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ABSTRACT  

The development of NiO-based molecular photocathodes is attracting growing interest in the 

field of dye-sensitized photoelectrochemical cells (DS-PEC) for efficient conversion of sunlight 

into fuel. For this purpose different strategies are developed to assemble the molecular 

components together in order to build functional devices. Here, an original dye-catalyst 

supramolecular assembly was designed and obtained via axial coordination of a cobalt-based 

H2-evolving catalyst, i.e. a cobaloxime complex, to a pyridyl-functionalized ruthenium-

diacetylide photosensitizer. The new supramolecular assembly was successfully employed for 

the construction of efficient NiO-based photocathodes for solar hydrogen production. We report 

a joint experimental and theoretical study of the new photocatalytic system, including 

electrochemical and XPS analyses. Photo-electrochemical generation of H2 under pertinent 

aqueous conditions eventually led to a faradaic efficiency of 27 %. 
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INTRODUCTION  

The development of renewable energies is a major issue to be addressed in response to the problem 

of profuse and environmentally friendly energy for large-scale sustainable development. A realistic 

energy conversion method is the use of efficient photo(electro)catalytic systems that can convert the 

energy of the sun into storable chemical fuels, typically by splitting water into oxygen and 

hydrogen.[1, 2] In particular, hydrogen presents many advantages of being produced and used as a 

‘solar fuel’,[3, 4]  e.g. it presents a high heat of combustion and can be used on demand in fuel cells 

that produce a harmless combustion by-product, that is water.[5] Moreover, the use of hydrogen limits 

the one of fossil fuels and subsequent emissions of greenhouse gases. All these reasons have been 

a strong incentive for the development of efficient homogeneous systems able to convert solar 

energy and water into hydrogen. These photocatalytic systems typically rely on dye/catalyst 

molecular assemblies in association with a sacrificial electron donor (SED) such as 

triethylamine (TEA) or triethanolamine (TEOA) in mixed organic/aqueous solutions.[6-9] Here 

it is worth mentioning that efficient H2-evolving molecular catalysts are mostly based on cobalt 

complexes or other earth-abundant metals like nickel or iron.[10-13] In particular, cobaloximes 

proved to be candidates of choice for both efficiency and stability reasons.[6-9, 14, 15] 

More recently, molecular dyes and catalysts were grafted onto wide band gap semiconductors 

in order to build dye-sensitized photoelectrochemical cells (DS-PEC) for efficient conversion 

of sunlight into fuel.[16-20] The development of NiO-based photocathodes sparks growing 

interest in this field[21-23] and different strategies were reported to assemble the molecular 

components together in order to build functional devices; these are typically dye-sensitized 

photocathodes combined with a catalyst in solution,[24-26]  co-grafted dye/catalyst systems,[27-31]  

layer-by-layer assemblies of the dye and the catalyst[32-35] and finally covalent or 

supramolecular dye/catalyst assemblies onto the electrode.[36-38] In the latter case, an attractive 

construction involves axial coordination of a pyridyl-substituted dye to a cobaloxime 
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catalyst.[36]  This strategy was first reported by one of us for homogeneous hydrogen production 

by related cobaloxime-based supramolecular photocatalytic assemblies.[6,7] As far as the dye is 

concerned, two families of light-harvesting units are mainly used: organic push-pull 

chromophores and ruthenium tris-bipyridine derivatives. Recently, we demonstrated the 

relevance of using original push-pull ruthenium-diacetylide complexes as photosensitizers in 

NiO-based photocathodes for p-type dye-sensitized solar cells and photo-electrochemical 

cells.[39, 40]  Ruthenium-diacetylide are neutral complexes featuring a linear -conjugated system 

that are used as versatile tools for the preparation of push-pull chromophores with valuable 

optical and electronic properties. Here we report the design and synthesis of a new dye-catalyst 

supramolecular assembly via axial coordination of a cobalt-based H2-evolving catalyst, i.e. a 

cobaloxime complex, to a pyridyl-functionalized Ru-diacetylide photosensitizer. The new 

supramolecular assembly was employed for the construction of NiO-based photocathodes and 

subsequent H2 generation under pertinent aqueous conditions (Figure 1). 

 

Figure 1. Representation of the Ru-diacetylide/Cobaloxime assembly anchored onto a 

mesoporous NiO (nanoparticulate) thin-film. 
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RESULTS AND DISCUSSION 

Synthesis and characterization.  

The synthetic route to the new multicomponent system and the relevant precursors are depicted 

in Scheme 1. Synthesis of the alkynyl ligand bearing the pyridine coordinating group was 

achieved in three steps involving successive Sonogashira coupling reactions and subsequent 

deprotection of the alkyne function to give 3. Then, according to established procedure for the 

synthesis of asymmetric diacetylide complexes featuring the {Ru(dppe)2}
2+ metal center,[41] the 

activation of the terminal alkyne of 3 by the ruthenium-vinylidene moiety 4, described 

earlier,[39]  in the presence of a non-coordinating salt (NaPF6) and a base (Et3N), afforded the 

dialkynyl intermediate 5. The carboxylic acid anchoring functions of 4 were protected with 

silyl-ester groups, i. e. 2-(trimethylsilyl)ethyl (TMSE), in order to avoid side reactions with the 

metal centre during the different organometallic synthesis steps. Subsequent deprotection of the 

silyl-ester groups under mild conditions, using tetrabutyl ammonium fluoride in THF at room 

temperature, afforded the target photosensitizer 6 in good yields. Finally, the reaction of 6 with 

the [Co(dmgBF2)2(OH2)2] (dmg = dimethylglyoxime) cobaloxime 7, afforded the 

supramolecular photocatalytic system 6-Co.  

The Ru-based complexes 5 and 6 were characterized by means of 31P, 1H and 13C NMR, FT-IR 

spectroscopies and HR-MS. The trans-ditopic structure of the metal centre was confirmed by 

the 31P NMR spectrum which shows a singlet for the four equivalent phosphorus atoms, with  

≈ 53 ppm characteristic of the Ru-diacetylide structure.[41-43] Characteristic peaks were observed 

on the infra-red spectra, at ca. 2195 cm-1 for the νC≡C of the ethynylpyridine unit and at ca. 2040 

cm-1 corresponding to the νC≡C stretching vibration of the metal-alkynyl ligands.  

Good quality NMR analysis of 6-Co was impeded by the presence of the paramagnetic CoII 

metal centre. Nonetheless, the infra-red spectrum of 6-Co confirmed the preservation of the 

photosensitizer’s structure as characteristics peaks of the νC≡C stretching vibrations remained 
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unchanged. Additional peaks corresponding to the cobaloxime moiety were observed at 1611 

cm-1 (νC=N), 1012 cm-1 (νN˗O) and 825 cm-1 (νB˗O).  Furthermore, evidence for the formation of 

a coordination complex between 6 and the cobaloxime moiety was afforded by ESI+ HR-MS 

spectrometry (see Figure S1) which shows a peak at 1959.50152 corresponding to de-hydrated 

complex 6-Co – H2O (M – H2O)+ and by electrochemistry (see below). 

Scheme 1. Synthesis route to [Ru-Co] supramolecular assembly.i 

 

iConditions: (a) Trimethylsilylacetylene, PdCl2(PPh3)2, CuI, diisopropylamine, THF; (b) 4-

ethynylpyridine hydrochloride, PdCl2(PPh3)2, CuI, diisopropylamine, THF; (c) K2CO3, MeOH ; (d) 

NaPF6, Et3N, CH2Cl2; (e) TBAF, THF; (f) THF. 

Optical and electrochemical properties.  

