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Abstract 
Cell-penetrating peptides (CPPs) internalization occur both by endocytosis and direct translocation through the 

cell membrane. These different entry routes suggest that molecular partners at the plasma membrane, 

phospholipids or glycosaminoglycans (GAGs), bind CPPs with different affinity or selectivity. The analysis of 

sequence-dependent interactions of CPPs with lipids and GAGs should lead to a better understanding of the 

molecular mechanisms underlying their internalization. CPPs are short sequences generally containing a high 

number of basic arginines and lysines and sometimes aromatic residues, in particular tryptophans. Tryptophans 

are crucial residues in membrane-active peptides, because they are important for membrane interaction. 

Membrane-active peptides often present facial amphiphilicity, which also promote the interaction with lipid 

bilayers. To study the role of Trp and facial amphiphilicity in cell interaction and penetration of CPPs, a 

nonapeptide series containing only Arg, Trp or D-Trp residues at different positions was designed. Our 

quantitative study indicates that to maintain/increase the uptake efficiency, Arg can be advantageously replaced 

by Trp in the nonapeptides. The presence of Trp in oligoarginines increases the uptake in cells expressing GAGs 

at their surface, while it compensates for the loss of charge interactions from Arg and maintains similar peptide 

uptake in GAG-deficient cells. In addition, we show that facial amphiphilicity is not required for efficient uptake 

of these nonapeptides. Thermodynamic analyses point towards a key role of Trp that highly contributes to the 

binding enthalpy of complexes formation. Density functional theory (DFT) analysis highlights that salt bridge-π 

interactions play a crucial role for the GAG-dependent entry mechanisms. 
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Calorimetry; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol).  
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1. Introduction 

Cell-penetrating peptides (CPPs) have attracted much attention in the last two decades for their unique ability to 

enter cells independently of chirality or receptors. CPPs are short cationic peptides of less than 30 amino acids. 

There is great diversity in CPP sequences, but they usually contain a high proportion of basic residues, and most 

particularly arginines [1]. Their uptake mechanism is heavily debated, but it is now accepted that peptide 

internalization can concomitantly occur by endocytosis and direct translocation through the membrane [2]. These 

different entry routes suggest that the most abundant molecular species at the plasma membrane, phospholipids 

and cell surface glycosaminoglycans (GAGs), bind CPPs with different affinity, selectivity and dynamics. Thus, 

the analysis of the interactions of CPPs with lipids or GAGs should lead to a better understanding of the molecular 

mechanisms underlying CPP internalization [3]. 

Arg residues in CPPs are essential for interactions with negatively charged components of cell membranes. Indeed, 

on top of electrostatic interactions, guanidinium moieties form bidendate hydrogen bonds with sulfate and 

carboxylate moieties found on GAGs and phosphates of membrane phospholipid headgroups [4]. Purely cationic 

CPPs such as polyarginines or Tat could take advantage of these highly favorable interactions and cross the cell 

membrane through hydrophobic counterion-mediated translocation [4–6]. On the other hand, other basic CPPs 

such as Penetratin also contain hydrophobic residues, such as Trp residues that are crucial for internalization [7].  

In terms of secondary structure, Penetratin is highly versatile since it can be unstructured, adopt α-helical or β-

strand conformations depending on its environment (free in solution, bound to membranes, in different cell 

compartments) and experimental conditions (such as peptide to lipid ratio) [8–13]. It was thus suggested that 

Penetratin could deeply interact with and perturb the lipid bilayer, and cross the membrane by forming an inverted 

micelle. Trp residues would help by promoting negative curvature of the bilayer [8]. A simpler analogue of 

Penetratin, composed of only Arg and Trp was designed [14–16] followed by a shorter 9 residues version to avoid 

cytotoxicity issues [17]. These R/W peptides are both efficient CPPs, whereas a nine residue R/L peptide is not 

internalized [18], showing again the essential role of Trp residues.  

These designed R/W peptides have the same ability as Penetratin to adopt a facial amphiphilic α-helical secondary 

structure, as shown both by a peptide secondary structure prediction software [19, 20] and experimental data [18, 

21, 22]. The role of facial amphiphilic structuration in CPP internalization has long been debated [23]. For 

example, the [W48F, W56F]-Penetratin double mutant has stabilized α-helical properties compared to Penetratin 

[10, 15], while being hardly internalized into cells [7]. A quadruple mutant [I45P, Q50P, M54K, K55P]-Penetratin 

is still internalized even though it has lost its helical secondary structure [7, 14]. Facial amphilicity has often been 

used as a key criterion for the design of CPP sequences. For example, it was first believed that the KLA-containing 

model facial amphiphilic peptide was a CPP due to its amphipathic secondary structure [24, 25]. However, it later 

appeared that amphipathicity had no direct impact on internalization of the KLA peptide, but could promote 

binding to intracellular organelle membranes. Strategies exploiting switchable and/or structurally constrained 

amphipathic helical peptides to control or enhance uptake are still being developed [26–28]. CPPs are often 

classified according to their ability to adopt a secondary amphipathic structure [23, 29, 30] possibly by analogy 

with cationic α-helical antimicrobial peptides, another class of membrane-active peptides [31, 32]. For instance, 

despite its high structural versatility, Penetratin is often classified as an α-helical CPP.  

Bechara et al. studied the role of Trp and secondary structure in GAG-dependent internalization of various known 

CPP sequences [33, 34]. In particular, it was found that Trp-containing CPPs tended to adopt β-strand secondary 

structures and formed large stable aggregates in the presence of GAGs, thus promoting efficient GAG-dependent 

internalization. In this paper, we aim to push this study one step further by using model nonapeptides containing 

only Arg and Trp, in order to study the role of the number and the position of the Trp, as well as facial 

amphiphilicity in the internalization of Arg-rich CPPs. 

 

2. Materials and Methods 

Peptide synthesis 

All peptides were synthesized using standard Boc solid phase peptide synthesis. Boc-L-Arg(Tos), Boc-L-Trp(For), 

Boc-Gly, D-Biotin, MBHA Resin (0.53 mmol/g loading) and HBTU were purchased from Iris Biotech GmbH. 

Boc-(2,2-D2)-Gly was obtained from Cambridge Isotope Laboratories. Boc-D-Trp was purchased from Sigma-

Aldrich.  

D-Biotin was fully oxidized to D-Biotin sulfone (Biot(O2), Figure S1) by 4 days treatment with 30% H2O2 in H2O 

and used without further purification. This avoids further oxidation of the peptide throughout time. Peptides were 

synthetized by hand on a 0.1 mmol scale for non-deuterated peptides and 0.01 mmol for deuterated peptides. 

