S. Chen and G. D. Doolen, Lattice boltzmann method for fluid flows, Annual review of fluid mechanics, vol.30, pp.329-364, 1998.

A. D'hooge, L. Rebbeck, R. Palin, Q. Murphy, J. Gargoloff et al., Application of real-world wind conditions for assessing aerodynamic drag for on-road range prediction, Tech. rep., SAE Technical Paper, 2015.

M. E. Gleason, B. Duncan, J. Walter, A. Guzman, and Y. Cho, Comparison of computational simulation of automotive spinning wheel flow field with full width moving belt wind tunnel results, SAE International Journal of Passenger Cars-Mechanical Systems, vol.8, pp.275-293, 1556.

M. R. Khorrami, E. Fares, B. Duda, and A. Hazir, Computational evaluation of airframe noise reduction concepts at full scale, 22nd AIAA/CEAS Aeroacoustics Conference, p.2711, 2016.

M. R. Khorrami and E. Fares, Simulation-based airframe noise prediction of a full-scale, full aircraft, 22nd AIAA/CEAS aeroacoustics conference, p.2706, 2016.

D. Casalino, A. Hazir, and A. Mann, Turbofan broadband noise prediction using the lattice boltzmann method, AIAA Journal, pp.1-20, 2017.

G. Romani and D. Casalino, Rotorcraft blade-vortex interaction noise prediction using the lattice-boltzmann method, Aerospace Science and Technology

Y. Feng, M. Tayyab, and P. Boivin, A lattice-boltzmann model for low-mach reactive flows, Combustion and Flame, vol.196, pp.249-254, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01832640

O. Filippova and D. Hänel, A Novel Lattice BGK Approach for Low Mach Number Combustion, Journal of Computational Physics, vol.158, issue.2, pp.139-160, 2000.

K. Yamamoto and N. Takada, LB simulation on soot combustion in porous media, Physica A: Statistical Mechanics and its Applications, vol.362, issue.1, pp.111-117, 2006.

E. Chiavazzo, I. V. Karlin, A. N. Gorban, and K. Boulouchos, Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations, Combustion and Flame, vol.157, issue.10, pp.1833-1849, 2010.

A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxation-time lattice boltzmann kinetic model for combustion, Physical Review E, vol.91, issue.4, p.43306, 2015.

K. Sun, S. Yang, and C. K. Law, A diffuse interface method for simulating the dynamics of premixed flames, Combustion and Flame, vol.163, pp.508-516, 2016.

M. Ashna, M. H. Rahimian, and A. Fakhari, Extended lattice boltzmann scheme for droplet combustion, Physical Review E, vol.95, issue.5, p.53301, 2017.

S. Hosseini, N. Darabiha, and D. Thévenin, Mass-conserving advectiondiffusion lattice boltzmann model for multi-species reacting flows, Physica A: Statistical Mechanics and its Applications, vol.499, pp.40-57, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01947478

J. Latt and B. Chopard, Lattice boltzmann method with regularized precollision distribution functions, Mathematics and Computers in Simulation, vol.72, issue.2-6, pp.165-168, 2006.

O. Malaspinas, B. Chopard, and J. Latt, General regularized boundary condition for multi-speed lattice boltzmann models, Computers & Fluids, vol.49, issue.1, pp.29-35, 2011.

Y. Feng, S. Guo, W. Tao, and P. Sagaut, Regularized thermal lattice boltzmann method for natural convection with large temperature differences, International Journal of Heat and Mass Transfer, vol.125, pp.1379-1391, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02114047

R. K. Freitas, A. Henze, M. Meinke, and W. Schröder, Analysis of latticeboltzmann methods for internal flows, Computers & Fluids, vol.47, issue.1, pp.115-121, 2011.

M. Gehrke, C. Janßen, and T. Rung, Scrutinizing lattice boltzmann methods for direct numerical simulations of turbulent channel flows, Computers & Fluids, vol.156, pp.247-263, 2017.

I. V. Karlin, F. Bösch, and S. Chikatamarla, Gibbs' principle for the latticekinetic theory of fluid dynamics, Physical Review E, vol.90, issue.3, p.31302, 2014.

M. Geier, M. Schönherr, A. Pasquali, and M. Krafczyk, The cumulant lattice Boltzmann equation in three dimensions: Theory and validation, Computers & Mathematics with Applications, vol.70, issue.4, pp.507-547, 2015.

D. Esch, A. Siripong, and R. Pike, Thermodynamic properties in polynomial form for carbon, hydrogen, nitrogen, and oxygen systems from 300 to 15000 k

R. J. Kee, F. M. Rupley, and J. A. Miller, The chemkin thermodynamic data base

D. G. Goodwin, H. K. Moffat, and R. L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, 2017.

P. Boivin, C. Jiménez, A. L. Sánchez, and F. A. Williams, An explicit reduced mechanism for H 2 -air combustion, Proceedings of the Combustion Institute, vol.33, issue.1, pp.517-523, 2011.

F. Williams, Chemical-kinetic mechanisms for combustion applications

T. Schönfeld and M. Rudgyard, Steady and unsteady flows simulations using the hybrid flow solver AVBP, AIAA Journal, vol.37, issue.11, pp.1378-1385, 1999.

