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ABSTRACT 
 
 
H-TWIST belongs to the family of basic helix-loop-helix (bHLH) transcription factors known 

to exert their activity through dimer formation. We have recently demonstrated that 

mutations in H-TWIST account for Saethre-Chotzen syndrome (SCS), an autosomal 

dominant craniosynostosis syndrome characterized by premature fusion of coronal sutures 

and limb abnormalities of variable severity. Although insertions, deletions, nonsense and 

missense mutations have been identified, no genotype-phenotype correlation could be found, 

suggesting that the gene alterations lead to a loss of protein function irrespective of the 

mutation. To assess this hypothesis, we studied stability, dimerization capacities and 

subcellular distribution of three types of TWIST mutants. Here, we show that i) nonsense 

mutations resulted in truncated protein instability, ii) missense mutations involving the helical 

domains led to a complete loss of H-TWIST heterodimerization with the E12 bHLH protein in 

the two-hybrid system and dramatically altered the ability of the TWIST protein to localize in 

the nucleus of Cos-transfected cells, iii) in-frame insertion or missense mutations within the 

loop significantly altered dimer formation but not the nuclear location of the protein. We 

conclude that at least two distinct mechanisms account for loss of TWIST protein function in 

SCS patients, namely protein degradation and subcellular mislocalization.  
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INTRODUCTION 

 

Saethre-Chotzen syndrome is an autosomal dominant craniosynostosis characterized by premature 

fusion of the coronal sutures leading to skull deformation, distal limb abnormalities and dysmorphic 

facial features of variable severity. This disorder has been ascribed to mutations in the H-Twist gene 

encoding a  basic helix-loop-helix (bHLH) transcription factor (1,2). Twist has been first identified 

in Drosophila as a zygotic developmental gene involved in early mesoderm patterning (3,4). By 

contrast, its murine homologue M-Twist is not critical for mesoderm formation as homozygous 

Twist-null embryos die at embryonic day 11.5 after mesoderm has formed (5). The specific 

expression of M-Twist transcripts in cephalic and branchial mesectoderm and in subsets of 

mesodermal cells (6,7) indicates that TWIST belongs to the class B bHLH proteins. Most of these 

transcriptional factors are known to form stable heterodimers with ubiquitous class A bHLH 

proteins including members of the E family (8,9) although variations among species have been 

reported. Indeed, Ce-TWIST, the Caenorhabditis elegans homologue of H-TWIST, heterodimerizes 

with the E/daughterless homologue to activate target genes (10). By contrast the Drosophila D-

TWIST protein is able to form homodimers and does not appear to require heterodimerization for 

DNA binding (11). In the mouse model, M-TWIST has been shown to form either homodimers or 

heterodimers in vitro (12,13). Whether H-TWIST forms homodimers or heterodimers in human, 

therefore remains to be elucidated. 

The identification of single base mutations or deletions producing premature termination 

codon in the H-Twist gene and the SCS-like phenotype of Twist-null heterozygous mice strongly 

suggest that haploinsufficiency is the pathogenic mechanism underlying SCS (1,2,14,15). That gene 

alterations could result in a loss of protein function irrespective of the mutation is further supported 

by the absence of genotype-phenotype correlation among patients carrying nonsense, missense or 

in-frame insertions.  However, the hypothesis has been raised that some missense mutations could 

confer a dominant negative function to the protein (16). In an attempt to understand how mutations 

affected the TWIST protein, cDNAs carrying different types of mutations identified in SCS patients 
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were generated and used for in vitro and in vivo experiments. Here we show by transfection assay 

and immunoblotting that nonsense mutations result in the synthesis of truncated proteins that are 

rapidly degraded whereas other mutant proteins are stable. By using a two-hybrid assay, we 

demonstrate that the human E12 protein is a partner for heterodimerization with H-TWIST. Dimer 

formation is abolished by missense mutations in the TWIST helical domains but not by in frame 

insertion or missense mutations in the loop. This helix/loop correlation is further supported by 

immunostaining experiments showing that unlike mutations in the loop, helix-mutations 

dramatically reduce the number of TWIST nuclear positive cells.  

 

RESULTS 
 

Nonsense mutations induce degradation of truncated TWIST proteins 

To determine how H-Twist mutations alter protein function in SCS, human Twist cDNAs carrying 

different types of mutations including three nonsense mutations (Y103X, E126X, Q161X), three 

missense mutations affecting either the helices (A129P, helix I; L159F, helix II) or the loop 

(K145E) of the HLH motif and a 21bp in-frame insertion (P139ins7) were generated (Fig. 1a). 