Amino acid (5 eq) activation was performed by HBTU (4.5 eq) in the presence of excess DIEA (12 eq), and Boc 

deprotection was performed in neat TFA (2× 1 min). Trp side chains were deprotected prior to cleavage by 

treatment with 10% piperidine in DMF (1, 2, 5, 10, 30 and 60 min successive incubations). Peptides were cleaved 

from the resin by anhydrous HF (2h, 0°C) in the presence of anisole and dimethylsulfide.  
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Peptides were purified by reverse phase HPLC on a C18 preparative column (Macherey Nagel) with a H2O (0.1% 

TFA)/MeCN (0.1% TFA) elution gradient. Peptide purity and identity were further determined by analytical 

reverse phase HPLC (C18, Higgins Analytical) with a H2O (0.1% TFA)/MeCN (0.1% TFA) elution gradient and 

MALDI-TOF MS (AB Sciex Voyager DE-PRO MALDI TOF or 4700 MALDI TOF/TOF)(Table S1, Figure S2).  

 

Cell culture, internalization quantification, membrane permeation and cytotoxicity assays 

Wild type Chinese Hamster Ovary (CHO-K1, WT, ATCC) and xylose transferase-deficient CHO-pgsA745 (GAG-

deficient, ATCC) cells [35] were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% fetal calf serum (FCS), penicillin (100,000 IU/L), streptomycin (100,000 IU/L), and amphotericin B (1 mg/L) 

in a humidified atmosphere containing 5% CO2 at 37°C. 

 

For internalization quantification assay, 500,000 cells/well are seeded in a 12-well plate the day prior to the 

experiment so that they reach 1,000,000 on the day of the experiment. The cells are incubated for 1h with 10 μM 

peptide at 37°C, then extensively washed with Hank’s Buffer Saline solution (HBSS). The cells are then treated 

with Trypsin, 5 min at 37°C to detach them from the wells and digest the non-internalized and membrane-bound 

peptide, and trypsin activity is stopped by addition of soybean trypsin inhibitor and bovine serum albumin. The 

cells are then harvested, the pellets washed and lysed (0.1% Triton X-100, 1M NaCl, 100°C, 15 min) in the 

presence of a known amount of deuterated peptide acting as an internal standard for MS quantification. The 

biotinylated peptides are retrieved by incubating the lysate with Dynabeads MyOne Streptavidin C1 (Invitrogen) 

1h at room temperature. After several washing steps, the peptides are eluted from the beads by addition of CHCA 

matrix (saturated in H2O:MeCN 1/1, 0.1% TFA). The samples are analyzed in positive ion reflector mode on a 

Voyager DEPRO MALDI TOF spectrometer (AB Sciex). Quantity of peptide internalization in CHO cells was 

determined by MALDI-TOF MS as previously and extensively described [3, 36]. 

 

For membrane integrity assay, 5,000 cells are seeded in a 96-well plate the day prior to the experiment, so that they 

reach 10,000 cells on the day of the experiment. For the cytotoxicity assay, 2,000 cells are seeded so that they 

reach 4,000 cells on the day of the experiment. The cells are incubated with 10, 25 and 50 μM peptide for 

membrane integrity and 50 μM peptide for cytotoxicity, for 1h at 37°C. The Cyto-Tox ONE (Promega; LDH 

release from cells with damaged membranes) and CCK-8 (Dojindo; dehydrogenase activity of viable cells) kits are 

used according to the manufacturers’ instructions and the plates are read on a FLUOstar microplate reader (BMG 

Labtech). Briefly, for the CCK-8 kit, after incubation with peptide, the cells are washed with HBSS and 90 μL 

DMEM + 10 μL CCK-8 solution are added to each well. The absorbance at 450 nm is read after 2h incubation at 

37°C. For Cyto-Tox ONE, after incubation with peptide, 100 μL of Cyto-Tox ONE reagent is added to each well. 

After 10 min at room temperature, 50 μL of stopping solution is added to each well and fluorescence (λex = 560 

nm, λem = 590 nm) is immediately measured. 100 % permeation and cytotoxicity was defined with 0.1 % Triton X-

100 treatment. 

 

Sample preparation for calorimetry and ATR-FTIR experiments 

Heparin was obtained as a concentrated stock solution (25,000 UI/5mL, 3 mM) from Sanofi and DMPG and POPG 

from Genzyme as powders.  

For liposome preparation, the appropriate amount of lipid is dissolved in CHCl3:MeOH 2/1 and a thin film of lipid 

is formed on the walls of a glass tube by evaporating the solvent with a gentle N2 stream. Remaining traces of 

solvent are further evaporated by leaving the tube 30 min in a desiccator under vacuum. The dried lipids are then 

resuspended in PBS and vigorously vortexed to form multilamellar vesicles (MLVs). These vesicles can be used as 

such for DSC experiments. To form large unilamellar vesicles (LUVs) used in ITC experiments, the MLVs are 

submitted to four freeze-thaw cycles in liquid N2/warm water and passed 15 times through a 100 nm polycarbonate 

membrane using a mini-extruder (Avanti).  

 

For ATR-FTIR experiments, in order to avoid background signal from TFA counterions in peptide, the peptides 

were dissolved in 1M HCl and freeze-dried. This allowed the exchange of TFA for Cl
-
 counterions.  
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Calorimetry assays 

All ITC experiments were performed with a NanoITC calorimeter (TA instruments) and data were analyzed using 

NanoAnalyze (TA instruments). The volume of the calorimetric cell is 983 μL and the injection syringe is 250 μL. 

For heparin binding experiments, 250 μL of a heparin solution (30-75 μM in PBS) was injected by 1×2 μL and 

24×10 μL steps into 1 mL peptide solution (30-75 μM in PBS). For lipid binding experiments, 250 μL of a 1-

palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) large unilamellar vesicle (LUV) suspension 

(100 nm, 2-5 mM lipid concentration in PBS) was injected by 1×2 μL and 24×10 μL steps into 1 mL peptide 

solution (50-100 μM in PBS). Binding parameters were determined by using a simple binding model with n 

independent binding sites. Representative ITC data injections of heparin (HI) or POPG LUVs into peptide 

solutions are shown on figure S4. Experiments were performed twice and the numbers given in tables 2 and 5 of 

the manuscript are averaged on the two experiments.  

Differential Scanning Calorimetry (DSC) experiments were performed on a NanoDSC calorimeter (TA 

Instruments). To a suspension of DMPG multilamellar vesicles (MLVs) (1 mg/mL lipid concentration; 1.47 mM in 

PBS), peptide was added to reach a peptide-to-lipid molar ratio of 1/50. Samples were scanned at 1°C/min between 

0°C and 50°C at least 3 series of alternated heating and cooling scans.  