UV-visible absorption spectra of the photocatalytic system 6-Co and of the parent 

photosensitizer 6, recorded in THF solution, are presented in Figure 2 and the corresponding 

data are gathered in Table 1. In these spectra, intense absorption bands are observed in the UV 

region, below 300 nm, characteristic of the phenyl substituents of the diphosphine ligands.[42] 

According to previous reports, the intense absorption band centered at ca. 355 nm can be 

attributed to electronic transitions involving the electron-rich triphenylamine ligand.[39] A broad 

absorption band is observed in the visible region with maximum wavelength at 463 nm and  ≈ 

12 000 M-1.cm-1, corresponding  to multiple metal-to-ligand charge transfer (MLCT) transitions 



7 
 

involving the {Ru(dppe)2}
2+ metal center. Interestingly, the formation of the photocatalytic 

system through pyridyl-coordination of the cobaloxime moiety to the Ru complex 6 does not 

affect the absorption properties of the photosensitizer. The weak contribution of 7 in the 

electronic absorption spectrum of 6-Co is not discernable from the absorption of the dye and 

no significant electronic transition seems to occur between the {Ru(dppe)2}
2+ metal center and 

the cobaloxime moiety. The zero-zero transition energy was estimated from the onset of the 

absorption spectra, leading to E
0-0

 = 2.25 eV for both 6 and 6-Co. 

    

Figure 2. Absorption spectra of 6, 6-Co and 7 in THF (C ~ 1.10-5 M).   

Table 1. Optical and electrochemical properties. 
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
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[V vs. 

NHE]
d
 

E
ox

 

[V vs. 

NHE]
d
 

E-/* 
[V vs. 

NHE]
e
 

6 
463 

356 

11 900 

26 000 
2.25 - - 

+ 0.02 

(100)
 c
 

- - + 0.75 - 

6-Co 
463 

355 

12 200 

24 800 
2.25 

– 2.20 

(120)
 c
 

– 1.05 

(120)
 c
 

-0.02 

(90)
 c
 

– 1.47 – 0.32 + 0.71 + 0.78 

7 
462 

270  

4 000 

7 900 
- - 

– 1.12 

(105)
 c
 

- - – 0.39 - - 

Absorption spectra in THF. a 0-0 transition energy estimated from the onset of the absorption 

spectra. b Redox potentials in DMF solution. cEpa-Epc [mV]. d Redox potentials referred to 

NHE by addition of 730 mV.[44] e Reduction potential of the excited state obtained from 

Ered2+E0-0 
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The electrochemical properties of 6-Co and the parent compounds 6 and 7 were investigated 

by cyclic voltammetry in DMF solution (Figure S2), the corresponding data are reported in 

Table 1. The Ru-diacetylide complex 6 shows two reversible mono-electronic processes in the 

anodic region, that can be attributed to the oxidation of the electron-rich -conjugated system 

of the dye, including the {Ru(dppe)2}
2+ fragment. The first oxidation process occurs at + 0.02 

V vs. Fc+/Fc. The cobaloxime 7 shows as well-defined reversible monoelectronic wave in the 

cathodic region, located at – 1.12 V vs. Fc+/Fc and corresponding to the CoII
CoI reduction 

process. As expected, the voltammogram of 6-Co displays both contributions of the Ru-based 

photosensitizer and of the cobalt catalyst. In the anodic part, the two oxidation waves are 

conserved, however the first oxidation potential of 6-Co is shifted by 40 mV toward more 

negative potentials upon coordination of the dye to the cobaloxime moiety (Eox 6-Co = – 0.02 V 

vs. Fc+/Fc). Conversely, in the cathodic part, the reduction process involving the Co core is 

shifted to more positive values by 70 mV, Ered 6-Co = – 1.05 vs. Fc+/Fc . This positive shift of 

the reduction potential of a cobaloxime moiety is characteristic of the coordination by a pyridyl 

ligand.[6, 7] Besides, this feature provides good evidence for the formation of the supramolecular 

photocatalytic system 6-Co. In addition a second reduction process is now visible at more 

cathodic potential (Ered2 6-Co = – 2.20 V vs. Fc+/Fc). From these data, we could determine the 

redox properties of the excited state of 6-Co (Table 1) and construct the energy diagram of a 

NiO-based photocathode designed for H2-evolution in water and sensitized by 6-Co, as shown 

in Figure 3. After initial light excitation, very fast hole injection from the dye excited state to 

the NiO valence band is expected to occur; this process was indeed reported to take place on 

sub-ps to a few tens of picosecond timescales for related NiO-based dye-sensitized 

photocathodes.[38,45,46] This will generate at the surface of the film the reduced dye, which is 

then able to reduce the catalytic center by thermal electron transfer. The latter is active for the 

reduction of protons in H2 through a mechanism that involves protonation of the CoI state of 
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the catalyst to generate a CoIII-H intermediate (6-CoH) and subsequent light-driven reduction 

of this intermediate to a CoII-H species, the protonation of which yields H2 and regenerates the 

initial CoII center.  

 

Figure 3. Energy diagram of a NiO-based photocathode including 6-Co (S stands for the 

sensitizing part of the photocatalytic system, i.e. the Ru-based dye).  

Theoretical calculations. 

Quantum chemical calculations were performed to gain deeper insight into the electron-density 

distribution of the frontier molecular orbitals and to assess the electronic transitions occurring 

upon photoexcitation of the sensitizer 6 and of the photocatalytic system 6-Co.  

The calculated ground-state minimum-energy molecular structures of 6 and 6-Co are shown in 

Figure S3, spatial representations of the corresponding HOMO (Highest Occupied Molecular 

Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) are represented in Figure 4. 

The calculations show that in 6 the HOMO is spread over the whole -conjugated system of 

the dye, including the {Ru(dppe)2}
2+ core and the two acetylide ligands. However, significant 

electron-density is observed on the triphenylamine unit as well as on the two anchoring groups, 

which would favor electron transfers from NiO to the grafted dye.[47] On the other hand, the 

LUMO of the dye is localized on the electron-poor ligand bearing the pyridine ring. Good 

charge separation therefore occurs within this Ru-diacetylide complex. The HOMO in 6-Co 



10 
 

retains the same feature as in 6, the electron density being spread over the whole -conjugated 

system, but no density is observed on the cobaloxime moiety and thus, the electronic 

conjugation ends up at the pyridine ring. Interestingly, the LUMO in 6-Co owns electron-

density on the Co atom, and thus the electron transfer from the sensitizer to the catalyst can be 

barrierless in the excited state. As a consequence, the calculations highlight the appropriate 

electronic density distribution of the frontier molecular orbitals in 6-Co, favorable to the 

electron transfer processes occurring within a DS-PEC. 

 
Figure 4. Isodensity surface plots of the HOMO and LUMO of 6 and 6-Co (contour value set 

to 0.005 a.u.). Color legend: C atom green, O atom red, N atom light blue, Ru atom magenta, 

H atom white, S atom yellow, P light purple; isodensity positive and negative values are 

depicted in yellow and cyan, respectively. 

The binding energy relative to the formation of 6-Co according to equation (1) was investigated 

through theoretical calculations. 

6 + 7  6-Co  +  H2O  equation (1) 

The calculated enthalpy of the reaction is ΔH = – 1.14 eV (-110.0 kJ/mol) and the calculated 

Gibbs free-energy of the formation of the system is ΔG = – 0.14 eV (-13.5 kJ/mol). Both values 

indicate that the formation of 6-Co through pyridyl-coordination of the cobaloxime 7 is strongly 

favored. 

 



11 
 

 

Table 2. TD-DFT calculated electronic properties (CAM-

B3LYP/SDD/6-31G(d)/PCM=THF/H2O).  

 
Ecalc 

/eV a 

calc       

/ nm b 
f  c 

Electronic transition 

assignment d 

6  

(THF) 

2.79 

3.74 

445 

332 

2.023 

0.589 

HOMO    LUMO  (72%) 

HOMO-1   LUMO+1  (37%) 

6  

(H2O) 

2.80 

3.74 

443 

331 

2.013 

0.576 

HOMO    LUMO  (71%) 

HOMO-1   LUMO+1  (36%) 

6-Co 

(H2O) 

2.73 

3.76 

455 

330 

2.180 

0.584 

HOMO    LUMO  (68%) 

HOMO-1   LUMO+3  (35%) 

6-CoH 

(H2O) 

2.67 

3.76 

465 

330 

2.235 

0.585 

HOMO    LUMO  (66%) 

HOMO   LUMO+4  (37%) 

a Ecalc = main transition energy. b calc = calculated max. 
c f = oscillator 

strength. d Main Kohn-Sham orbital contribution to the electronic 

transition.  

