G. Delaney, S. Jacob, C. Featherstone, and M. Barton, The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines, Cancer, vol.104, pp.1129-1166, 2005.

M. Elshaikh, M. Ljungman, T. Haken, R. Lichter, and A. S. , Advances in radiation oncology, Annu Rev Med, vol.57, pp.19-31, 2006.

B. Fertil and E. P. Malaise, Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves, Int J Radiat Oncol Biol Phys, vol.11, pp.1699-707, 1985.

A. Taghian, J. Ramsay, J. Allalunis-turner, W. Budach, D. Gioioso et al., Intrinsic radiation sensitivity may not be the major determinant of the poor clinical outcome of glioblastoma multiforme, Int J Radiat Oncol Biol Phys, vol.25, issue.93, p.90345, 1993.

L. E. Gerweck, S. Vijayappa, A. Kurimasa, K. Ogawa, and D. J. Chen, Tumor cell radiosensitivity is a major determinant of tumor response to radiation, Cancer Res, vol.66, pp.8352-8357, 2006.

K. K. Khanna and S. P. Jackson, DNA double-strand breaks: signaling, repair and the cancer connection, Nat Genet, vol.27, pp.247-54, 2001.

I. R. Radford, The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation, Int J Radiat Biol Relat Stud Phys Chem Med, vol.48, pp.45-54, 1985.

P. Jeggo and M. F. Lavin, Cellular radiosensitivity: how much better do we understand it?, Int J Radiat Biol, vol.85, pp.1061-81, 2009.

M. O'driscoll and P. A. Jeggo, The role of double-strand break repair -insights from human genetics, Nat Rev Genet, vol.7, pp.45-54, 2006.

T. Helleday, E. Petermann, C. Lundin, B. Hodgson, and R. A. Sharma, DNA repair pathways as targets for cancer therapy, Nat Rev Cancer, vol.8, pp.193-204, 2008.

E. H. Stover, P. A. Konstantinopoulos, U. A. Matulonis, and E. M. Swisher, Biomarkers of response and resistance to DNA repair targeted therapies, Clin Cancer Res, vol.22, pp.5651-60, 2016.

A. C. Begg, F. A. Stewart, and C. Vens, Strategies to improve radiotherapy with targeted drugs, Nat Rev Cancer, vol.11, pp.239-53, 2011.

J. Thoms and R. G. Bristow, DNA repair targeting and radiotherapy: a focus on the therapeutic ratio, Semin Radiat Oncol, vol.20, pp.217-239, 2010.

P. G. Pilié, C. Tang, G. B. Mills, and T. A. Yap, State-of-the-art strategies for targeting the DNA damage response in cancer, Nat Rev Clin Oncol, vol.16, pp.81-104, 2019.

M. B. Kastan and J. Bartek, Cell-cycle checkpoints and cancer, Nature, vol.432, pp.316-339, 2004.

N. J. Curtin, DNA repair dysregulation from cancer driver to therapeutic target, Nat Rev Cancer, vol.12, pp.801-818, 2012.

M. Shaheen, C. Allen, J. A. Nickoloff, and R. Hromas, Synthetic lethality: exploiting the addiction of cancer to DNA repair, Blood, vol.117, pp.6074-82, 2011.

T. B. Kryston, A. B. Georgiev, P. Pissis, and A. G. Georgakilas, Role of oxidative stress and DNA damage in human carcinogenesis, Mutat Res, vol.711, pp.193-201, 2011.

S. Nowsheen, R. L. Wukovich, K. Aziz, P. T. Kalogerinis, C. C. Richardson et al., Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues, Mutat Res, vol.674, pp.131-137, 2009.

S. P. Jackson and J. Bartek, The DNA-damage response in human biology and disease, Nature, vol.461, pp.1071-1079, 2009.

J. F. Ward, DNA damage and repair, Basic Life Sci, vol.58, pp.403-418, 1991.

W. Burkart, T. Jung, and G. Frasch, Damage pattern as a function of radiation quality and other factors, C R Acad Sci III, Sci Vie, vol.322, pp.89-101, 1999.