 

Peptide secondary structure studied by IR spectroscopy 

Attenuated Total Reflection (ATR) FTIR spectra were recorded on a Nicolet 6700 FT-IR spectrometer equipped 

with a liquid nitrogen cooled mercury-cadmium-telluride detector (ThermoFisher Scientific), with a spectral 

resolution of 4 cm
-1

. Two hundred interferograms, representing were co-added. The peptides were deposited on the 

Ge crystal at 100 μM in PBS buffer. The peptide/heparin mixtures were prepared using the stoichiometries 

determined by ITC. To determine the secondary structure element of each peptide or protein, spectra were 

analyzed with an algorithm based on a second-derivative function and a self-deconvolution procedure (GRAMS 

and OMNIC softwares, ThermoFisher Scientific) to determine the number and wavenumber of individual bands 

within the spectral range 1720- 1500 cm
-1

. Example of Amide I band deconvolution for aR5W4 peptide is shown 

on figure S6 and secondary structures extracted from ATR spectra for all peptides are given in Table S2.  

 

DFT analyses 

The energies of all complexes included in this study were computed at the BP86-D3/def2-TZVP level of theory. 

The calculations were performed with the TURBOMOLE version 7.0 program [37]. No constrains have been 

imposed during the optimizations. The minimum nature of the complexes has been confirmed by performing 

frequency calculations at the same level. For the calculations we used the BP86 functional with the latest available 

correction for dispersion (D3) [38]. The MEP (Molecular Electrostatic Potential) surfaces have been computed at 

the B3LYP/6-31+G* level of theory by means of the SPARTAN software [39]. Values have been plotted onto the 

van der Waals isosurface (0.001 a.u.) unless otherwise noted. In order to reproduce solvent effects, we have used 

the conductor-like screening model COSMO [40],
 
which is a variant of the dielectric continuum solvation models 

[41]. We have used water as solvent. 

 

 

3. Results 

3.1. Peptide design 

We designed a series of 9 nonapeptides composed of Arg and Trp exclusively. We varied the number of Trp from 

0 to 4 and introduced them at different positions in the sequence, so that the peptides can potentially adopt an 

amphipathic α-helical secondary structure, or not. All the peptide sequences are presented in Table 1. Each peptide 

is referred to by its number of Arg and Trp, preceded by a for peptides with a potential facial amphiphilic structure 

and n for peptides without potential facial amphiphilic structure. Predictions for facial amphiphilic structures were 

obtained with the software PEP-FOLD3 [19, 20]. For example, aR7W2 refers to a peptide with 7 Arg and 2 Trp 

and potential for a facial amphiphilic structure, nR7W2 to a peptide with 7 Arg and 2 Trp and no potential for a 

facial amphiphilic structure (Fig. 1; See SI for the other peptides). For peptides with only one Trp, as facial 

amphiphilicity is not clearly defined, peptides were distinguished by numbers (R8W1-1 and R8W1-2, see Table 1). 

aR6W3 corresponds to a peptide that we have already extensively studied and previously referred to as (W/R) 

[17], (R/W)9 [2], RW9 (18], R6W3 [33], R6/W3 [42]. All peptides are amidated at the C-terminus and bear a 

Biot(O2)-GGGG tag at their N-terminus for intracellular quantification purposes [36].  
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Table 1: Peptide sequences used in the study. All peptides are amidated at the C-terminus and carry a 

Biot(O2)-GGGG tag at their N-terminus. 

 

Peptide Sequence 
Net 

charge 
n Trp 

Facial 

Amphiphilic 
α-Helix 

R9 RRRRRRRRR +9 0 - 

R8W1-1 RRRRWRRRR +8 1 - 

R8W1-2 RRRRRRRRW +8 1 - 

aR7W2 RRRWRRWRR +7 2 yes 

nR7W2 RWRWRRRRR +7 2 no 

aR6W3 RRWWRRWRR +6 3 yes 

nR6W3 RRWRRRRWW +6 3 no 

aR5W4 RRWWRRWWR +5 4 yes 

nR5W4 RWWWWRRRR +5 4 no 

 

 
 

Figure 1: Helical wheel projections and simulated secondary structures using the structure prediction software 

PEP-FOLD3 for aR7W2 and nR7W2 peptides, showing facial amphiphilicity (a) and non-facial amphiphilicity 

(n). See SI for the other peptides.  

 

 

3.2. Peptide internalization 

We studied the internalization of all nine peptides in CHO-K1 (WT) and CHO-pgsA 745 (deficient in chondroitin 

(CS) and heparan sulfates (HS) GAGs) cells at 37 °C. 

 

3.2.1 Peptide internalization in WT cells 

The amounts of internalized peptide in WT cells are presented in Fig. 2A. When comparing two peptides with the 

same number of Trp but at different positions in the sequence, it appears that Trp position has no impact on the 

amount of internalized peptide, except in the case of the peptides with 4 Trp. In this case, facial amphiphilicity 

strongly favors peptide uptake (Fig. 2A). When comparing all facial amphiphilic peptides (Fig. 2B), the number of 

Trp has a great influence on internalization efficacy. In particular, aR5W4 is 3-fold more efficiently internalized 

than aR6W3. On the other hand aR7W2 is significantly less internalized than aR6W3 and aR8W1. Finally, there 

is no significant difference between aR8W1 and R9. When comparing all non-facial amphiphilic peptides (Fig. 

2C), the number of Trp also has a strong influence, though there is no significant difference between nR5W4 and 

nR6W3. In this series, nR7W2 is also the least efficient.  

 

3.2.2 Peptide internalization in GAG deficient cells 

The amount of internalized peptides in CS and HS GAG deficient cells are presented in Fig. 2D. Overall, the 

amounts of intact peptide detected in cells is 3 to 5-fold lower than in WT cells, showing that HS and CS-type 

GAGs are involved (though not strictly necessary) in the internalization process for these peptides. As observed for 

WT cells, facial amphiphilicity only impacts the uptake of peptides containing 4 Trp. In terms of number of Trp in 

the sequence, it appears that GAG-independent peptide internalization is less sensitive to this number compared to 

R8 
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entry in WT cells. In particular, no significant difference between 3, 2, 1 or 0 Trp could be observed, whatever the 

peptide series (a or n) (Fig. 2E, 2F). 

 

 

 
Figure 2: Peptide internalization after incubation of 10 M (1 mL) peptides at 37°C with 10

6
 WT (A, B, C) or 

GAG deficient cells (D, E, F) for 1 hr. Panels A and D show the quantification for all peptides (black: facial 

amphiphilicity (a), white: non-facial amphiphilicity (n)). Panels B and E focus on peptides with facial 

amphiphilicity (a), panels C and F on peptides with non-facial amphiphilicity (n). Significance was tested using 

Welch's t-test comparison of two columns (ns p>0.05, * 0.05>p>0.01, ** 0.01>p>0.001, *** p<0.0001). Each 

experiment was repeated at least three times independently and in triplicates. Error bars represent standard error 

(SEM). 

 

 

3.3 Peptide-induced cell-membrane permeabilization and cytotoxicity 

We also checked whether the peptides were cytotoxic or induced membrane permeabilization on WT cells (Fig. 3). 