 

The electronic structure corresponding to the minimum energy structures of the dye (6) and the 

dye-catalyst complex (6-Co) were further characterized by means of TD-DFT calculations.  The 

parameters relative to the main photoinduced electronic transitions are given in Table 2. The 

two main transition energies calculated for 6 in THF are in good accordance with the 

experiment, the small deviation being attributable to the large size of the complex and to known 

limitations of TD-DFT for charge-transfer excitation.[48]  The transition assignment reveals that 

the lowest-energy transition, corresponding to calc = 445 nm, owns a major HOMO    LUMO 

character, while the higher-energy transition, corresponding to calc = 332 nm, presents a 

HOMO-1  LUMO+1 character. The calculations give very similar results when carried out 

with H2O as the implicit solvent. The main transition energies calculated for 6-Co in H2O also 

match the experiment, the lowest-energy transition being predicted at calc = 455 nm. 
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Considering the hydrogen evolution reaction (HER) mechanism,[11, 15] the first addition of a 

proton and an electron to the 6-Co complex leads to the formation of a Co-H bond where the 

Co is in a 3+ state (low spin d6, singlet) and the hydrogen has an hydride nature. We 

characterized such complex 6-CoH in water with the same theoretical scheme. The stability of 

this intermediate was computed considering the reaction: 

6-CoH  6 + CoH  equation (2) 

The calculated enthalpy of the reaction (eq. 2) is ΔH = 0.827 eV (79.8 kJ/mol) and the 

corresponding Gibbs free-energy is ΔG = 0.221 eV (21.3 kJ/mol). In this case, the positive 

values of both ΔH and ΔG indicate that upon formation of the Co(III)-H intermediate, the 

dissociation of the dye-catalyst complex is not favored and its stability is retained. 

The structural changes going from 6-Co to 6-CoH involve mainly the Co center, the distance 

between the 6 pyridine N atom and the cobalt goes from 2.310 Å in 6-Co to 2.108 Å in 6-CoH, 

as well the average distance between Co and the cobaloxime N atoms goes from 1.905 Å in 6-

Co to 1.892 Å in 6-CoH. These results are consistent with the shift from the Co(II) in 6-Co to 

the Co(III)-H- specie in 6-CoH. 

TD-DFT calculation were also pursued on such 6-CoH, the reaction intermediate for hydrogen 

evolution reaction (HER).[11, 15] Interestingly the formation of the HER intermediate 6-CoH 

does not affect the optical properties of the photocatalytic system. The two main transition 

energies are conserved with calc = 445 nm and 330 nm, as well as the nature of the frontier 

orbitals involved in the lowest-energy transition which presents a major HOMO    LUMO 

character. These theoretical results highlight two key points for photocatalysis: the 

thermodynamic stability and the light absorbing properties of the dye-catalyst complex before 

each of the two H+/e- transfer steps of the HER mechanism.  
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Electrode preparation and characterization – XPS analyses 

The photocatalytic system 6-Co was then used to prepare a photocathode for H2 evolution based 

on F108-templated mesoporous NiO films.[37]  Sensitization was achieved by soaking the 

semiconducting porous layer in a DMF solution of 6-Co (0.5 mM) for 24 h at RT. The 

absorption spectrum of the sensitized electrode is depicted in Figure S5. An increase of 

absorption is observed in the 350-500 nm wavelength region as expected. The amount of dye-

loading on the photoelectrode was quantified by dye desorption under mild conditions using a 

phenylphosphonic acid solution (1 M in DMF).[49] The estimated quantity of dye on the 1-µm 

thick NiO film was estimated to be about 6.2 nmol.cm-2
, which is in the same range as those 

determined in previous studies using similar electrodes.[39, 40] 

The presence of Ru and Co atoms at the surface of NiO electrodes sensitized with either 6 or 6-

Co was further investigated through X-ray photoelectron spectroscopy (XPS) analyses. The 

study was extended to pristine powders of 6, 7 and 6-Co for comparison (Figure S6). The survey 

spectrum of pristine 6-Co shows peaks of Ru3p3, Co2p, C1s, O1s, N1s, S2p and S2s, P2p and 

P2s, F1s and B1s. This spectrum is fully consistent with the XPS surveys of 6 and 7, and 

confirms the presence of expected chemical elements for 6-Co. After chemisorption of 6-Co 

onto NiO, the survey spectrum of the resulting material 6-Co@NiO (Figure S7) shows the same 

features, along with those of NiO i.e. peaks attributed to Ni2p photoelectrons and NiLMM 

Auger, but also additional information such as an increase of C, presence of N, S and P. High-

resolution core level spectra were recorded to further characterize the electrodes. The presence 

of the Ru metallic centers in 6@NiO and 6-Co@NiO is mainly confirmed by the signals of 

Ru3d5/2 level in the 280-282 eV region, which is characteristic of Ru(II) species.[50, 51]. Fitted 

C1s-Ru3d3/2-Ru3d5/2 spectra of 6-Co@NiO are shown in Figure 5a. 
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Figure 5. XPS core level spectra of 6-Co@NiO in the Ru3d–C1s (a) and Co2p (b) core regions. 

Finally, a broad band at 770-780 eV corresponding to Ni LMM Auger was detected in the 765-

810 eV region for bare NiO and 6@NiO (Figure 5b). By contrast, new features at 780 eV and 

796 eV, typical of Co 2p3/2 and Co 2p1/2 levels, along with the broad band at 770-780 eV were 

observed for 6-Co@NiO. These results are fully consistent with the presence of Co(II) metal 

centers at the surface of the NiO electrode sensitized by 6-Co.[31, 37] 

As a consequence, XPS data clearly evidence the successful chemisorption of 6-Co onto NiO 

electrodes. 

Photoelectrochemical properties  

The photoelectrochemical properties of the 6-Co@NiO photocathode were finally evaluated in 

aqueous solution (acetate buffer, pH 4.5). Linear sweep voltammograms were recorded in the 

dark and under visible-light irradiation (Figure S8). As expected a cathodic photocurrent is 
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observed under light with a density of c.a. 5.6 µA. cm-2 at + 0.07 V vs. RHE (– 0.4 V vs. 

Ag/AgCl). This behavior is due to photoinduced electron transfers from the p-type semi-

conductor NiO, to the cobaloxime catalyst, through excitation of the sensitizer part in 6-Co.  

Chronoamperometric measurements were performed under chopped-light at different applied 

potentials (+ 0.47 V, + 0.27 V, + 0.07 V vs. RHE) over a period of 10 minutes showing steady-

state cathodic photocurrent generation (Figure S9). The maximum magnitude was obtained at 

the most cathodic potential, i.e. + 0.07 V vs. RHE (– 0.4 V vs. Ag/AgCl), with a photocurrent 

density of ca. 3.2 µA. cm-2 (Figure 6). Interestingly, the traces recorded for the electrodes 

sensitized with 6-Co display cathodic photocurrent spikes when light is switched on (Figures 6 

and S9), which is not observed in the absence of catalyst (6-sensitized film, orange trace in 

Figure 6). These spikes are attributed to a relatively slow proton reduction kinetics at the cobalt 

center, leading to charge accumulation at the electrode/electrolyte interface before reaching an 

equilibrium state, in which catalytic H2 production consumes photogenerated charges. This is 

confirmed by the absence of any reverse anodic spike (Figure 6), when light is switched off. 

Actually, at the most positive potential (+0.47 V vs RHE in Figure S9), catalysis is slower 

(lower photocurrent density) and the cathodic spikes are much more intense. This results in a 

higher amount of accumulated charges which cannot all be consumed by catalytic H2 evolution, 

as evidenced by the presence of small anodic spikes when light is switched off. A similar 

behaviour was previously observed for a related cobaloxime-based photocathode.[36] 
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Figure 6. Chronoamperometric measurements under chopped-light using NiO electrodes 

sensitized with 6-Co (red line) or 6 only (orange line) in acetate buffer (0.1 M, pH 4.5) at an 

applied potential of + 0.07 V vs. RHE (– 0.4 V vs. Ag/AgCl) under visible-light irradiation 

(400-800 nm, 65 mV.cm-2, 1 sun).  