A. Kuzminov, Single-strand interruptions in replicating chromosomes cause double-strand breaks, Proc Natl Acad Sci, vol.98, pp.8241-8247, 2001.

J. Biau, F. Devun, W. Jdey, E. Kotula, M. Quanz et al., A preclinical study combining the DNA repair inhibitor Dbait with radiotherapy for the treatment of melanoma, Neoplasia, vol.16, pp.835-879, 2014.

S. Jalal, J. N. Earley, and J. J. Turchi, DNA repair: from genome maintenance to biomarker and therapeutic target, Clin Cancer Res, vol.17, pp.6973-84, 2011.

H. E. Krokan and M. Bjørås, Base excision repair, Cold Spring Harb Perspect Biol, vol.5, p.12583, 2013.

B. Van-loon, E. Markkanen, and U. Hübscher, Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine, DNA Repair, vol.9, pp.604-620, 2010.

T. Visnes, M. Grube, B. Hanna, C. Benitez-buelga, A. Cázares-körner et al., Targeting BER enzymes in cancer therapy, DNA Repair, vol.71, pp.118-144, 2018.

C. Vens and A. C. Begg, Targeting base excision repair as a sensitization strategy in radiotherapy, Semin Radiat Oncol, vol.20, pp.241-250, 2010.

J. Hyun, G. Cheon, H. Kim, Y. Lee, E. Choi et al., Radiation sensitivity depends on OGG1 activity status in human leukemia cell lines, Free Radic Biol Med, vol.32, pp.212-232, 2002.

N. Yang, H. Galick, and S. S. Wallace, Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks, DNA Repair, vol.3, pp.1323-1357, 2004.

P. Fortini and E. Dogliotti, Base damage and single-strand break repair: mechanisms and functional significance of short-and long-patch repair subpathways, DNA Repair, vol.6, pp.398-409, 2007.

R. J. Carter and J. L. Parsons, Base excision repair, a pathway regulated by posttranslational modifications, Mol Cell Biol, vol.36, pp.1426-1463, 2016.

S. S. Wallace, Base excision repair: a critical player in many games, DNA Repair, vol.19, pp.14-26, 2014.

K. L. Limpose, A. H. Corbett, and P. W. Doetsch, BERing the burden of damage: pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management, DNA Repair, vol.56, pp.51-64, 2017.

A. L. Jacobs and P. Schär, DNA glycosylases: in DNA repair and beyond, Chromosoma, vol.121, pp.1-20, 2012.

M. Dizdaroglu, Oxidatively induced DNA damage and its repair in cancer, Mutat Res Rev Mutat Res, vol.763, pp.212-257, 2015.

M. J. Schiewer, A. C. Mandigo, N. Gordon, F. Huang, S. Gaur et al., PARP-1 regulates DNA repair factor availability, EMBO Mol Med, vol.10, p.8816, 2018.

P. Rajaraman, P. Bhatti, M. M. Doody, S. L. Simon, R. M. Weinstock et al., Nucleotide excision repair polymorphisms may modify ionizing radiationrelated breast cancer risk in US radiologic technologists, Int J Cancer, vol.123, pp.2713-2719, 2008.

C. Wyman and R. Kanaar, DNA double-strand break repair: all's well that ends well, Annu Rev Genet, vol.40, pp.363-83, 2006.

Y. Zhang, L. H. Rohde, and H. Wu, Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair, Curr Genomics, vol.10, pp.250-258, 2009.

I. Y. Belyaev, Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry, Mutat Res, vol.704, pp.132-173, 2010.

D. Cortez, Replication-coupled DNA repair, Mol Cell, vol.74, pp.866-76, 2019.

N. R. Pannunzio, G. Watanabe, and M. R. Lieber, Nonhomologous DNA end-joining for repair of DNA double-strand breaks, J Biol Chem, vol.293, pp.10512-10535, 2018.