Scattering of the data in the permeabilization and cytotoxicity assays likely arise from the sensitivity of the kit 

used according to the accuracy of the number of cells. We used a fixed number of cells in the assays but expect at 

least 10-15% variations in this number, which could explain scattering of the data. We consider that up to 15% 

there is no permeation or cytotoxicity of the peptides. 

Overall, all peptides were not or little permeabilizing at 10 and 25 μM (less than 10% leakage). At 50 μM, most 

peptides still had little permeabilizing effects (less than 15%), with the notable exception of R5W4 inducing 30% 

leakage. We also tested the peptides cytotoxicity at 50 μM (Fig. 3). It closely matched the membrane integrity 

data. It is worth highlighting that the peptide containing 4 Trp, which compromises membrane integrity is also the 

one with the higher internalization rate. However, in the internalization assay the peptide (moles) to cell (number) 

ratio, P/C=10
-14

 (10 μM peptide incubated with 10
6
 cells in 1 mL), is 10-125 times lower than in the case of 
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cytotoxicity and permeabilization assays (P/C between 10
-13

-5x10
-13

 for cytotoxicity: 10-50 μM peptide incubated 

with 10
4 
cells in 100 μL; P/C between 2.5x10

-13
-1.25x10

-12
 for permeabilization: 10-50 μM peptide incubated with 

4,000 cells in 100 μL). It suggests that although used at a non cytotoxic concentration, the significant increase in 

internalization observed for R5W4 peptide in GAG-deficient cells, could arise from slight membrane 

permeabilization, such as transient pore formation. Altogether, it appears that 3 Trp is a maximum number for 

efficient internalization of these nonapeptides in cells without associated cytotoxicity at the concentrations used for 

internalization. 

 

 

 
Figure 3: Membrane leakage upon incubation for 1 hr at 37°C with 10 μM, 25 μM and 50 μM (100 L) peptide 

(black facial amphiphilic, white non-facial amphiphilic) and cytotoxicity with 50 μM (100 L) peptide (hashed) 

assayed on respectively 10,000 and 4,000 WT cells. Experiments were repeated independently at least two times in 

triplicates. Error bars represent standard error (SEM). 

 

 

3.4 Peptide binding to GAGs 

As GAGs are obviously important partners for CPP internalization, we studied the direct interaction of the nine 

peptides with heparin (taken as a GAG mimic) by ITC. Results are displayed in Table 2. KD values were all in nM 

range. R9 has the strongest affinity that is 2- to 4-fold better that the ones of R/W peptides, the affinity of R/W 

peptides being very similar. Binding to heparin was always associated with large favorable enthalpies showing that 

very stable complexes are formed. The absolute value of the binding enthalpies increases with the number of Trp 

in the sequence and decreases with the number of positive charges. This indicates that peptide/GAG binding is far 

from being purely electrostatic. At the same time, peptide binding to heparin is associated with unfavorable 

entropies, possibly due to the restriction of the number of accessible conformations of heparin chains upon peptide 

binding, as previously reported for other Trp-rich CPPs [33]. Finally, the number of peptides bound per heparin 

chain increases with the number of Trp in the sequence, and corresponds to 54 to 85% of charge equilibration, 

considering an average of 100 negative charges per heparin chain. No obvious correlation between amounts of 

internalized peptide and thermodynamic parameters of binding to heparin could be derived, but a higher number of 

Trp is associated with more peptides bound to a heparin chain. 
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Table 2: Peptide binding to heparin studied by ITC 

 

Peptide 
KD 

nM 
ΔH 

kcal/mol 

TΔS 

kcal/mol 

n peptide/ 

heparin 

% of 

charge 

equilib-

ration 

R9 7 -71.7 -60.5 8 72 

R8W1-1 30 -81.7 -71.5 10 80 

R8W1-2 21 -92.3 -82.0 7 56 

aR7W2 18 -96.8 -86.3 11 77 

nR7W2 26 -93.5 -82.9 12 84 

aR6W3 15 -116.4 -105.6 9 54 

nR6W3 23 -123.3 -113.0 11 66 

aR5W4 25 -176.6 -165.9 17 85 

nR5W4 25 -179.3 -169.0 14 70 

 

 

 

3.5 Peptide binding to lipids 

We then studied the binding of the peptides to POPG large unilamellar vesicles. We chose POPG, even though this 

lipid is not found in the outer leaflet of eukaryotic cells. Previous studies have shown that CPPs bind only loosely 

to PC membranes [43] and that negative charges are required to trigger measurable peptide/membrane interactions 

[18]. We thus chose POPG as a simple mimic of the negatively charged lipids that could be found in the 

membrane. Results are displayed in Table 3. All peptides bound to POPG with an apparent KD in the low μM 

range. Peptide binding to POPG was enthalpically and entropically favorable, with a major entropic contribution. 

This observation has already been reported for aR6W3 [44]. The large positive entropy of binding could result 

from the increase in lipid disorder, counterions release from the charged POPG and peptide, or the decreased 

amount of polarized water between the two charged molecules, most probably a combination of all. Binding 

enthalpy increases with the number of Trp in the sequence, as was previously reported for other Trp-containing 

CPPs [45]. The stoichiometry of binding is close to simple charge equilibration, provided the peptides can 

translocate through the POPG bilayer. This is the case for aR6W3 and R9 for instance, as was shown previously 

[46, 47]. However, only a fraction of the CPP entered into lipid vesicles [46, 47]. Likely, the stoichiometries we 

observe here are mainly due to incomplete ion pairing on the outer leaflet of the vesicle, as was already previously 

suggested for Arg-rich CPPs [4, 5, 47, 48]. In addition, the number of lipids per peptide linearly decreases 

according to the reduction of positive charges (or the increase in the number of Trp). As for GAG binding, no 

obvious correlation between internalization and lipid binding could be observed. Also, it appears that the position 

of the Trp in the sequences has little effect on the binding parameters. 

 

Table 3: Peptide binding to POPG LUVs studied by ITC 

 

Peptide 
KD 

(μM) 

ΔH 

(kcal/mol) 

TΔS 

(kcal/mol) 

n (lipid / 

peptide) 

R9 1.7 -0.60 7.4 8.2 

R8W1-1 7.8 -0.72 6.2 7.0 

R8W1-2 3.2 -0.79 6.7 6.5 

aR7W2 6.4 -0.84 6.2 5.6 

nR7W2 3.4 -0.81 6.7 7.2 

aR6W3 6.8 -1.39 5.7 5.2 

nR6W3 2.3 -1.27 6.5 5.6 

aR5W4 2.9 -2.53 5.0 3.5 

nR5W4 2.3 -2.10 5.7 3.2 
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3.6 Peptide effect on bilayer organization 

To further investigate the interaction of the peptides with lipid membranes, we studied the effect of the peptide on 

the phase transitions of DMPG. Results obtained for a peptide-to-lipid ratio of 1/50 are shown on Fig 4.  