 

Thus, photoelectrochemical H2 evolution was investigated by long-term electrolysis (Figure 

S10) at an applied potential of + 0.07 V vs. RHE (– 0.4 V vs. Ag/AgCl) in acetate buffer (0.1 

M, pH 4.5) under visible-light irradiation (400-800 nm, 65 mW.cm–2
, equivalent to 1 sun 

irradiation). The cathodic charge passed through the photoelectrode during the course of the 

electrolysis was Q = 78 mC over a period of 4h30. Gas chromatographic analysis of the 

headspace confirmed the photo-electrochemical generation of H2 with a faradaic yield of 27 %. 

This yield is relatively low but is in the range of state-of-the-art NiO-based dye-sensitized H2-

evolving photocathodes.[30] Competing reactions, such as the NiO reduction,[37,52] or reduction 

of the oxygen formed in the anodic compartment (which might diffuse during the course of 

long-term experiments), might be considered. A slow decrease of the photocurrent (from 2.5 

to 1 A.cm-2) is also observed during the course of the 4.5 hours measurement, which can be 

attributed – at least partly – to some leaching of the dye-catalyst assembly in the electrolyte. 

Control experiment using a NiO-electrode sensitized with 6 only confirmed steady-state 

photocurrent generation however with a slightly lower magnitude, ca. 2.2 µA. cm-2 at + 0.07 V 

vs. RHE (Figure 6). The absence of cathodic spikes (orange trace in Figure 6) underlines that 
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the recorded photocurrent corresponds to a distinct and competitive faradaic process.  Long-

term electrolysis over a period of 5h30 indeed led to a cathodic charge of Q = 144 mC however 

with almost no H2 detected in the headspace (0.3% FY).  This small amount of H2 may be 

catalyzed by in situ light-driven formation of Ni nanoparticles, as previously described[52] and 

also observed by XPS in a similar system.[37] This experiment confirms that the photocatalytic 

system 6-Co is the active species for H2 evolution in our NiO-based DS-PEC. 

The observation of catalytic H2 evolution with NiO-grafted 6-Co confirms previous reports on 

photoelectrochemical systems containing a pyridine-coordinated cobaloxime catalyst[27, 28, 36] 

and indicates that the cobaloxime moiety remains bound to the photosensitizer despite a 

potentially weak Co-N(pyridine) coordination linkage. In particular, work by Wasielewski et 

al.[53]  demonstrated fast dissociation of the reduced cobaloxime moiety from photosensitizer 

upon excitation in a pyridyl-xylene-1,8-naphthalimide-cobaloxime assembly. However, recent 

work from our group allowed to conclude that pyridine ligand likely remains coordinated to 

Co(I) at least at the timescale of cyclic voltammetry.[54] Furthermore, DFT calculations reveal 

that protonation of the Co(I) intermediate forms a Co(III)-H species with strong affinity with 

pyridine ligands and support catalytic H2 evolution at the surface of the dye-sensitized NiO 

photoelectrode. 
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CONCLUSION 

This study demonstrates that dyes with an original -conjugated structure including the 

[Ru(dppe)2] metal fragment with -alkynyl ligands bearing donor and acceptor groups, i.e. a 

triphenylamine donor unit and a thiophene-ethylnylpyridine acceptor group are suitable for the 

construction of efficient photoelectrodes for H2 evolution from water after grafting onto NiO 

substrates and combination with cobaloximes through Co-coordination of their pyridine 

function. The photoelectrochemical performances proved similar to previously reported 

molecular photocathodes at neutral pH in phosphate buffer, showing that this family of 

sensitizers can rival with the prototypical ruthenium tris-diimine dyes in that context,[27, 28, 36] 

while providing more versatility in terms of synthesis and combination of various donor and 

acceptor functions. Further work will target the optimization of the light-harvesting properties 

of such chromophores as well as their combination with novel p-type transparent materials such 

as delafossites CuGaO2
[55] and CuCrO2,

[30] which already proved promising in this context. 
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EXPERIMENTAL SECTION 

Materials and methods. The reactions were carried out under inert atmosphere using the 

Schlenk techniques. Solvents were dried from appropriate drying agents (sodium for pentane, 

diethyl ether and THF; calcium hydride for dichloromethane, chloroform and methanol) and 

freshly distilled under nitrogen before use. All reagents were obtained from commercially 

available sources and used without further purification. Compounds 4 and 7 were synthesized 

according to reported procedures. [39, 56] 

1H NMR, 13C NMR and 31P NMR analyses were performed on Bruker Avance I 300 MHz, 

Avance II 400 MHz and Avance III 600 MHz spectrometers. Chemical shift values are given 

in ppm with reference to solvent residual signals.[57 ] HR-MS analyses were performed by the 

CESAMO and IECB platform (Bordeaux, France). Field desorption (FD) measurements were 

carried out on a TOF mass spectrometer AccuTOF GCv using an FD emitter with an emitter 

voltage of 10 kV. One to two microliters solution of the compound were deposited on a 13µm 

emitter wire. FT-IR spectra were recorded on a Perkin Elmer Spectrum 100 spectrometer using 

KBr pellets. UV-visible absorption spectra were recorded on a UV-1650PC SHIMADZU 

spectrophotometer.  

Cyclic voltammetry analyses were performed using a potentiostat/galvanostat Autolab 

PGSTAT100 and a three-electrode system (working electrode: Pt disc; reference electrode: 

Ag/AgCl, calibrated with ferrocene as internal reference; counter electrode: Pt) with 0.1M 

Bu4NPF6 as salt support at a scan rate of 100 mV.s-1.  

XPS surface analysis were realised using a ThermoFisher Scientific K-ALPHA spectrometer 

with a monochromatized AlKα source (hν=1486.6eV) and a 400 microns X-Ray spot size. A 

pressure of 10-7 Pa was applied in the chamber when transferring the samples coated onto 

indium foil for the powders or maintained by aluminium tape for the electrodes. The full survey 

spectra (0-1100 eV) were obtained with a constant pass energy of 200eV and high resolution 
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spectra at a constant pass energy of 40eV. Charge neutralization was applied during analysis. 

High resolution spectra (i.e. C1s-Ru3d, O1s, N1s, B1s, F1s, S2p, P2p, Ni2p, Co2p) were 

quantified and/or fitted using the AVANTAGE software provided by ThermoFisher Scientific 

(Scofield sensitivity factors used for quantification). 

Synthesis of 1. 5,5’-Dibromo-2,2’-bithiophene (1.00 g, 3.09 mmol, 1 eq.), PdCl2(PPh3)2 

(108.3 mg, 0.15 mmol, 5%) and copper(I) iodide (14.7 mg, 0.077 mmol, 2.5%) were 

introduced in a Schlenk flask under nitrogen and dissolved in a mixture of 

diisopropylamine (20 mL) and dry THF (20 mL). Ethynyltrimethylsilane (TMSA) (0.39 

mL, 2.8 mmol, 0.9 eq.) was subsequently added into the Schlenk flask. The suspension 

was stirred at RT for 1 h. Then the reaction mixture was poured into pure water and the 

solution was extracted with hexane. The crude product was evaporated to dryness and 

purified on silica gel column (hexane) to give 1 as an earth yellow powder in 50 % yield 

(0.48 g, 1.41 mmol). 1H NMR (300 MHz, CD2Cl2): δ = 7.12 (d, 1H, 3JHH = 3.83 Hz), 

7.00 (d, 1H, 3JHH = 3.89 Hz), 6.98 (d, 1H, 3JHH = 3.83 Hz), 6.95 (d, 1H, 3JHH = 3.89 Hz), 

0.25 (s, 9H). 13C NMR (75 MHz, CD2Cl2): δ = 138.45, 138.03, 133.86, 131.33, 124.90, 

124.09, 122.71, 112.06, 100.86, 97.23, 0.15. 

