendering individual 

SPH particles. At time t = 30 min, Hygiea is fully fragmented and significantly deformed. 

Shortly after, most of the ejected material reaccumulates on Hygiea. Finally, macroscopic 

oscillations are suppressed and Hygiea reaches a nearly spherical equilibrium shape. No large 

crater has been preserved.  



 

Figure 4: Asphericity of solar system objects as a function of their mean radius. The 

parameter ψ corresponds to the sphericity index (Wadell 1935) applied to spherical harmonics 

developments of the 3D shape models of each object. Hygiea appears nearly as spherical as 

dwarf planet Ceres. 