S. Britton, J. Coates, and S. P. Jackson, A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair, J Cell Biol, vol.202, pp.579-95, 2013.

T. M. Gottlieb and S. P. Jackson, The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen, Cell, vol.72, issue.93, p.90057, 1993.

E. Park, D. W. Chan, J. Park, M. A. Oettinger, and J. Kwon, DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner, Nucleic Acids Res, vol.31, pp.6819-6846, 2003.

Y. Ma, U. Pannicke, K. Schwarz, and M. R. Lieber, Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination, Cell, vol.108, pp.781-94, 2002.

N. Mcelhinny, S. A. Snowden, C. M. Mccarville, J. Ramsden, and D. A. , Ku recruits the XRCC4-ligase IV complex to DNA ends, Mol Cell Biol, vol.20, pp.2996-3003, 2000.

P. Ahnesorg, P. Smith, and S. P. Jackson, XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining, Cell, vol.124, pp.301-314, 2006.

A. Sallmyr and A. E. Tomkinson, Repair of DNA double-strand breaks by mammalian alternative end-joining pathways, J Biol Chem, vol.293, pp.10536-10582, 2018.

M. Mcvey and S. E. Lee, MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings, Trends Genet, vol.24, pp.529-567, 2008.

C. Boboila, M. Jankovic, C. T. Yan, J. H. Wang, D. R. Wesemann et al., Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70, Proc Natl Acad Sci, vol.107, pp.3034-3043, 2010.

C. T. Yan, C. Boboila, E. K. Souza, S. Franco, T. R. Hickernell et al., IgH class switching and translocations use a robust non-classical end-joining pathway, Nature, vol.449, pp.478-82, 2007.

J. Haince, D. Mcdonald, A. Rodrigue, U. Déry, J. Masson et al., PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites, J Biol Chem, vol.283, pp.1197-208, 2008.

S. F. El-khamisy, M. Masutani, H. Suzuki, and K. W. Caldecott, A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage, Nucleic Acids Res, vol.31, pp.5526-5559, 2003.

T. Kent, G. Chandramouly, S. M. Mcdevitt, A. Y. Ozdemir, and R. T. Pomerantz, Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase ?, Nat Struct Mol Biol, vol.22, pp.230-237, 2015.

M. F. Lavin, The Mre11 complex and ATM: a two-way functional interaction in recognising and signaling DNA double strand breaks, DNA Repair, vol.3, pp.1515-1535, 2004.

A. A. Sartori, C. Lukas, J. Coates, M. Mistrik, S. Fu et al., Human CtIP promotes DNA end resection, Nature, vol.450, pp.509-523, 2007.

R. Prakash, Y. Zhang, W. Feng, and M. Jasin, Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins, Cold Spring Harb Perspect Biol, vol.7, p.16600, 2015.

W. Heyer, X. Li, M. Rolfsmeier, and X. Zhang, Rad54: the Swiss Army knife of homologous recombination?, Nucleic Acids Res, vol.34, pp.4115-4140, 2006.

J. A. Solinger and W. D. Heyer, Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange, Proc Natl Acad Sci, vol.98, pp.8447-53, 2001.

K. Rodgers and M. Mcvey, Error-prone repair of DNA double-strand breaks, J Cell Physiol, vol.231, pp.15-24, 2016.

R. Scully, A. Panday, R. Elango, and N. A. Willis, DNA double-strand break repair-pathway choice in somatic mammalian cells, Nat Rev Mol Cell Biol, 2019.

F. Fattah, E. H. Lee, N. Weisensel, Y. Wang, N. Lichter et al., Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells, PLoS Genet, vol.6, p.1000855, 2010.