Synthesis of 2. Compound 1 (0.758 g, 2.22 mmol, 1 eq.), 4-ethynylpyridine 

hydrochloride (0.3719 g, 2.66 mmol, 1.2 eq.), PdCl2(PPh3)2 (77.9 mg, 0.11 mmol, 5%) 

and copper(I) iodide (10.6 mg, 0.056 mmol, 2.5%) were introduced in a Schlenk flask 

under nitrogen and dissolved in a mixture of diisopropylamine (15 mL) and dry THF (15 

mL). The solution was stirred at RT for 24 h. After evaporation of the solvent, the 

mixture was dissolved with ethyl acetate and washed with water. The resulting crude 

product was evaporated to dryness and purified on silica gel column (ethyl 

acetate/pentane (8:2, v/v)) to give 2 as a yellow powder in 79 % yield (0.636 g, 1.75 

mmol). 1H NMR (300 MHz, CD2Cl2): δ = 8.59 (s, 2H), 7.37 (d, 2H, 3JHH = 5.80 Hz), 
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7.28 (d, 1H, 3JHH = 3.88 Hz), 7.15 (d, 1H, 3JHH = 3.86 Hz), 7.13 (d, 1H, 3JHH = 3.88 Hz), 

7.09 (d, 1H, 3JHH = 3.85 Hz), 0.25 (s, 9H). 13C NMR (75 MHz, CD2Cl2): δ = 150.22, 

139.77, 137.99, 134.76, 133.98, 131.04, 125.39, 124.74, 123.34, 121.57, 114.17, 101.27, 

97.19, 92.18, 87.11, 0.16.  

Synthesis of 3. Compound 2 (0.513 g, 1.41 mmol, 1 equiv.) and potassium carbonate 

(0.019 g, 0.14 mmol, 0.1 eq.) were dissolved in distilled methanol (25 mL) under 

nitrogen. The mixture was stirred at RT for 24 h before being poured into water. The 

organic phase was recovered with ethyl acetate and evaporated to dryness. The crude 

product was purified by chromatography on silica gel (ethyl acetate/pentane (8:2, v/v)) 

to afford 3 as an orange powder in 72 % yield (0.2976 g, 1.02 mmol). 1H NMR (300 

MHz, CD2Cl2): δ = 8.60 (m, 2H), 7.37 (m, 2H), 7.29 (d, 1H, 3JHH = 3.83 Hz), 7.21 (d, 

1H, 3JHH = 3.82 Hz), 7.14 (d, 1H, 3JHH = 3.91 Hz), 7.11 (d, 1H, 3JHH = 3.87 Hz), 3.51 (s, 

1H). 13C NMR (75 MHz, THF-d8): δ = 150.72, 139.83, 138.21, 135.19, 134.64, 130.86, 

125.35, 125.18, 122.88, 121.88, 117.80, 92.49, 86.76, 84.76, 76.78.  

Synthesis of 5. Compounds 4 (0.500 g, 0.31 mmol, 1 eq.), 3 (0.106 g, 0.37 mmol, 1.2 eq.) 

and NaPF6 (0.102 g, 0.61 mmol, 2 eq.) were dissolved in dry CH2Cl2 under nitrogen 

atmosphere. Et3N (0.17 mL, 1.22 mmol, 4 equiv.) was subsequently added and the 

suspension was stirred at RT for 36 h. The reaction mixture was then diluted with CH2Cl2 

and washed with pure water. The organic phase was evaporated to dryness. The resulting 

solid was washed with pentane and dried under reduced pressure to afford 5 as a red 

powder in 74 % yield (0.393 g, 0.23 mmol). 31P NMR (120 MHz, CD2Cl2): δ = 52.5.  

1H NMR (300 MHz, CD2Cl2): δ = 8.59 (m, 2H), 8.00-6.79 (m, 56H), 4.39 (m, 2H), 2.51 

(m, 8H), 1.12 (m, 2H), 0.08 (s, 9H). 13C NMR (200 MHz, THF-d8): δ = 204.17, 195.29, 

166.97, 165.93, 150.69, 135.17, 134.69, 131.93, 131.84, 131.69, 131.57, 131.35, 129.48, 

129.26, 127.80, 126.66, 126.42, 125.21, 124.96, 122.81, 122.39, 118.82, 117.92, 110.00, 
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91.81, 87.80, 67.78, 63.15, 62.85, 54.62, 31.99, 30.16, 17.94, 1.12, -1.62. HR-MS FD+ 

(m/z): 1744.4719 [M]+ (calcd. 1744.4213 for [C101H94N2O4P4RuS2Si2]
+). FT-IR (KBr): 

νC≡C = 2196 cm-1, νC≡C = 2040 cm-1, νC=O = 1709 cm-1, νP-Ph = 1099 cm-1
, νSi-C = 836 cm-

1. 

Synthesis of 6. To a solution of 5 (470 mg, 0.27 mmol, 1 eq.) in dry THF (50 mL) and 

under inert atmosphere was added TBAF (1M sol. in THF, 1.08 mL, 1.08 mmol, 4 eq.). 

The reaction mixture was stirred at RT for 24 h. After removal of the solvent the resulting 

solid was dissolved in CH2Cl2 and thoroughly washed with degassed citric acid aqueous 

solution (10 % m) and then pure water. The organics were evaporated to dryness to 

afford 6 as a dark red powder in 69 % yield (0.288 g, 0.19 mmol). 31P NMR (120 MHz, 

CD2Cl2): δ = 52.9. 1H NMR (300 MHz, THF-d8): δ = 10.82 (s, 2H), 8.56 (m, 2H), 7.97-

6.85 (m, 60H), 2.47 (m, 8H). 13C NMR (100 MHz, THF-d8): 166.21, 165.98, 151.02, 

150.29, 150.02, 142.08, 141.11, 137.17, 136.76, 134.42, 133.92, 131.93, 132.35, 131.20, 

131.11, 131.03, 130.85, 130.70, 129.74, 128.67, 128.47, 128.30, 127.86, 126.98, 126.34, 

125.82, 125.56, 124.97, 124.64, 124.56, 124.42, 124.19, 123.73, 123.61, 123.50, 122.00, 

121.57, 29.74. HR-MS FD+ (m/z): 1544.2713 [M]+ (calcd. 1544.2794 for 

[C91H70N2O4P4RuS2]
+). FT-IR (KBr): νC≡C = 2195 cm-1, νC≡C = 2039 cm-1, νC=O = 1709-

1701 cm-1, νP-Ph = 1099 cm-1. 

Synthesis of 6-Co. To a solution of 6 (30.8 mg, 0.02 mmol, 1 eq.) in dry THF (10 mL) 

and under inert atmosphere was added 7 (8.7 mg, 0.02 mmol, 1 eq.). The reaction mixture 

was stirred at RT for 4 h. After removal of the solvent, the resulting solid was further 

dried under vacuum to afford 6-Co as a dark red powder in quantitative yield (39 mg). 

31P NMR (120 MHz, CD2Cl2): δ = 52.9. HR-MS ESI+ (m/z): 1959.5015 [M-H2O]+ (calcd. 

1959.3553 for [C101H88B2CoF4N6O8P4RuS2]
+). FT-IR (KBr): νC≡C = 2194 cm-1, νC≡C = 
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2039 cm-1, νC=O = 1714-1684 cm-1, νC=N = 1611 cm-1, νP-Ph = 1098 cm-1, νN-O = 1012 cm-

1, νB-O = 825 cm-1.  

Computational details.  

The theoretical calculations were all carried out with the Gaussian09 quantum chemistry 

package.[58] All the ground state properties, i.e. minimum-energy structures, molecular 

frequencies and thermochemical data, were computed with the widely employed B3LYP hybrid 

density functional.[59] SDD effective core potentials for Ru and Co were employed together 

with the corresponding SDD basis sets.[60] For all the other atoms we employed the 6-31G(d,p) 

basis set.[61] Considering the large size of the system, this level of theory ensured the best 

compromise between accuracy and computational burden. The excited state properties have 

been computed with CAM-B3LYP long-range corrected hybrid density functional[62] that has 

been proven to be very effective for modeling vertical excitation with a Charge-Transfer 

character. In all the ground and excited states calculations we took into account the solvent 

medium (THF and water) by means of the Polarizable Continuum Model (PCM) of implicit 

solvation,[63] with the default parameters as implemented in Gaussian09.  

