L. Basora, V. Courchelle, J. Bedouet, and T. Dubot, Occupancy peak estimation from sector geometry and traffic flow data, Proc. of the 8th SESAR Innovation Days, 2018.

X. Olive, J. Grignard, T. Dubot, and J. Saint-lot, Detecting controllers actions in past Mode S data by autoencoder-based anomaly detection, Proc. of the 8th SESAR Innovation Days, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02338690

E. J. Garcia-gonzalez, Development of a 3-dimensional mathematical collision risk model based on recorded aircraft trajectories to estimate the safety level in high density en-route airspaces, 2013.

M. Gariel, A. N. Srivastava, and E. Feron, Trajectory clustering and an application to airspace monitoring, IEEE Transactions on Intelligent Transportation Systems, vol.12, issue.4, pp.1511-1524, 2011.

L. Basora, J. Morio, and C. Mailhot, A trajectory clustering framework to analyse air traffic flows, 7th SESAR Innovation Days, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01655747

X. Olive and J. Morio, Trajectory clustering of air traffic flows around airports, Aerospace Science and Technology, vol.84, 2019.

S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza, Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study, Proc. of the 16th international conference on Knowledge discovery and data mining, pp.47-56, 2010.

X. Olive and P. Bieber, Quantitative assessments of runway excursion precursors using Mode S data, Proc. of the International Conference for Research in Air Transportation, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02078299

Y. Lü, Y. Duan, W. Kang, Z. Li, and F. Wang, Traffic flow prediction with big data: A deep learning approach, IEEE Transactions on Intelligent Transportation Systems, vol.16, issue.2, pp.865-873, 2015.

C. D. Ciccio, H. Van-der-aa, C. Cabanillas, J. Mendling, and J. Prescher, Detecting flight trajectory anomalies and predicting diversions in freight transportation, Decision Support Systems, vol.88, pp.1-17, 2016.

Y. Liu, M. Hansen, D. J. Lovell, and M. O. Ball, Predicting aircraft trajectory choice -a nominal route approach, Proc. of the International Conference for Research in Air Transportation, 2018.

M. Brittain and P. Wei, Autonomous aircraft sequencing and separation with hierarchical deep reinforcement learning, Proc. of the International Conference for Research in Air Transportation, 2018.

C. Hurter, S. Puechmorel, F. Nicol, and A. Telea, Functional Decomposition for Bundled Simplification of Trail Sets, IEEE Transactions on Visualization and Computer Graphics, vol.24, issue.1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01587221

S. Puechmorel and F. Nicol, Entropy minimizing curves with application to flight path design and clustering, Entropy, vol.18, issue.9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01349675

A. T. Nguyen, Identification of air traffic flow segments via incremental deterministic annealing clustering, 2012.

G. Andrienko, N. Andrienko, G. Fuchs, and J. M. Garcia, Clustering trajectories by relevant parts for air traffic analysis, IEEE transactions on visualization and computer graphics, vol.24, issue.1, 2018.

S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko et al., Visually driven analysis of movement data by progressive clustering, Information Visualization, vol.7, issue.3-4, 2008.

M. C. Murça, R. Delaura, R. Hansman, R. Jordan, T. Reynolds et al., Trajectory clustering and classification for characterization of air traffic flows, 2016.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, vol.96, 1996.

B. Matthews, A. N. Srivsatava, J. Schade, D. R. Schleicher, K. Chan et al., Discovery of abnormal flight patterns in flight track data, 2013 Aviation Technology, Integration, and Operations Conference, p.4386, 2013.

B. Matthews, S. Das, K. Bhaduri, K. Das, R. Martin et al., Discovering anomalous aviation safety events using scalable data mining algorithms, Journal of Aerospace Information Systems, vol.10, issue.10, pp.467-475, 2013.

B. Matthews, D. Nielsen, J. Schade, K. Chan, and M. Kiniry, Automated discovery of flight track anomalies, Proc. of the 33rd Digital Avionics Systems Conference, 2014.

L. Li, M. Gariel, R. J. Hansman, and R. Palacios, Anomaly detection in onboard-recorded flight data using cluster analysis, Proc. of the 30th Digital Avionics Systems Conference, 2011.

L. Li, S. Das, R. J. Hansman, R. Palacios, and A. N. Srivastava, Analysis of flight data using clustering techniques for detecting abnormal operations, Journal of Aerospace information systems, vol.12, issue.9, 2015.

A. Nanduri and L. Sherry, Anomaly detection in aircraft data using recurrent neural networks (RNN), Proc. of the Integrated Communications Navigation and Surveillance conference, 2016.

I. Melnyk, A. Banerjee, B. Matthews, and N. Oza, Semi-Markov switching vector autoregressive model-based anomaly detection in aviation systems, Proc. of the 22nd International Conference on Knowledge Discovery and Data Mining, 2016.

I. Melnyk, B. Matthews, H. Valizadegan, A. Banerjee, and N. Oza, Vector autoregressive model-based anomaly detection in aviation systems, Journal of Aerospace Information Systems, 2016.

S. Das, B. L. Matthews, and R. Lawrence, Fleet level anomaly detection of aviation safety data, Conference on Prognostics and Health Management (PHM), 2011.

W. Lee, J. Ortiz, B. Ko, and R. Lee, Time series segmentation through automatic feature learning, 2018.

T. Dubot, Predicting sector configuration transitions with autoencoderbased anomaly detection, Proc. of the International Conference for Research in Air Transportation, 2018.

M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm, Bringing up OpenSky: A large-scale ADS-B sensor network for research, Proc. of the 13th international symposium on Information processing in sensor networks, pp.83-94, 2014.

C. A. Munoz and A. J. Narkawicz, Time of closest approach in threedimensional airspace, NASA, Tech. Rep, 2010.

A. Icao, unified framework for collision risk modelling in support of the manual on airspace planning methodology with further applications, circ 319-an/181 ed, International Civil Avaition Organization, 2008.