D. A. Chan and A. J. Giaccia, Harnessing synthetic lethal interactions in anticancer drug discovery, Nat Rev Drug Discov, vol.10, pp.351-64, 2011.

J. S. Brown, B. O'carrigan, S. P. Jackson, and T. A. Yap, Targeting DNA repair in cancer: beyond PARP inhibitors, Cancer Discov, vol.7, pp.20-37, 2017.

K. A. Gelmon, M. Tischkowitz, H. Mackay, K. Swenerton, A. Robidoux et al., Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study, Lancet Oncol, vol.12, pp.852-61, 2011.

S. B. Kaye, J. Lubinski, U. Matulonis, J. E. Ang, C. Gourley et al., Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer, J Clin Oncol, vol.30, pp.372-381, 2012.

J. Ledermann, P. Harter, C. Gourley, M. Friedlander, I. Vergote et al., Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, N Engl J Med, vol.366, pp.1382-92, 2012.

C. R. Calabrese, R. Almassy, S. Barton, M. A. Batey, A. H. Calvert et al., Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361, J Natl Cancer Inst, vol.96, pp.56-67, 2004.

F. A. Dungey, D. A. Löser, and A. J. Chalmers, Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential, Int J Radiat Oncol Biol Phys, vol.72, pp.1188-97, 2008.

C. K. Donawho, Y. Luo, Y. Luo, T. D. Penning, J. L. Bauch et al., ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models, Clin Cancer Res, vol.13, pp.2728-2765, 2007.

K. A. Reiss, J. M. Herman, D. Armstrong, M. Zahurak, A. Fyles et al., A final report of a phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy (LDFWAR) in patients with advanced solid malignancies and peritoneal carcinomatosis with a dose escalation in ovarian and fallopian tube cancers, Gynecol Oncol, vol.144, pp.486-90, 2017.

P. Chabot, T. Hsia, J. Ryu, V. Gorbunova, C. Belda-iniesta et al., Veliparib in combination with whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer: results of a randomized, global, placebo-controlled study, J Neurooncol, vol.131, pp.105-120, 2017.

I. F. Pollack, R. I. Jakacki, S. M. Blaney, M. L. Hancock, M. W. Kieran et al., Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a pediatric brain tumor consortium report, Neuro-oncology, vol.9, pp.145-60, 2007.

A. H. Ree, S. Dueland, S. Folkvord, K. H. Hole, T. Seierstad et al., Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, Lancet Oncol, vol.11, issue.10, pp.70058-70067, 2010.

M. Candelaria, L. Cetina, E. Pérez-cárdenas, E. De-la-cruz-hernández, A. González-fierro et al., Epigenetic therapy and cisplatin chemoradiation in FIGO stage IIIB cervical cancer, Eur J Gynaecol Oncol, vol.31, pp.386-91, 2010.

L. Tourneau, C. Dreno, B. Kirova, Y. Grob, J. J. Jouary et al., Firstin-human phase I study of the DNA-repair inhibitor DT01 in combination with radiotherapy in patients with skin metastases from melanoma, Br J Cancer, vol.114, pp.1199-205, 2016.

G. Tell, D. Fantini, and F. Quadrifoglio, Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment, Cell Mol Life Sci, vol.67, pp.3589-608, 2010.

M. D. Naidu, J. M. Mason, R. V. Pica, H. Fung, and L. A. Peña, Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1, J Radiat Res, vol.51, pp.393-404, 2010.

D. Xiang, Z. Chen, D. Wang, M. Li, J. Xie et al., Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo, Cancer Gene Ther, vol.15, pp.625-660, 2008.

I. S. Mohiuddin and M. H. Kang, DNA-PK as an emerging therapeutic target in cancer, Front Oncol, vol.9, p.635, 2019.

I. H. Ismail, S. Mårtensson, D. Moshinsky, A. Rice, C. Tang et al., SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization, Oncogene, vol.23, pp.873-82, 2004.