Electrode preparation method. 

F108-templated NiO films were spin coated onto FTO/glass substrates (Solems, TEC 7, sheet 

resistance 7Ω·□-1) as previously reported.[25]   NiO films sensitization was achieved by soaking 

the electrodes in DMF solutions of 6 or 6-Co (0.5 mM) for 24 h at room temperature on an 

orbital stirring table. The electrodes were rinsed with DMF and CH3CN, and dried in air. 

Electrochemical and photoelectrochemical measurements.  

Electrochemical and photoelectrochemical data were acquired with a Biologic VSP 300 

potentiostat. Electrochemical measurements were conducted in a 3-electrode cell. The working 

electrode was a glassy carbon electrode in the reduction potential window and a Pt one in the 

oxidation potential window. The reference electrode was made of a Ag/AgCl wire dipped into 
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a KCl 3 M solution, separated from the supporting electrolyte by a Vycor® frit, and denoted 

below as Ag/AgCl. The counter electrode was a Pt wire. The supporting electrolyte was 0.1 M 

nBu4NPF6 in dry DMF. The supporting electrolyte was degassed with a flow of N2 at least for 

5 min before the measurements. The N2 flow was removed from the solution but let in the 

headspace of the cell for the duration of the experiment. The concentration of the compound of 

interest was 1 mM. Cyclic voltammograms were typically recorded at a scan rate of 100 mV·s-

1. The potential of the reference electrode was calibrated after each experiment by adding in 

the supporting electrolyte an internal reference (ferrocene for organic solvent, K4FeCN6 for 

aqueous solution), the potential of which was measured against the Ag/AgCl reference (0.43V 

for ferrocene and 0.24V for K4FeCN6). 

Irradiation was carried out with a 300W ozone-free Xe lamp (Newport) operated at 280 W and 

mounted with a water-filled Spectra-Physics 6123NS liquid filter for elimination of IR (λ > 800 

nm) irradiation and a Spectra-Physics 59472 UV cut-off filter (λ < 400 nm). The power density 

was calibrated using a Newport PM1918-R power-meter. The photocurrent measurements were 

carried out in a specifically designed three-electrode cell, using the NiO-sensitized film as the 

working electrode (3 to 3.5 cm2), Ag/AgCl as the reference electrode and a Pt wire as the 

counter electrode. The counter electrode compartment was separated from the cathodic one by 

a Vycor® frit. The supporting electrolyte was a 0.1 M Sodium Acetate buffer at pH 4.5. The 

solution was degassed with nitrogen for 30 minutes prior to use. In a typical experiment, the 

volume of supporting electrolyte was 4.0 mL and the headspace was 2.4 mL. The photocathode 

was illuminated with a power density of 65 mW∙cm-2 (ca. one sun). The amounts of evolved 

hydrogen were determined by sampling aliquots of the headspace in a Perkin Elmer Clarus 580 

gas chromatograph equipped with a molecular sieve 5 Ǻ column (30 m  – 0.53 mm) and a TCD 

detector.  



25 
 

ASSOCIATED CONTENT 

Supporting Information. Quantum chemical and XPS data. This material is available free of 

charge via the Internet at http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Authors 

* E-mail: celine.olivier@u-bordeaux.fr, Tel: + 33 (0)5 4000 2425 (C. Olivier); E-mail: 

vincent.artero@cea.fr, Tel: + 33 (0)4 3878 9106 (V. Artero).  

ACKNOWLEDGMENT 

This work was supported by the French National Research Agency (Labex program, ARCANE, 

ANR-11-LABX-0003-01, Graduate school of Chemistry, Biology and Health of Univ. 

Grenoble Alpes, CBH-EUR-GS, ANR-17-EURE-0003 and CORuS project, ANR-14-CE05-

0013) and the European Research Council under the European Union’s Seventh Framework 

Program (FP/2007-2013)/ERC Grant Agreement n.306398. The Chinese Scholarship Council 

is acknowledged for PhD grant to S. Lyu. 

  



26 
 

REFERENCES 

[1] Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; 

Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. 

[2] Ardo, S.; Rivas, D. F.; Modestino, M. A.; Greiving, V. S.; Abdi, F. F.; Llado, E. A.; 

Artero, V.; Ayers, K.; Battaglia, C.; Becker, J. P.; Bederak, D.; Berger, A.; Buda, F.; 

Chinello, E.; Dam, B.; Di Palma, V.; Edvinsson, T.; Fujii, K.; Gardeniers, H.; Geerlings, 

H.; Hashemi, S. M. H.; Haussener, S.; Houle, F.; Huskens, J.; James, B. D.; Konrad, K.; 

Kudo, A.; Kunturu, P. P.; Lohse, D.; Mei, B.; Miller, E. L.; Moore, G. F.; Muller, J.; 

Orchard, K. L.; Rosser, T. E.; Saadi, F. H.; Schuttauf, J. W.; Seger, B.; Sheehan, S. W.; 

Smith, W. A.; Spurgeon, J.; Tang, M. H.; van de Krol, R.; Vesborg, P. C. K.; Westerik, 

P. Pathways to Electrochemical Solar-Hydrogen Technologies. Energy Environ. Sci. 

2018, 11, 2768-2783. 

[3] Gray, H. B. Powering the Planet with Solar Fuel, Nature Chemistry, 2009, 1, 7. 

[4] Gust, D.; Moore, T. A.; Moore, A. L. Solar Fuels via Artificial Photosynthesis. Acc. 

Chem. Res., 2009, 42, 1890–1898. 

[5] Gasteiger, H. A.; Markovic, N. M. Just a Dream—or Future Reality? Science, 2009, 324, 

48–49. 

[6] Fihri, A.; Artero, V.; Razavet, M.; Baffert, C.; Leibl, W.; Fontecave, M. Cobaloxime-

Based Photocatalytic Devices for Hydrogen Production. Angew. Chem. Int. Ed., 2008, 47, 

564–567. 

[7] Fihri, A.; Artero, V.; Perreira, A.; Fontecave, M. Efficient H2-producing Photocatalytic 

Systems Based on Cyclometalated Iridium- and Tricarbonylrhenium-diimine 

Photosensitizers and Cobaloxime Catalysts. Dalton Trans., 2008, 5567–5569.  



27 
 

[8] Du, P,; Schneider, J.; Luo, G.; Brennessel, W. W.; Eisenberg, R. Visible Light-Driven 

Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime 

Catalysts. Inorg. Chem., 2009, 48, 4952–4962. 

[9] Zhang, P.; Wang, M.; Li, C.; Li, X.; Dong, J.; Sun, L. Photochemical H2 Production with 

Noble-metal-free Molecular Devices Comprising a Porphyrin Photosensitizer and a 

Cobaloxime Catalyst. Chem. Commun., 2010, 46, 8806–8808. 

[10] Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Splitting Water with Cobalt. Angew. 

Chem. Int. Ed., 2011, 50, 7238–7266.  

[11] McKone, J. R.; Marinescu, S. C.; Brunschwig,  B. S.; Winkler, J. R.; Gray. H. B. Earth-

abundant Hydrogen Evolution Electrocatalysts. Chem. Sci., 2014, 5, 865–878. 

[12] Queyriaux, N.; Jane, R. T.; Massin, J.; Artero, V.; Chavarot-Kerlidou, M.; Recent 

Developments in Hydrogen Evolving Molecular Cobalt(II)–Polypyridyl Catalysts. 

Coord. Chem. Rev., 2015, 304–305, 3–19. 

[13] Coutard, N.; Kaeffer, N.; Artero, V. Molecular Engineered Nanomaterials for Catalytic 

Hydrogen Evolution and Oxidation. Chem. Commun., 2016, 52, 13728–13748. 

