A. P. Allen, Linking the global carbon cycle to individual metabolism, Funct. Ecol, vol.19, pp.202-213, 2005.

G. Arnqvist, Genetic architecture of metabolic rate: environment speci c epistasis between mitochondrial and nuclear genes in an insect, Evolution, vol.64, pp.3354-3363, 2010.

P. Artacho, Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior and resting metabolic rate in a lizard, Physiol. Biochem. Zool, vol.86, pp.458-469, 2013.

K. S. Auer, Individuals exhibit consistent di erences in their metabolic rates across changing thermal conditions, Biochem. Physiol. A, vol.217, pp.1-6, 2018.

D. Bates, Fitting linear mixed-e ects models using lme4, J. Stat. Softw, vol.67, pp.1-48, 2015.

A. R. Baudron, Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea shes, Global Change Biol, vol.20, pp.1023-1031, 2014.

J. S. Boratynski, Individual di erences in the phenotypic exibility of basal metabolic rate in siberian hamsters are consistent on short and long-term timescales, Physiol. Biochem. Zool, vol.90, pp.139-152, 2017.

E. D. Brodie and N. H. Russell, e consistency of individual di erences in behaviour temperature e ects on antipredator behaviour in garter snakes, vol.57, pp.445-451, 1999.

J. H. Brown, Toward a metabolic theory of ecology, Ecology, vol.85, pp.1771-1789, 2004.

V. Careau, Individual (co)variation in thermal reaction norms of standard and maximal metabolic rates in wild-caught slimy salamanders, Funct. Ecol, vol.28, pp.1175-1186, 2014.

A. Clarke, Is there a universal temperature dependence of metabolism?, Funct. Ecol, vol.18, pp.252-256, 2004.

M. Daufresne, Global warming bene ts the small in aquatic ecosystems, Proc. Natl Acad. Sci, vol.106, pp.12788-12793, 2009.

M. Dohm, Repeatability estimates do not always set an upper limit to heritability, Funct. Ecol, vol.16, pp.273-280, 2002.

J. Forster, Warming-induced reductions in body size are greater in aquatic than terrestrial species, Proc. Natl Acad. Sci, vol.109, pp.19310-19314, 2012.

M. J. Gardner and D. G. Altman, Con dence intervals rather than p values: estimation rather than hypothesis testing, Br. Med. J, vol.292, pp.746-750, 1986.

J. L. Gardner, Declining body size: a third universal response to warming?, Trends Ecol. Evol, vol.26, pp.285-291, 2011.

B. Giebelhausen and W. Lampert, Temperature reaction norms of Daphnia magna: the e ect of food concentration, Freshwater Biol, vol.46, pp.281-289, 2001.

J. F. Gillooly, E ects of size and temperature on metabolic rate, Science, vol.293, pp.2248-2251, 2001.

D. S. Glazier, A unifying explanation for diverse metabolic scaling in animals and plants, Biol. Rev, vol.85, pp.111-138, 2010.

D. S. Glazier, E ects of contingency versus constraints on the body-mass scaling of metabolic rate, vol.9, pp.1-14, 2018.

C. T. Goulet, Repeatability and correlation of physiological traits: do ectotherms have a 'thermal type, Ecol. Evol, vol.7, pp.710-719, 2016.

S. S. Killen, e intraspeci c scaling of metabolic rate with body mass in shes depends on lifestyle and temperature, Ecol. Lett, vol.13, pp.184-193, 2010.

S. S. Killen, Environmental stressors alter relationships between physiology and behaviour, Trends Ecol. Evol, vol.28, pp.651-658, 2013.

S. S. Killen, Context dependency of trait repeatability and its relevance for management and conservation of sh populations, Conserv. Physiol, vol.4, pp.1-19, 2016.

M. K. Labocha, Individual variation and repeatability of basal metabolism in the bank vole, Clethrionomys glareolus, Proc. R. Soc. B, vol.271, pp.367-372, 2004.

