Skip to Main content Skip to Navigation
Conference papers

Rasterization strategies for airborne LiDAR classification using attribute profiles

Florent Guiotte 1, 2 Sébastien Lefèvre 2 Thomas Corpetti 1
1 LETG - Rennes - Littoral, Environnement, Télédétection, Géomatique
LETG - Littoral, Environnement, Télédétection, Géomatique UMR 6554
2 OBELIX - Environment observation with complex imagery
UBS - Université de Bretagne Sud, IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This paper evaluates rasterization strategies and the benefit of hierarchical representations, in particular attribute profiles, to classify urban scenes issued from multispectral LiDAR acquisitions. In recent years it has been found that rasterized LiDAR provides a reliable source of information on its own or for fusion with multispectral/hyperspectral imagery. However previous works using attribute profiles on LiDAR rely on elevation data only. Our approach focuses on several LiDAR features rasterized with multilevel description to produce precise land cover maps over urban areas. Our experimental results obtained with LiDAR data from university of Houston indicate good classification results for alternative rasters and even more when multilevel image descriptions are used.
Document type :
Conference papers
Complete list of metadatas

Cited literature [15 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02343901
Contributor : Sébastien Lefèvre <>
Submitted on : Wednesday, November 13, 2019 - 6:19:57 PM
Last modification on : Monday, November 30, 2020 - 5:28:08 PM

File

jurse2019florent.pdf
Files produced by the author(s)

Identifiers

Citation

Florent Guiotte, Sébastien Lefèvre, Thomas Corpetti. Rasterization strategies for airborne LiDAR classification using attribute profiles. 2019 Joint Urban Remote Sensing Event (JURSE), May 2019, Vannes, France. pp.1-4, ⟨10.1109/JURSE.2019.8808945⟩. ⟨hal-02343901⟩

Share

Metrics

Record views

204

Files downloads

374