[14] Dempsey, J. L.; Brunschwig, B. S.; Winkler J. R.; Gray, H. B. Hydrogen Evolution 

Catalyzed by Cobaloximes. Acc. Chem. Res. 2009, 42, 1995–2004.  

[15] Mulford, K. L.; Utschig, L. M. Modular Homogeneous Chromophore–Catalyst 

Assemblies. Acc. Chem. Res., 2016, 49, 835–843. 

[16] Willkomm, J. ; Orchard, K. L. ; Reynal, A. ; Pastor,  E. ; Durrant,  J. R. ; Reisner, E. Dye-

sensitised Semiconductors Modified with Molecular Catalysts for Light-driven H2 

Production. Chem. Soc. Rev., 2016, 45, 9–23. 

[17] Wood, C. J.; Summers, G. H.; Clark, C. A.; Kaeffer, N.; Braeutigam, M.; Carbone, L. R.; 

D'Amario, L.; Fan, K.; Farré, Y.; Narbey, S.; Oswald, F.; Stevens, L. A.; Parmenter, C. 

D. J.; Fay, M. W.; La Torre, A.; Snape, C. E.; Dietzek, B.; Dini, D.; Hammarström, L.; 



28 
 

Pellegrin, Y.; Odobel, F.; Sun, L.; Artero, V.; Gibson, E. A. A Comprehensive 

Comparison of Dye-Sensitized NiO Photocathodes for Solar Energy Conversion. Phys. 

Chem. Chem. Phys. 2016, 18, 10727–10738. 

[18] Xu, P.; McCool, N. S.; Mallouk, T. E. Water Splitting Dye-Sensitized Solar Cells. Nano 

Today, 2017, 14, 42–58. 

[19] Brennaman, M. K.; Dillon, R. J.; Alibabaei, L.; Gish, M. K.; Dares, C. J.; Ashford, D. L.; 

House, R. L.; Meyer, G. J.; Papanikolas, J. M.; Meyer, T. J. Finding the Way to Solar 

Fuels with Dye-Sensitized Photoelectrosynthesis Cells. J. Am. Chem. Soc., 2016, 138, 

13085–13102. 

[20] Yu, Z.; Li, F.; Sun, L. Recent Advances in Dye-Sensitized Photoelectrochemical Cells 

for Solar Hydrogen Production Based on Molecular Components. Energy Environ. Sci. 

2015, 8, 760–775.  

[21] Queyriaux, N.; Kaeffer, N.; Morozan, A.; Chavarot-Kerlidou, M.; Artero, V. Molecular 

Cathode and Photocathode Materials for Hydrogen Evolution in Photoelectrochemical 

Devices. J. Photochem. Photobiol. C 2015, 25, 90–105. 

[22] Gibson, E. A. Dye-Sensitized Photocathodes for H2 Evolution. Chem. Soc. Rev., 2017, 

46, 6194–6209. 

[23] Nikolaou, V.; Charisiadis, A.; Charalambidis, G.; Coutsolelos, A. G.; Odobel, F. Recent 

Advances and Insights in Dye-Sensitized NiO Photocathodes for Photovoltaic Devices. 

J. Mater. Chem. A, 2017, 5, 21077–21113. 

[24] Li, L. ; Duan, L. ; Wen, F. ; Li, C. ; Wang, M. ; Hagfeldt, A. ; Sun L. Visible Light Driven 

Hydrogen Production from a Photo-Active Cathode Based on a Molecular Catalyst and 

Organic Dye-Sensitized p-Type Nanostructured NiO. Chem. Commun., 2012, 48, 988–

990. 



29 
 

[25] Kamire,  R. J. ; Majewski,  M. B. ; Hoffeditz,  W. L. ; Phelan,  B. T. ; Farha,  O. K. ; 

Hupp, J. T. ; Wasielewski., M. R. Photodriven Hydrogen Evolution by Molecular 

Catalysts Using Al2O3-protected Perylene-3,4-Dicarboximide on NiO Electrodes. Chem. 

Sci., 2017, 8, 541–549 

[26] Click, K. A.; Beauchamp, D. R.; Huang, Z.; Chen, W.; Wu, Y. Membrane-Inspired 

Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production. J. Am. Chem. 

Soc., 2016, 138, 1174–1179. 

[27] Fan, K. ; Li, F. ; Wang,  L. ; Daniel, Q. ; Gabrielsson, E. ; Sun, L. Pt-free Tandem 

Molecular Photoelectrochemical Cells for Water Splitting Driven by Visible Light. Phys. 

Chem. Chem. Phys., 2014, 16, 25234–25240. 

[28] Li, F. ; Fan, K. ; Xu, B ; Gabrielsson, E. ; Daniel, Q. ; Li, L. ; Sun, L. Organic Dye-

Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting. J. 

Am. Chem. Soc., 2015, 137, 9153–9159. 

[29] Antila, L. J. ; Ghamgosar, P. ; Maj, S. ; Tian, H. ; Ott, S. ; Hammarström, L. Dynamics 

and Photochemical H2 Evolution of Dye–NiO Photocathodes with a Biomimetic FeFe-

Catalyst. ACS Energy Lett. 2016, 1, 1106–1111. 

[30]  Creissen, C. E. ; Warnan, J. ; Reisner, E. Solar H2 Generation in Water with a CuCrO2 

Photocathode Modified with an Organic Dye and Molecular Ni Catalyst. Chem. Sci. 2018, 

9, 1439−1447. 

[31] Kaeffer, N. ; Windle, C. D. ; Brisse, R. ; Gablin, C. ; Leonard, D. ; Jousselme, B. ; 

Chavarot-Kerlidou, M. ; Artero, V. Insights into the Mechanism and Aging of a Noble-

Metal Free H2-Evolving Dye-Sensitized Photocathode. Chem. Sci. 2018, 9, 6721-6738. 

 

 



30 
 

[32] Gross, M. A. ; Creissen,  C. E. ; Orchard  K. L. ; Reisner, E. Photoelectrochemical 

Hydrogen Production in Water using a Layer-by-Layer Assembly of a Ru Dye and Ni 

Catalyst on NiO. Chem. Sci., 2016, 7, 5537–5546. 

[33] D. Wang, M. V. Sheridan, B. Shan, B. H. Farnum, S. L. Marquard, B. D. Sherman, M. S. 

Eberhart, A. Nayak, C. J. Dares, A. K. Das, R. M.Bullock, T. J. Meyer. Layer-by-Layer 

Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by 

Atomic Layer Deposition. J. Am. Chem. Soc. 2017, 139, 14518−14525. 

[34] Shan, B. ; Sherman, B. D. ; Klug, C. M. ; Nayak, A. ; Marquard, S. L. ; Liu, Q. ; Bullock, 

R. M. ; Meyer, T. J. Modulating Hole Transport in Multilayered Photocathodes with 

Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water 

Splitting. J. Phys. Chem. Lett. 2017, 8, 4374−4379. 

[35] Shan,  B. ; Das,  A. K. ; Marquard,  S. ; Farnum,  B. H. ; Wang,  D. ; Bullock,  R. M. ; 

Meyer, T. J.. Photogeneration of Hydrogen from Water by a Robust Dye-Sensitized 

Photocathode. Energy Environ. Sci., 2016, 9, 3693−3697. 

[36] Ji, Z. ; He, M. ; Huang, Z. ; Ozkan, U. ; Wu, Y. ; Photostable p-Type Dye-Sensitized 

Photoelectrochemical Cells for Water Reduction. J. Am. Chem. Soc., 2013, 135, 11696–

11699. 

[37]  Kaeffer, N.; Massin, J.; Lebrun, C.; Renault, O.; Chavarot-Kerlidou, M.; Artero, V. 

Covalent Design for Dye-Sensitized H2-Evolving Photocathodes Based on a Cobalt 

Diimine-Dioxime Catalyst. J. Am. Chem. Soc. 2016, 138, 12308–12311. 