Overall, not surprisingly, addition of peptide leads to the disappearance of the pre-transition, suggesting an 

interaction between the peptides and the lipid headgroups, as already reported for many Arg-rich CPPs [18, 49]. 

As regards to the main transition, in most cases, a splitting of the peak can be observed. This suggests lipid phase 

separation, with more fluid low TM2 regions, strongly affected by the presence of the peptide, and higher TM1 

regions, closer or slightly higher than that of the lipid alone. Globally, the value of the low TM2 decreases with the 

number of Trp in the sequences showing that increasing the number of Trp will lead to more perturbation of the 

peptide-enriched regions. The borders of these segregated domains of different fluidity are suggested to be regions 

of enhanced membrane permeability [50] and are proposed to be an entry route for CPPs through the plasma 

membrane [34, 51]. 

 

 
Figure 4: Perturbation of membrane organization by CPP addition probed by DSC. (A) Thermograms showing the 

phase behavior of DMPG MLVs in the presence of peptides at P/L = 1/50. (B) Phase transition temperature(s) 

according to the number of Trp in the peptide sequences. The dotted lines mark the main phase transition 

temperature of pure DMPG. Thermograms were obtained from 5 heating / cooling cycles. 

 

3.7 Peptide secondary structure and secondary structure disruption 

 

3.7.1 Secondary structure determination by polarized ATR-FTIR 

The peptides in our series were designed so that some can adopt a facial amphiphilic α-helical structure in the 

presence of lipids and/or GAGs, and some cannot. We studied the secondary structure of these peptides by ATR-

FTIR in the presence or absence of heparin. Globally, these peptides showed great structural plasticity, suggesting 

they can structurally adapt to different types of binding partners. Example for aR5W4 and nR5W4 are given in 

Table 4. Other data are provided in SI. Altogether, this structural plasticity cannot be directly related to the 

internalization efficiency of the peptides. In particular, although the peptides can all adopt a α-helical structure, we 

could not conclude whether it is mandatory for internalization. 

 

Table 4: Secondary structure (ATR-FTIR) of R5W4 peptides in the absence or presence of heparin (8.3 

μM heparin and peptide concentration according to the stoichiometries determined by ITC). 

 

Secondary 

structure 

element 

Wave- 

numbers 

(cm-1) 

Percentage of structural elements 

aR5W4 nR5W4 

Alon

e 
+Hep Alone +Hep 

β-strand 1627 11 20 17 21 

Random 

coil 
1643 24 20 22 22 

α-Helix 1659 29 30 26 26 

Turn 1679 36 30 35 32 
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3.7.2 Secondary structure disruption 

Since the peptides display great structural versatility, one cannot predict whether α-helical structures could be 

selected for or during the internalization steps. In order to further assess the role of facial amphiphilicity, and more 

generally of secondary α-helical structure in CPP internalization, we synthesized the peptide R6DW3 

(RRDWDWRRDWRR) that combines L-Arg and D-Trp, and tested its internalization in WT cells and interactions 

with potential membrane partners, as described above for the other nonapeptides. Introducing D-amino acids in the 

middle of a peptide sequence prevents α-helix formation [52]. 

Strikingly, R6DW3 was internalized to the same extent as its all-L amino acids analogue aR6W3 in WT cells, 

confirming that a well-defined secondary structure, in particular one displaying facial amphiphilicity, is not an 

important feature for CPP internalization (Fig. 5A). Binding parameters of R6DW3 to heparin and POPG as 

determined by ITC also fall within the same range as aR6W3 (Table 5). The effect of R6DW3 on a DMPG bilayer 

organization, as probed by DSC is almost identical to that of aR6W3 (Fig. 5B). These results clearly show that 

facial amphiphilicity is not required for peptide binding to membranes, does not change the way the peptide alters 

membrane phase transitions, and has no effect on the efficiency of internalization. 

 

Table 5: Binding of R6DW3 to Heparin and POPG 

 

 KD ΔH (kcal/mol) TΔS (kcal/mol) Stoichiometry 

R6DW3/HI 16.5 nM -91.1 -80.5 
11 peptides/heparin 

R6DW3 /POPG 9.5 μM -0.74 6.2 
6.4 lipids/peptide 

 

 

 

 

 

 

 
Figure 5: Compared internalization rate in WT cells (A) and effect on a DMPG membrane probed by DSC (B) of 

aR6W3 and R6DW3. 

 

 

3.8 DFT modeling 

3.8.1 Anion- π and salt-bridge π modeling 

To further understand the role of Trp in the interaction with sulfated polysaccharides, in particular in the highly 

favorable enthalpy values we measured, we have next computed the complexes of 3-methyl indole as a model of 

the side chain of tryptophan, with a cation (formamidinium), anion (formate) and also a salt bridge 

formamidinium–formate. The results are given in Fig. 6 where it can be observed that the formation of the cation-π 

complex is favorable (Fig. 6C, –5.2 kcal/mol). However, the optimization starting from the anion-π complex leads 

to the formation of a H-bonded complex (Fig. 6B, –5.4 kcal/mol), as expected. If the anion-π assembly is imposed 

(by fixing the geometry), the resulting interaction energy is unfavorable (Fig. 6A, +8.4 kcal/mol). In contrast, the 

complex with the salt-bridge formamidinium–formate is favorable in –4.8 kcal/mol (Fig. 6D). This preliminary 

study anticipates that the role of Trp in the binding to GAGs is not due to anion–π interactions. We have then 

further analyzed the interaction of model Arg/Trp or Arg/Gly tri- and tetrapeptides with GAG motif disaccharides. 
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Figure 6: Optimized geometries of 3-methylindole with formate anion (A, B), formamidinium (C) and the salt-

bridge (D). Distances in Å. The interaction energies are also indicated. 

 

 

3.8.2 Interactions with GAG models 

In Fig. 7A we show the minimalistic models of the CPPs and GAGs used for the DFT analysis. We have used the 

monosulfated disaccharide D1 as a model of chondroitin 4-sulfate (CS-A) GAGs. We have methylated the 

bridging O atoms. We have used both RWWR and RWR motifs as models for the CPPs. In addition, to investigate 

the role of Trp in the binding mechanism, we have replaced Trp by Gly in RGGR and RGR peptides.  