E. T. Shinohara, L. Geng, J. Tan, H. Chen, Y. Shir et al., DNAdependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs, Cancer Res, vol.65, pp.4987-992, 2005.

D. Davidson, L. Amrein, L. Panasci, and R. Aloyz, Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond, Front Pharmacol, vol.4, p.5, 2013.

J. M. Brown, beware of clinical trials of DNA repair inhibitors, Int J Radiat Oncol Biol Phys, vol.103, pp.1182-1185, 2019.

M. Mau-sorensen, M. Van-bussel, M. Kuipers, D. L. Nielsen, H. M. Verheul et al., clinical activity and pharmacological biomarker evaluation of the DNA-dependent protein kinase (DNA-PK) inhibitor M3814: results from two phase I trials, Ann Oncol, p.29, 2018.

Y. Li, X. Wang, Y. Pan, D. Lee, D. Chowdhury et al., Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response, PLoS ONE, vol.7, p.39588, 2012.

N. S. Gavande, P. S. Vandervere-carozza, H. D. Hinshaw, S. I. Jalal, C. R. Sears et al., DNA repair targeted therapy: The past or future of cancer treatment?, Pharmacol Ther, vol.160, pp.65-83, 2016.

P. N. Munster, A. Mahipal, J. J. Nemunaitis, M. M. Mita, L. G. Paz-ares et al., Phase I trial of a dual TOR kinase and DNA-PK inhibitor (CC-115) in advanced solid and hematologic cancers, JCO, vol.34, p.2505, 2016.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

B. Qiao, M. Kerr, B. Groselj, M. Teo, M. A. Knowles et al., Imatinib radiosensitizes bladder cancer by targeting homologous recombination, Cancer Res, vol.73, pp.1611-1631, 2013.

M. Shrivastav, D. Haro, L. P. Nickoloff, and J. A. , Regulation of DNA double-strand break repair pathway choice, Cell Res, vol.18, pp.134-181, 2008.

C. H. Westphal, K. P. Hoyes, C. E. Canman, X. Huang, M. B. Kastan et al., Loss of atm radiosensitizes multiple p53 null tissues, Cancer Res, vol.58, pp.5637-5646, 1998.

M. D. Rainey, M. E. Charlton, R. V. Stanton, and M. B. Kastan, Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation, Cancer Res, vol.68, pp.7466-74, 2008.

I. Hickson, Y. Zhao, C. J. Richardson, S. J. Green, N. Martin et al., Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM, Cancer Res, vol.64, pp.9152-9161, 2004.

S. E. Golding, E. Rosenberg, B. R. Adams, S. Wignarajah, J. M. Beckta et al., Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control, Cell Cycle, vol.11, pp.1167-73, 2012.

J. A. Torok, P. Oh, K. D. Castle, M. Reinsvold, Y. Ma et al., Deletion of Atm in tumor but not endothelial cells improves radiation response in a primary mouse model of lung adenocarcinoma, Cancer Res, vol.79, pp.773-82, 2019.

K. L. Andarawewa, J. Paupert, A. Pal, and M. H. Barcellos-hoff, New rationales for using TGFbeta inhibitors in radiotherapy, Int J Radiat Biol, vol.83, pp.803-814, 2007.

M. Kirshner, M. Rathavs, A. Nizan, J. Essers, R. Kanaar et al., Analysis of the relationships between ATM and the Rad54 paralogs involved in homologous recombination repair, DNA Repair, vol.8, pp.253-61, 2009.

S. E. Golding, E. Rosenberg, S. Neill, P. Dent, L. F. Povirk et al., Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response, Cancer Res, vol.67, pp.1046-53, 2007.

A. Minchom, C. Aversa, and J. Lopez, Dancing with the DNA damage response: next-generation anti-cancer therapeutic strategies, Ther Adv Med Oncol, vol.10, p.1758835918786658, 2018.