J. Jacob, O. Malaspinas, and P. Sagaut, A new hybrid recursive regularised bhatnagar-gross-krook collision model for lattice boltzmann methodbased large eddy simulation, Journal of Turbulence, pp.1-26, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02114308

Y. Feng, P. Boivin, J. Jacob, and P. Sagaut, Hybrid recursive regularized lattice boltzmann simulation of humid air with application to meteorological flows, Physical Review E, vol.100, issue.2, p.23304, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02265484

Y. Feng, P. Boivin, J. Jacob, and P. Sagaut, Hybrid recursive regularized thermal lattice boltzmann model for high subsonic compressible flows, Journal of Computational Physics, vol.394, pp.82-99, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02142837

L. Merlier, J. Jacob, and P. Sagaut, Lattice-boltzmann large-eddy simulation of pollutant dispersion in complex urban environment with dense gas effect: Model evaluation and flow analysis, Building and Environment, vol.148, pp.634-652, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02176936

J. Jacob and P. Sagaut, Wind comfort assessment by means of large eddy simulation with lattice boltzmann method in full scale city area, Building and Environment, vol.139, pp.110-124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02114339

S. Wilhelm, J. Jacob, and P. Sagaut, An explicit power-law-based wall model for lattice boltzmann method-reynolds-averaged numerical simulations of the flow around airfoils, Physics of Fluids, vol.30, issue.6, p.65111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02116210

O. Malaspinas, Increasing stability and accuracy of the lattice boltzmann scheme: recursivity and regularization

D. D. Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. Luo, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil. Trans. R. Soc. Lond. A, vol.360, pp.437-451, 2002.

F. Dubois and P. Lallemand, Towards higher order lattice Boltzmann schemes, Journal of Statistical Mechanics: Theory and Experiment, issue.06, p.6006, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00336388

K. N. Premnath and J. Abraham, Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow, Journal of Computational Physics, vol.224, issue.2, pp.539-559, 2007.

H. Xu, O. Malaspinas, and P. Sagaut, Sensitivity analysis and determination of free relaxation parameters for the weakly-compressible MRT-LBM schemes, Journal of Computational Physics, vol.231, issue.21, pp.7335-7367, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01298921

B. Denet and P. Haldenwang, Numerical study of thermal-diffusive instability of premixed flames, Combustion science and technology, vol.86, issue.1-6, pp.199-221, 1992.

B. Denet and P. Haldenwang, A numerical study of premixed flames darrieus-landau instability, Combustion science and technology, vol.104, issue.1-3, pp.143-167, 1995.

M. Matalon, Intrinsic flame instabilities in premixed and nonpremixed combustion, Annu. Rev. Fluid Mech, vol.39, pp.163-191, 2007.

C. J. Rutland and J. H. Ferziger, Simulations of Flame-Vortex Interactions, vol.360, pp.343-360, 1991.

S. Kadowaki and T. Hasegawa, Numerical simulation of dynamics of premixed flames: flame instability and vortex-flame interaction, Progress in energy and combustion science, vol.31, issue.3, pp.193-241, 2005.

T. Poinsot, D. Veynante, and S. Candel, Quenching processes and premixed turbulent combustion diagrams, Journal of Fluid Mechanics, vol.228, pp.561-606, 1991.

W. L. Roberts, J. F. Driscoll, M. C. Drake, and L. P. Goss, Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion, Combustion and Flame, vol.94, issue.1-2, pp.58-69, 1993.

C. Mueller, J. Driscoll, D. Reuss, M. Drake, and M. Rosalik, Generation and attenuation of vorticity by flames: measured vorticity field time evolution during a premixed flame-vortex interaction, Combust Flame, vol.112, pp.342-348, 1998.

P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. i. small amplitude processes in charged and neutral onecomponent systems, Phys. Rev, vol.94, pp.511-525, 1954.

T. Poinsot and D. Veynante, Theoretical and numerical combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

K. Kuo, Principles of combustion, 1986.

T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva et al., The Lattice Boltzmann Method: Principles and Practice, 2016.

S. A. Hosseini, N. Darabiha, and D. Thévenin, Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations, Physical Review E, vol.99, issue.2, p.23305, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02114001

C. Coreixas, G. Wissocq, G. Puigt, J. F. Boussuge, and P. Sagaut, Recursive regularization step for high-order lattice Boltzmann methods, Physical Review E, vol.96, issue.3, pp.1-22, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596322

Y. Feng, P. Sagaut, and W. Tao, A three dimensional lattice model for thermal compressible flow on standard lattices, vol.303, pp.514-529, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276507

S. Gottlieb, C. Shu, and E. Tadmor, Strong stability-preserving highorder time discretization methods, SIAM review, vol.43, issue.1, pp.89-112, 2001.

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 2009.

G. Strang, On the construction and comparison of difference schemes, SIAM journal on numerical analysis, vol.5, issue.3, pp.506-517, 1968.

S. Marié, D. Ricot, and P. Sagaut, Comparison between lattice boltzmann method and navier-stokes high order schemes for computational aeroacoustics, Journal of Computational Physics, vol.228, issue.4, pp.1056-1070, 2009.

D. Fernández-galisteo, C. Jiménez, M. Sánchez-sanz, and V. N. Kurdyumov, The differential diffusion effect of the intermediate species on the stability of premixed flames propagating in microchannels, Combustion Theory and Modelling, vol.18, issue.4-5, pp.582-605, 2014.

P. J. Linstrom and W. Mallard, Nist chemistry webbook

M. Baum, Ntmix-ckemkin release 2, user's guide version 1.0, Tech. rep., Technical report, CERFACS, 42, avenue G. Coriolis-31057 Toulouse cedex 1, 1995.

R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, CHEMKIN-III: A FOR-TRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, 1996.

R. Löhner, Towards overcoming the LES crisis, International Journal of Computational Fluid Dynamics, pp.1-11, 2019.