The geometries and binding energies for the D1 series are shown in Fig. 7. The analysis reveals the presence of 

salt bridge interactions in both the RWWR and RWR complexes with D1. Remarkably, the salt bridge that is 

established between the carboxylate group of the disaccharide and the side chain of R is located over the Trp side 

chain π-system, thus generating a salt-bridge-π interaction. In the analog where Trp has been replaced by Gly, the 

interaction energy is reduced in 3 kcal/mol for the RGGR and in 1.3 kcal/mol in RGR, thus supporting the 

importance of the indole group in the Trp side chain in the affinity of RWWR and RWR sequences to D1. It is also 

interesting to note that both positive guanidinium groups interact with the negative groups of the disaccharide thus 

explaining the large interaction energies. It is also worth mentioning that the RWWR sequence has more affinity to 

D1 than the RWR one in almost 10 kcal/mol. Besides ionpair- interactions, Trp can indeed also contribute to the 

energy of interaction through CH- interactions with the apolar face of the disaccharide, as previously reported 

[53].  
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Figure 7: (A, B) GAG model used for simulations. (C, D) Optimized complexes 1 (RWWR+D1) and 2 

(RGGR+D1). (E, F) Optimized complexes 3 (RWR+D1) and 4 (RGR+D1). Distances in Å. Salt-bridge distance 

measured from the N atom to the ring centroid of the six membered ring. H-atoms omitted for the sake of clarity. 

 

3.8.3 Electrostatic potential surfaces 

Finally, we computed the electrostatic potential surfaces for 3-methyl-indole and its complex with the salt-bridge, 

which are shown in Fig. 8. It can be observed that the presence of the ion-pair significantly affects the polarization 

of the π-system. In fact, the MEP values are negative over both six and five membered rings of the 3-methyl-

indole moiety. Upon complexation of the ion-pair, the electronic charge distribution of the system significantly 

changes creating an induced dipole. The view from above in Fig. 8C, where only the π-surface is represented 

clearly reveals that the otherwise reddish color of the MEP surface in the free π-system (Fig. 8A) changes to 

green over the cation (slightly positive) and orange over the anion (slightly negative), thus revealing a significant 

polarization of the indole moiety. In fact, the dipole moment of the unperturbed chromophore increases from μ = 

2.0 D to 4.9 D upon complexation. 

 

 
Figure 8: (A, B) Electrostatic potential surfaces of 3-methyl-indole and the complex (Isovalue 0.001 a.u.). (C) 

Electrostatic potential surface of the π-surface only. Red= negative, blue= positive, isovalue 0.09 au/± 50 kcal/mol. 

 

 

4. Discussion 

Arg-rich CPPs have been studied for a long time by different teams. Internalization mechanisms of Arg-rich CPPs 

remain a puzzle though the new combination of cell studies, biophysics and molecular simulation yield very 
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interesting insight on possible original translocation mechanisms [54]. In the present study, we analyzed the effect 

of the number of Trp by replacing Arg residues in nonapeptides. On the one hand, Mitchell and Wender previously 

reported that decreasing the number of Arg from 9 to 5 in oligoarginine sequences led to a stepwise and linear 

decrease in internalization efficiency of the corresponding peptides [55, 56]. On the other hand, Rydberg et al. also 

investigated the number and position of Trp residues in polyarginine sequences, keeping the number of Arg 

residues constant (eight) and increasing the number of Trp stepwise [21, 57]. Herein we kept the peptide length to 

9 residues and replaced gradually Arg with Trp. As shown in Fig. 9, Trp can compensate for the loss of positive 

charges very efficiently: R6W3 peptides have similar internalization efficacy as R9, while R6 is only 20% active 

compared to R9 [55, 56]. This result is consistent with the work of Mishra et al. who previously reported that 

addition of a single aromatic group (Trp, Fluorescein) drastically impacts the translocation mechanism of R6 

peptide [58]. Although a compensation for Arg loss by Trp addition is observed in both WT and GAG-deficient 

cells, in WT cells peptide internalization was actually potentiated by the presence of Trp, in the absence of 

cytotoxicity. 

 

 
 

Figure 9: Internalization efficiency of oligoarginines Rx (white circles) and nRxWy (black triangles, white 

triangles) peptides normalized to R9, where x+y = 9. Data for Rx peptides were taken from (55, 56).  

 

 

Globally, our findings are consistent with the results obtained by Rydberg et al. [21, 57], that is increasing the 

number of Trp leads to better uptake together with an increased cytotoxicity and membrane permeation, with a 

threshold at 4 Trp. Rydberg et al. also show that the affinity of their peptides for membrane models all fall within 

the same range, making this parameter a bad predictor for cell uptake. However, they found that the position of the 

Trp in the sequence is an important factor, which is apparently in contradiction with our findings. Interestingly, we 

do see an effect of the Trp position, but only with the R5W4 peptides, when Rydberg et al. only studied the role of 

Trp position for the sequences containing four Trp. Their study was mainly focused on backbone spacing whereas 

we mainly focused on potential facial amphiphilicity. Their most efficient sequence is the peptide RWmix 

(RWRRWRRWRRWR) that could potentially adopt a secondary structure with the Trp facing on the same side of 

an helix (though with uncomplete facial amphiphilicity), but it remains unclear whether backbone spacing or facial 

amphiphilicity is the important factor. Taken together, our findings and those described by Rydberg et al. both 

point towards a key role of Trp in Arg-rich CPPs cell uptake, four Trp appearing as a breaking point leading to 

substantially increased uptake and toxicity, at least for peptide length from 9 to 12 residues. For peptides with 
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three Trp or less, our data clearly prove that facial amphiphilicity is not a prerequisite for efficient internalization 

as it is often claimed [11]. We also show that facial amphiphilicity has little impact on the binding of R/W CPPs to 

GAGs or lipids, and on the way they affect the phase behavior of a lipid bilayer. Quite the opposite, it seems that 

for these CPPs an undefined, plastic and adaptable structure could be an asset for cell penetration, both for GAG-

dependent and independent pathways. This structural plasticity of peptides has recently been highlighted as a 

crucial parameter to discriminate cell-penetration properties through non-endosomal mechanisms from cell toxicity 

[59]. Such plasticity could explain the apparent discrepancy reported by two independent works on penetratin 

structure in cells observed by Raman microscopy. In the study of Ye et al., the authors report that Penetratin is 

random coil or adopts a β-strand structure in the cytoplasm and a β-sheet structure in nucleus of metastatic 

melanoma SK-MEL-2 cells [12]. In the study of Fleissner et al., using myoblast C2C12 cell line, the authors 

unveiled a α-helical conformation of penetratin in the cytoplasm and a β-sheet structure in the nucleus [13]. This 

apparent discrepancy could arise from the difference in cell-surface and organelle membrane partners in the two 

cell lines. 