S. Rundle, A. Bradbury, Y. Drew, and N. J. Curtin, Targeting the ATR-CHK1 axis in cancer therapy, Cancers, vol.9, p.41, 2017.

F. P. Vendetti, A. Lau, S. Schamus, T. P. Conrads, M. J. O'connor et al., The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATMdeficient non-small cell lung cancer in vivo, Oncotarget, vol.6, pp.44289-305, 2015.

A. Dupré, L. Boyer-chatenet, R. M. Sattler, A. P. Modi, J. Lee et al., A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex, Nat Chem Biol, vol.4, pp.119-144, 2008.

S. Kuroda, Y. Urata, and T. Fujiwara, Ataxia-telangiectasia mutated and the Mre11-Rad50-NBS1 complex: promising targets for radiosensitization, Acta Med Okayama, vol.66, pp.83-92, 2012.

M. Quanz, N. Berthault, C. Roulin, M. Roy, A. Herbette et al., Small-molecule drugs mimicking DNA damage: a new strategy for sensitizing tumors to radiotherapy, Clin Cancer Res, vol.15, pp.1308-1324, 2009.

M. Quanz, D. Chassoux, N. Berthault, C. Agrario, J. Sun et al., Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response, PLoS ONE, vol.4, p.6298, 2009.

A. Croset, F. P. Cordelières, N. Berthault, C. Buhler, J. Sun et al., Inhibition of DNA damage repair by artificial activation of PARP with siDNA, Nucleic Acids Res, vol.41, pp.7344-55, 2013.

J. Biau, E. Chautard, N. Berthault, L. De-koning, F. Court et al., Combining the DNA repair inhibitor Dbait with radiotherapy for the treatment of high grade glioma: efficacy and protein biomarkers of resistance in preclinical models, Front Oncol, vol.9, p.549, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02180772

B. Groselj, N. L. Sharma, F. C. Hamdy, M. Kerr, and A. E. Kiltie, Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair, Br J Cancer, vol.108, pp.748-54, 2013.

Y. Park, M. H. Chui, S. Rahmanto, Y. , Y. Shamanna et al., Loss of ARID1A in tumor cells renders selective vulnerability to combined ionizing radiation and PARP inhibitor therapy, Clin Cancer Res, vol.25, pp.5584-94, 2019.

C. Blattmann, S. Oertel, V. Ehemann, M. Thiemann, P. E. Huber et al., Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition, Int J Radiat Oncol Biol Phys, vol.78, pp.237-282, 2010.

J. Lee, M. L. Choy, L. Ngo, S. S. Foster, and P. A. Marks, Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair, Proc Natl Acad Sci, vol.107, pp.14639-14683, 2010.

Z. Konsoula, H. Cao, A. Velena, and M. Jung, Adamantanyl-histone deacetylase inhibitor H6CAHA exhibits favorable pharmacokinetics and augments prostate cancer radiation sensitivity, Int J Radiat Oncol Biol Phys, vol.79, pp.1541-1549, 2011.

A. Munshi, T. Tanaka, M. L. Hobbs, S. L. Tucker, V. M. Richon et al., Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci, Mol Cancer Ther, vol.5, pp.1967-74, 2006.

W. Yu, K. Gu, Z. Yu, D. Yuan, M. He et al., Sorafenib potentiates irradiation effect in hepatocellular carcinoma in vitro and in vivo, Cancer Lett, vol.329, pp.109-126, 2013.

U. Raju, O. Riesterer, Z. Wang, D. P. Molkentine, J. M. Molkentine et al., Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways, Radiother Oncol, vol.105, pp.241-250, 2012.

H. Khurshid, T. Dipetrillo, T. Ng, K. Mantripragada, A. Birnbaum et al., A phase I study of dasatinib with concurrent chemoradiation for stage III non-small cell lung cancer, Front Oncol, vol.2, p.56, 2012.