M. A. Lardies, e cost of living slowly: metabolism, Q 10 and repeatability in a South American harvestman, Physiol. Entomol, vol.33, pp.193-199, 2008.

C. A. Latimer, Quantitative genetic variation for thermal performance curves within and among natural populations of Drosophila serrata, J. Evol. Biol, vol.24, pp.965-975, 2011.

B. G. Lovegrove, Seasonal thermoregulatory responses in mammals, J. Comp. Physiol. B, vol.175, pp.231-247, 2005.

E. Marais and S. L. Chown, Repeatability of standard metabolic rate and gas exchange characteristics in a highly variable cockroach, Perisphaeria sp, J. Exp. Biol, vol.206, pp.4565-4574, 2003.

K. J. Mathot, e covariance between metabolic rate and behaviour varies across behaviours and thermal types: meta-analytic insights, Biol. Rev, vol.94, pp.1056-1074, 2018.

H. Mell, Do personalities co-vary with metabolic expenditure and glucocorticoid stress response in adult lizards?, Behav. Ecol. Sociobiol, vol.70, pp.951-961, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01309742

B. Moe, Metabolic ageing in individual zebra nches, Biol. Lett, vol.5, pp.86-89, 2009.

E. R. Mo-ett, Local adaptation reduces the metabolic cost of environmental warming, Ecology, vol.99, pp.2318-2326, 2018.

C. J. Murren, Evolutionary change in continuous reaction norms, Am. Nat, vol.183, p.4, 2014.

S. Nakagawa and H. Schielzeth, Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists, Biol. Rev. Camb. Phil. Soc, vol.85, pp.935-956, 2010.

R. F. Nespolo and M. Franco, Whole-animal metabolic rate is a repeatable trait: a meta-analysis, J. Exp. Biol, vol.210, 2000.

R. F. Nespolo, Intra-population variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q 10 ) of oxygen consumption in a cricket, J. Exp. Biol, vol.206, pp.4309-4315, 2003.

T. Norin and H. Malte, Repeatability of standard metabolic rate, active metabolic rate and aerobic scope in young brown trout during a period of moderate food availability, J. Exp. Biol, vol.214, pp.1668-1675, 2011.

J. Ohlberger, Temperature-driven regime shifts in the dynamics of size-structured populations, Am. Nat, vol.177, pp.211-223, 2011.
URL : https://hal.archives-ouvertes.fr/bioemco-00560871

J. Ohlberger, Intraspeci c temperature dependence of the scaling of metabolic rate with body mass in shes and its ecological implications, Oikos, vol.121, pp.245-251, 2012.

M. Petit and F. Vézina, Reaction norms in natural conditions: how does metabolic performance respond to weather variations in a small endotherm facing cold environments?, PLoS One, vol.9, p.113617, 2014.

A. K. Pettersen, Metabolic rate covaries with tness and the pace of the life history in the eld, Proc. R. Soc. B, vol.283, p.20120323, 2016.

J. Pinheiro, nlme: linear and nonlinear mixed e ects models, 2018.

M. Pöckl, E ects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and Gamamrus roeseli. -Freshwater Biol, vol.27, pp.211-225, 1992.

T. Réveillon, Data from: repeatable inter-individual variation in the thermal sensitivity of metabolic rate, 2019.

A. Sih, Behavioral syndromes: an integrative overview, Q. Rev. Biol, vol.79, pp.241-277, 2004.

J. S. Terblanche, Metabolic rate variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability, J. Insect. Physiol, vol.50, pp.419-428, 2004.

H. Wickham, ggplot2: elegant graphics for data analysis, pp.1-221, 2016.

E. A. Wright and A. A. Wright, e respiratory quotient of Gammarus pulex L. -Comp, Biochem. Physiol, vol.53, pp.45-46, 1979.

H. Xie, E ects of acute temperature change and temperature acclimation on the respiratory metabolism of the snakehead. -Turk, J. Fish. Aquat. Sci, vol.17, pp.535-542, 2017.