Counter-intuitively, the number of Trp in our sequences essentially impacts cell uptake in WT cells (ie mostly 

GAG-dependent uptake), whereas it has less impact on the uptake in GAG deficient cells, where the membrane 

lipids are likely more accessible. The favorable enthalpy is balanced by defavorable entropy because of less 

flexibility of peptides bound to heparin, overtaking the counterions release. Ionpair- interactions increased the 

binding enthalpy of the peptide in complex with heparin, compared to ionpairs only. Complexes formation are thus 

more stable in the presence of ionpair- interactions. This is confirmed by our ITC experiments, where increasing 

the number of W leads to more favourable binding enthalpies, while affinity of the different R/W peptides is 

similar. These results imply that the residence time of peptides associated to GAGs at the cell-surface is longer, 

and would allow more endocytotic events to occur. In addition, the stoichiometry of the complexes is significantly 

higher in the case of R5W4 peptides (14-17) than for other peptides (7-12). This implies that not only the residence 

time is longer, but for every endocytotic event, more R5W4 molecules are associated to HS thus explaining the 

deeper increase of internalization of this peptide compared to others. 

Trp is generally considered as a hydrophobic residue that would be expected to promote peptide/lipid interactions. 

Increasing the number of Trp in the sequences indeed leads to more favorable binding enthalpies when 

investigating CPP/lipid interactions. In addition, in membrane proteins Trp is found in the electrostatically 

complex lipid bilayer/water interface, a location likely resulting from its unique π electronic structure and 

quadrupolar moment. Yet, increasing the number of Trp leads to even more favorable binding enthalpies when 

studying CPP/heparin interactions. Previous work from our group had already pointed towards an important role of 

Trp in CPP/GAG interactions that we hypothetically attributed to potential π-anion interactions [33]. The 

improvement of Trp in the binding to GAGs of cationic peptides has also been observed previously for other types 

of peptides, but the authors did not give any explanation for such binding impact [60]. Interestingly, targeting 

GAGs has been recently demonstrated as an efficient strategy for cell delivery purposes [61]. 

Recently, Matile’s group elegantly reported small anionic amphiphiles, such as pyrene butyrate, as potent 

oligoarginines binders through ionpair-π interactions, resulting in activation of the cell-penetration for these 

peptides [62, 63]. Herein we go one-step further by showing that ionpair-π interactions can occur between 

Arg/Trp-containing peptides and carboxylate groups in GAGs, due to the unique polarizability of Trp, that is much 

higher than for any other aromatic amino acid (Phe, Tyr or His). These ionpair-π interactions occurring in 

biological systems could potentiate CPP internalization. Our simulation studies show that this type of interactions 

can definitely occur between RWWR/RWR motifs and GAGs. The higher energy for the RWWR vs. RWR motif 

is totally consistent with the experimental ITC data. Whereas Chuard et al. evidenced the role of ionpair-π in CPP 

internalization using synthetic aromatic systems with tuned electronic properties (push-pull dipoles) [61], we show 

the same type of mechanism is occurring in natural peptide sequences, using the unique properties of Trp, the most 

electron-rich and polar natural aromatic amino-acid.  

From the present and other past studies from our group and others, we finally propose a model for the molecular 

mechanism behind the different behaviors of Arg/Trp rich CPPs (Fig. 10). In this model, peptides containing no or 

only one Trp behave as previously described in the literature. They act as positively charged polyelectrolytes 

interacting with negatively charged partners in a purely electrostatic manner. Their lack of membrane disruption 

(no cell membrane permeabilization, little effect on lipids in DSC experiments) suggests a non-disruptive 

translocation mechanism. Adding in more Trp (2 or 3) shifts or diversifies the behavior of the peptides. With the 

loss of 2 charges (Arg) and addition of 2 Trp, the peptides are less efficient. Most probably, the dominating effect 

is the loss of charges, as previously observed for polyarginines [54, 55]. On the other hand, when 3 Trp are 

present, a threshold appears to be reached and these residues can for the loss of charge interactions from Arg, 

likely through ionpair- interactions that allow peptide accumulation at the cell-surface. The hypothesis, supported 

by our ITC and DFT data, is that favorable interactions with GAGs are occurring thanks to the presence of Trp and 

point towards ion pair-π interactions. These interactions appear to be critical for GAG-dependent internalization. 

For direct translocation, our DSC data suggest that peptides containing 2 or 3 Trp promote lateral phase 

segregation, and this type of translocation mechanism has previously been proposed for CPPs [34, 42, 51]. Finally, 
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with 4 Trp, internalization is greatly enhanced. However cytotoxic effects start to appear and thus, we suggest 

pores could be forming on the membrane, as a possible translocation mechanism [21, 64]. One point we would like 

to stress is that these behaviors are likely not mutually exclusive, but as adding more Trp, peptides gain new 

properties and diversify the way they can interact with their membrane partners, lipids and GAGs. 

 

 
 
Figure 10: Proposed model to describe the internalization mechanisms of Arg/Trp peptides (see main text for 

detailed description). 

 

 

 

5. Conclusion 

The importance of Trp for some CPPs has been uncovered almost at the same time as CPPs themselves [7]. It has 

long been believed that hydrophobic residues coupled with a facial amphiphilic α-helical structure were an 

essential feature for some CPPs, probably by analogy with cationic antimicrobial peptides. At the same time, 

activation of Arg-rich CPPs with electron-rich aromatic systems such as pyrene butyrate has been used for more 

than a decade [65]. Herein, we show that facial amphiphilicity is not likely to play a crucial role for Arg-rich CPP 

uptake. Our work strongly highlights that Trp residues play the role of natural aromatic activators of Arg-rich 

CPPs, which happens through ionpair-π interactions. Beyond the field of CPPs, the existence of such energetically 

favorable ionpair-π interactions involving Arg, Trp and negatively charged moieties (carboxylate, sulfate, 

phosphate) could be of major importance for the comprehensive analysis of peptides or proteins (membranotropic 

antimicrobial, viral, and antitumor, receptor ligands etc.) interactions with lipids, polysaccharides or proteins. 
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Extended Experimental Methods 
 
Peptide synthesis and purification 

Boc-L-Arg(Tos), Boc-L-Trp(For), Boc-Gly, D-Biotin, MBHA Resin (0.53 mmol/g loading) and 
HBTU were purchased from Iris Biotech GmbH. Boc-(2,2-D2)-Gly was obtained from 
Cambridge Isotope Laboratories. Boc-D-Trp was purchased from Sigma-Aldrich.  
D-Biotin was fully oxidized to D-Biotin sulfone (Biot(O2), Figure S1) by 4 days treatment with 
30% H2O2 in H2O and used without further purification. This avoids further oxidation of the 
peptide throughout time.  
 

 
Figure S1: D-Biotin sulfone structure 

 
Peptides were synthetized by hand on a 0.1 mmol scale for non-deuterated peptides and 
0.01 mmol for deuterated peptides. Amino acid (5 eq) activation was performed by HBTU 
(4.5 eq) in the presence of excess DIEA (12 eq), and Boc deprotection was performed in neat 
TFA (2× 1 min). Trp side chains were deprotected prior to cleavage by treatment with 10% 
piperidine in DMF (1, 2, 5, 10, 30 and 60 min successive incubations). Peptides were cleaved 
from the resin by anhydrous HF (2h, 0°C) in the presence of anisole and dimethylsulfide.  
Peptides were purified by reverse phase HPLC on a C18 preparative column (Macherey 
Nagel) with a H2O (0.1% TFA)/MeCN (0.1% TFA) elution gradient. Peptide purity and identity 
were further characterized by analytical reverse phase HPLC (C18, Higgins Analytical) with a 
H2O (0.1% TFA)/MeCN (0.1% TFA) elution gradient and MALDI-TOF MS (AB Sciex Voyager DE-
PRO MALDI TOF or 4700 MALDI TOF/TOF)(Table S1, Figure S2).  
 