[38] Pati, P. B.; Zhang, L.; Philippe, B.; Fernández‐Terán, R.; Ahmadi, S.; Tian, L.; Rensmo, 

H.; Hammarström, L.; Tian, H. Insights into the Mechanism of a Covalently Linked 

Organic Dye–Cobaloxime Catalyst System for Dye‐Sensitized Solar Fuel Devices. 

ChemSusChem 2017, 10, 2480– 2495. 



31 
 

[39] Lyu, S.; Farré, Y.; Ducasse, L.; Pellegrin, Y.; Toupance, T.; Olivier, C.; Odobel, F. Push-

Pull Ruthenium Diacetylide Complexes: New Dyes for p-Type Dye-Sensitized Solar 

Cells. RSC Adv. 2016, 6, 19928–19936. 

[40] Massin, J., Lyu, S.; Pavone, M.; Muñoz-García, A; B.; Kaumann, B.; Toupance, T.; 

Chavarot-Kerlidou, M.; Artero, V.; Olivier, C. Design and Synthesis of Novel 

Organometallic Dyes for NiO Sensitization and Photo-electrochemical Applications. 

Dalton Trans. 2016, 45, 12539–12547. 

[41]  De Sousa, S.; Ducasse, L.; Kauffmann, B.; Toupance, T.; Olivier, C. Functionalization of 

a Ruthenium-Diacetylide Organometallic Complex as a Next-Generation Push-Pull 

Chromophore. Chem. Eur. J. 2014, 20, 7017–7024.  

[42]  De Sousa S.; Lyu, S.; Ducasse L.; Toupance T.; Olivier C. Tuning Visible-Light 

Absorption Properties of Ru-Diacetylide Complexes: a Simple Access to Colorful 

Efficient Dyes for DSSCs. J. Mater. Chem. A 2015, 3, 18256–18264. 

[43]  Olivier, C.; Kim, B.; Touchard, D.; Rigaut, S. Redox-Active Molecular Wires 

Incorporating Ruthenium(II) σ-Arylacetylide Complexes for Molecular Electronics. 

Organometallics 2008, 27, 509–518. 

[44] Ruiz Aranzaes, J.; Daniel, M.-C.; Astruc, D. Metallocenes as References for the 

Determination of Redox Potentials by Cyclic Voltammetry – Permethylated Iron and 

Cobalt Sandwich Complexes, Inhibition by Polyamine Dendrimers, and the Role of 

Hydroxy-containing Ferrocenes. Can. J. Chem., 2006, 84, 288–299. 

[45]  Ji, Z.; Wu, Y. Photoinduced Electron Transfer Dynamics of Cyclometalated Ruthenium 

(II)–Naphthalenediimide Dyad at NiO Photocathode. J. Phys. Chem. 

C, 2013, 117, 18315-18324. 

[46] Queyriaux, N.; Wahyuono, R. A.; Fize, J.; Gablin, C.; Wächtler, M.; Martinez, E.; 

Léonard, D.; Dietzek, B.; Artero, V.; Chavarot-Kerlidou, M. Aqueous Photocurrent 

https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fjp405659m
https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fjp405659m


32 
 

Measurements Correlated to Ultrafast Electron Transfer Dynamics at Ruthenium Tris 

Diimine Sensitized NiO Photocathodes. J. Phys. Chem. C, 2017, 121, 5891-5904.  

[47] Muñoz-García, A.B.; Pavone, M. Structure and Energy Level Alignment at the Dye-

Electrode Interface in p-Type DSSCs: New Hints on the Role of Anchoring Modes from 

Ab Initio Calculations. Phys. Chem. Chem. Phys. 2015, 17, 12238–12246. 

[48] Kümmel, S. Charge-Transfer Excitations: A Challenge for Time-Dependent Density 

Functional Theory That Has Been Met. Adv. Energy Mater. 2017, 7, 1700440.  

[49] Ameline, D. ; Diring, S. ; Farre, Y. ; Pellegrin, Y. ; Naponiello, G. ; Blart, E. ; Charrier, 

B. ; Dini, D. ; Jacquemin, D. ; Odobel, F. Isoindigo derivatives for application in p-type 

dye sensitized solar cells. RSC Adv. 2015, 5, 85530–85539. 

[50] Grelaud, G.; Gauthier, N.; Luo, Y.; Paul, F.; Fabre, B.; Barrière, F.; Ababou-Girard, S.; 

Roisnel, T.; Humphrey, M. G. Redox-Active Molecular Wires Derived from Dinuclear 

Ferrocenyl/Ruthenium(II) Alkynyl Complexes: Covalent Attachment to Hydrogen-

Terminated Silicon Surfaces. J. Phys. Chem. C, 2014, 118, 3680–3695. 

[51] Mulas, A.; Hervault, Y.-M.; He, X.; Di Piazza, E.; Norel, L.; Rigaut, S.; Lagrost, C. Fast 

Electron Transfer Exchange at Self-Assembled Monolayers of Organometallic 

Ruthenium(II) σ-Arylacetylide Complexes. Langmuir, 2015, 31, 7138–7147. 

[52]  Hoogeveen, D. A.; Fournier, M.; Bonke, S. A.; Nattestad, A.; Mishra, A.; Bäuerle, P.; 

Spiccia, L.; Mozer, A. J.; Simonov, A. N. Origin of Photoelectrochemical Generation of 

Dihydrogen by a Dye-Sensitized Photocathode without an Intentionally Introduced 

Catalyst. J. Phys. Chem. C 2017, 121, 25836–25846. 

[53] Veldkamp, B. S.; Han, W. S.; Dyar, S. M.; Eaton, S. W.; Ratner, M. A.; Wasielewski, M. 

R. Photoinitiated Multi-Step Charge Separation and Ultrafast Charge Transfer Induced 

Dissociation in a Pyridyl-linked Photosensitizer–Cobaloxime Assembly. Energy Environ. 

Sci. 2013, 6, 1917–1928. 



33 
 

[54] Panagiotopoulos, A.; Ladomenou, K.; Sun, D.; Artero, V.; Coutsolelos, A. G. 

Photochemical Hydrogen Production and Cobaloximes: the Influence of the Cobalt Axial 

N-ligand on the System Stability. Dalton Trans. 2016, 45, 6732–6738. 

[55] Kumagai, H.; Sahara, G.; Maeda, K.; Higashi, M.; Abe, R.; Ishitani, O. Hybrid 

Photocathode Consisting of a CuGaO2 p-Type Semiconductor and a Ru(II)–Re(I) 

Supramolecular Photocatalyst: Non-biased Visible-light-driven CO2 Reduction with 

Water Oxidation. Chem. Sci. 2017, 8, 4242–4249. 

[56] Bakac, A.; Espenson, J. H. Unimolecular and Bimolecular Homolytic Reactions of 

Organochromium and Organocobalt Complexes. Kinetics and Equilibria. J. Am. Chem. 

Soc., 1984, 106, 5197–5202. 

[57] Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. 

M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common 

Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the 

Organometallic Chemist. Organometallics 2010, 29, 9, 2176–2179. 

[58] Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. 

E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, 

H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; 

Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-

Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, 

T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, 

M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; T. Nakajima, Y. Honda, 

O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. 

Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, 

R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. 

Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. 

https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fom100106e


34 
 

Martin, K. Morokuma, O. Farkas, Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford 

CT, 2016. 

[59] Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. 

Chem. Phys. 1993, 98, 5648–5652. 

[60] Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H. Ab Initio Energy-adjusted 

Pseudopotentials for Elements of Groups 13–17. Mol. Phys. 1993, 80, 1431–1441.  

[61] Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6‐ 31G* Basis 

Set for Third‐ row Atoms. J. Comput. Chem. 2001, 22, 976–984. 

[62] Yanai, T.; Tew, D.; Handy, N. A New Hybrid Exchange-Correlation Functional Using 

the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 

[63] Scalmani, G.; Frish, M. J. Continuous Surface Charge Polarizable Continuum Models of 

Solvation. I. General Formalism. J. Chem. Phys. 2010, 132, 114110. 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

Graphic for Table of Content 

 

 

 

 

 

 