S. Kroeze, C. Fritz, M. Hoyer, S. S. Lo, U. Ricardi et al., Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: a systematic review, Cancer Treatment Rev, vol.53, pp.25-37, 2017.

G. Liccardi, J. A. Hartley, and D. Hochhauser, EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment, Cancer Res, vol.71, pp.1103-1117, 2011.

K. K. Ang, B. A. Berkey, X. Tu, H. Zhang, R. Katz et al., Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma, Cancer Res, vol.62, pp.7350-7356, 2002.

J. A. Bonner, P. M. Harari, J. Giralt, N. Azarnia, D. M. Shin et al., Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck, N Engl J Med, vol.354, pp.567-78, 2006.

R. G. Martins, U. Parvathaneni, J. E. Bauman, A. K. Sharma, L. E. Raez et al., Cisplatin and radiotherapy with or without erlotinib in locally advanced squamous cell carcinoma of the head and neck: a randomized phase II trial, J Clin Oncol, vol.31, pp.1415-1436, 2013.

Y. Sato, T. Ebara, N. Sunaga, T. Takahashi, and T. Nakano, Interaction of radiation and gefitinib on a human lung cancer cell line with mutant EGFR gene in vitro, Anticancer Res, vol.32, pp.4877-81, 2012.

K. Aziz, S. Nowsheen, G. Pantelias, G. Iliakis, V. G. Gorgoulis et al., Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy, Pharmacol Ther, vol.133, pp.334-50, 2012.

J. B. Mitchell, R. Choudhuri, K. Fabre, A. L. Sowers, D. Citrin et al., In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762, Clin Cancer Res, vol.16, pp.2076-84, 2010.

S. D. Zabludoff, C. Deng, M. R. Grondine, A. M. Sheehy, S. Ashwell et al., AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies, Mol Cancer Ther, vol.7, pp.2955-66, 2008.

L. Zeng, R. R. Beggs, T. S. Cooper, A. N. Weaver, and E. S. Yang, Combining Chk1/2 inhibition with cetuximab and radiation enhances in vitro and in vivo cytotoxicity in head and neck squamous cell carcinoma, Mol Cancer Ther, vol.16, pp.591-600, 2017.

M. Goldstein and M. B. Kastan, The DNA damage response: implications for tumor responses to radiation and chemotherapy, Annu Rev Med, vol.66, pp.129-172, 2015.

A. Ciccia and S. J. Elledge, The DNA damage response: making it safe to play with knives, Mol Cell, vol.40, pp.179-204, 2010.

M. A. Morgan, L. A. Parsels, L. Zhao, J. D. Parsels, M. A. Davis et al., Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair, Cancer Res, vol.70, pp.4972-81, 2010.

S. Mueller and D. A. Haas-kogan, WEE1 kinase as a target for cancer therapy, JCO, vol.12, pp.3159-64, 2015.

K. A. Bridges, H. Hirai, C. A. Buser, C. Brooks, and H. Liu, MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells, Clin Cancer Res, vol.17, pp.5638-5686, 2011.

V. Caretti, L. Hiddingh, T. Lagerweij, P. Schellen, P. W. Koken et al., WEE1 kinase inhibition enhances the radiation response of diffuse intrinsic pontine gliomas, Mol Cancer Ther, vol.12, pp.141-50, 2013.

E. C. Ko and S. C. Formenti, Radiation therapy to enhance tumor immunotherapy: a novel application for an established modality, Int J Radiat Biol, vol.95, pp.936-945, 2019.

E. B. Golden and L. Apetoh, Radiotherapy and immunogenic cell death, Semin Radiat Oncol, vol.25, pp.11-18, 2015.

S. S. Ahmad, M. R. Crittenden, P. T. Tran, P. G. Kluetz, G. M. Blumenthal et al., Clinical development of novel drug-radiotherapy combinations, Clin Cancer Res, vol.25, pp.1455-61, 2019.