 

 20 

Table S1: HPLC and MS characterization of the newly synthetized peptides. R9 and aR6W3 
were previously synthesized and characterized (1). 
 

Peptide Analytical HPLC 
retention time (min) 

Purity determined 
by analytical HPLC 

Theoretical 
mass 

Observed 
[M+H]+ 

R8W1-1 5.10 96.8 % 1938.07 1939.09 

R8W1-2 5.57 98.6 % 1938.07 1939.07 

aR7W2 5.79 97.4 % 1968.05 1968.96 

nR7W2 5.88 95.1 % 1968.05 1968.97 

nR6W3 6.63 97.7 % 1998.02 1999.09 

aR5W4 7.55 97.9 % 2028.00 2029.00 

nR5W4 7.31 95.9 % 2028.00 2029.00 

R6DW3 6.37 99.0 % 1998.02 1998.35 
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Figure S2: MALDI-TOF MS characterization of all the newly synthesized peptides 
 
Sample preparation for calorimetry and ATR-FTIR experiments 

Heparin was obtained as a concentrated stock solution (25,000 UI/5mL, 3 mM) from Sanofi 
and DMPG and POPG from Genzyme as powders.  
For liposome preparation, the appropriate amount of lipid is dissolved in CHCl3:MeOH 2/1 
and a thin film of lipid is formed on the walls of a glass tube by evaporating the solvent with 
a gentle N2 stream. Remaining traces of solvent were further evaporated by leaving the tube 
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30 min in a desiccator under vacuum. The dried lipids are then resuspended in PBS and 
vigorously vortexed to form multilamellar vesicles (MLVs). These vesicles can be used as 
such for DSC experiments. To form large unilamellar vesicles (LUVs) used in ITC experiments, 
the MLVs are submitted to four freeze-thaw cycles in liquid N2/warm water and passed 15 
times through a 100 nm polycarbonate membrane using a mini-extruder (Avanti).  
 
For ATR-FTIR experiments, in order to avoid background signal from TFA counterions in 
peptide, the peptides were dissolved in 1M HCl and freeze-dried. This allowed the exchange 
of TFA for Cl- counterions.  
 
 

Extended Results 
 
Peptide design 

Helical wheel projections for all peptides are presented on figure S3.  
 

 
 

Figure S3: Helical wheel projections for all peptides 
 
Peptide binding to GAGs and lipids analyzed by ITC 

All ITC experiments were performed with a NanoITC calorimeter (TA instruments) and data 
were analyzed using NanoAnalyze (TA instruments) using a simple binding model with n 
independent binding sites. The volume of the calorimetric cell is 983 μL and the injection 
syringe is 250 μL. 
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Representative ITC data injections of heparin (HI) into peptide solutions are shown on figure 
S4. Experiments were performed twice and the numbers given in tables 2 and 5 of the 
manuscript are averaged on the two experiments.  
 

 
R8W1-1: 30 μM pep/30 μM HI 

 
R8W1-2: 30 μM pep/40 μM HI 

 
aR7W2: 20 μM pep/30 μM HI 

 
nR7W2: 20 μM pep/30 μM HI 

 
aR6W3: 30 μM pep/40 μM HI 

 
nR6W3: 30 μM pep/40 μM HI 

 
aR5W4: 60 μM pep/40 μM HI 

 
nR5W4: 60 μM pep/40 μM HI 

 
R6DW: 40 μM pep/20 μM HI 

 
R9: 20 μM pep/20 μM HI 

 

Figure S4: Binding isotherms for peptides binding to heparin as obtained after analysis by 
NanoAnalyze.  
 
Representative ITC data injections of POPG LUVs into peptide solutions are shown on figure 
S4. Experiments were performed once or twice for each peptide.  
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R8W1-1: 75 μM pep/5 mM POPG 

 
R8W1-2: 37.5 μM pep/ 2.5 mM POPG 

 
aR7W2: 37.5 μM pep/2 mM POPG  

nR7W2: 37.5 μM pep/2 mM POPG 

 
aR6W3: 75 μM pep/2.5 mM POPG 

 
nR6W3: 75 μM pep/2.5 mM POPG 

 
aR5W4: 75 μM pep/2.5 mM POPG 

 
nR5W4: 75 μM pep/2.5 mM POPG 

 
R6DW3: 50 μM pep/2.5 mM POPG 

 
R9: 75 μM pep/5 mM POPG 

 
Figure S5: Binding isotherms for peptides binding to POPG LUVs as obtained after analysis by 
NanoAnalyze.  
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Peptide secondary structure 

Example of Amide I band deconvolution for aR5W4 peptide is shown on figure S6 and 
secondary structures extracted from ATR spectra for all peptides are given in Table S2.  

 
 
Figure S6: Example of ATR-IR spectra Amide I band deconvolution for aR5W4 alone (A) or 
with Hep (B) 
 
Table S2: Secondary structure of all RW peptides in the absence or presence of heparin (8.3 
μM heparin and peptide concentration according to the stoichiometries determined by ITC). 
For two peptides, secondary structures could not be extracted from the spectra. nd: not 
determined. 
 

Secondary 
structure 
element 

Wavenumbers 
(cm

-1
) 

Percentage of structural elements 

aR5W4 nR5W4 aR6W3 nR6W3 aR7W2 

Alone +Hep Alone +Hep Alone +Hep Alone +Hep Alone +Hep 

β-strand 1627 11 % 20 % 17 % 21 % 13 % 8 % 21 % 27 % 22 % 17 % 

Random 
coil 

1643 24 % 20% 22 % 22 % 17 % 24 % 23 % 24 % 18 % 20 % 

α-Helix 1659 29 % 30 % 26 % 26 % 30 % 28 % 25 % 27 % 25 % 26 % 

Turn 1679 36 % 30 % 35 % 32 % 40 % 40 % 31 % 22 % 35 % 37 % 

 

Secondary 
structure 
element 

Wavenumbers 
(cm

-1
) 

Percentage of structural elements 

nR7W2 aR8W1 nR8W1 

Alone +Hep Alone +Hep Alone +Hep 

β-strand 1627 

nd 

17 % 17 % 

nd 

Random 
coil 

1643 21 % 21 % 

α-Helix 1659 25 % 25 % 

Turn 1679 37 % 37 % 
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