Twist mutants cloned in an expression vector were in vitro-translated in a reticulocyte lysate system 

and resulted in molecules of the expected size (Fig. 1b). RNA and protein stability was then tested 

by ectopically expressing wild-type and mutant constructs in transfected Cos7 cells. Northern blot 

analysis of total RNAs detected similar amounts of Twist transcripts irrespective of the mutation, 

indicating that RNA stability was unaffected (not shown). Immunoblot analyses of cell lysates 

revealed that truncated proteins due to nonsense mutations were unstable as their expression level 

was reduced 24h post-transfection as compared to the wild-type (Fig. 1c) and were undetectable 

after 48h (Fig. 1d). By contrast, the amount of missense and insertion mutant gene products was 

similar to control (Fig. 1c,d). The variable stability of mutant proteins suggested that markedly 

different mechanisms should cause the SCS phenotype. 
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Direct interaction between H-TWIST and E12 in vitro and in vivo 

Since bHLH transcription factors require either homodimerization or heterodimerization for DNA 

binding, we tested by using a two-hybrid assay whether H-TWIST could form homodimers or 

heterodimers. The entire coding sequence of the gene was expressed in yeast as fusions with either 

the LexA DNA-binding domain or the GAL4 activation domain (GAD) and both constructs were 

co-transformed in yeast. Co-expression of wild-type LexA-TWIST and GAD-TWIST fusion 

proteins failed to transactivate HIS3, as evidenced by their inability to grow on medium lacking 

histidine (Fig. 2a). By contrast, co-expression of wild-type LexA-TWIST and GAD-E12 fusion 

proteins led to rapid yeast growth on medium lacking histidine with the same efficiency as LexA-

rap2A/GAD ral-GDS (17) used as a positive control (Fig. 2a). Similar results were obtained with a 

b-galactosidase reporter gene (not shown). We conclude that H-TWIST does not homodimerize but 

can efficiently interact with the human E12 protein in the yeast two-hybrid system. Additional 

evidence for this interaction was derived from binding assays of in vitro-translated wild-type and 

mutant proteins to the glutathione S-transferase-E12 fusion protein (GST-E12). Indeed, H-TWIST 

directly interacted with E12 fused to GST and deletion of the bHLH domain from either partners 

hampered their interaction, thus indicating that these domains are required for heterodimerization 

(Fig. 2d). Finally, H-TWIST and E12 also interacted in mammalian cells co-transfected with 

expression constructs, as evidenced by co-immunoprecipitation of the two partners (Fig. 2e).  

 

Analysis of TWIST mutant proteins by the two-hybrid assay 

We next investigated whether the TWIST/E12 interaction could be altered by TWIST mutations. 

Mutant constructs fused to the LexA DNA binding domain were co-expressed in yeast with a GAD-

E12 fusion protein and their capacity to interact was assessed as described above. Interestingly, two 

distinct patterns of yeast growth were observed (Fig. 2b). First, nonsense mutations consistently led 

to a complete loss of interaction with E12, irrespective of the extent of protein truncation. Similarly, 

the two missense mutations affecting either helix of the HLH motif failed to transactivate the 
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reporter gene when co-expressed with E12. The absence of transactivation of the HIS3 gene could 

not be ascribed to the lack of expression of the mutant protein, as evidenced by immunoblotting 

with an anti-TWIST antibody (not shown). Second, missense mutations and the in-frame insertion 

within the loop were still able to lead to histidine auxotrophy (Fig. 2b) albeit quantitation of b-

galactosidase activity revealed a 10 to 50-fold decreased interaction as compared to the wild-type 

heterodimer (Fig. 2c). Hence, protein truncation and mutations of the helix domains hampered the 

ability of TWIST to interact with its partner while proteins carrying loop mutations were still able to 

form dimers with E12. 

 

Subcellular localization of the TWIST mutant proteins 

The M-TWIST protein has been detected in the cell nuclei of normal mouse embryos (18). 

Considering that the subcellular localization of transcription factors in either the cytoplasm or the 

nucleus regulates their biological activity, we wondered whether an abnormal subcellular 

distribution of the mutant H-TWIST protein could account for the disease. To address this issue, 

TWIST mutant proteins carrying either the in-frame insertion or missense mutations were co-

expressed with E12 in Cos7 cells and the localization of both proteins was examined by 

immunofluorescence microscopy. Cells transfected with wild-type constructs exhibited a strong 

nuclear staining with either anti-TWIST or anti-E12 antibodies (Fig. 3a-c) while no signal was 

detected in untransfected cells (Fig. 3p-r). Three patterns of immunofluorescence were observed 

using the transfected mutant constructs: i) mutations altering helices caused a marked staining of the 

cytoplasm using anti-TWIST antibodies but these mutations had no effect on the localization of E12 

which remained in the nucleus (Fig. 3d-i); ii) missense mutations within the loop did not alter the 

nuclear localization of the TWIST mutant protein (Fig. 3m-o); iii) the in-frame insertion gave an 

intermediate figure, as shown by the presence of cytoplasm-positive and nuclear-positive cells (Fig. 

3j-l).  

These observations were further documented by quantifying the proportion of cells showing 

either a nuclear or a cytoplasmic localization of TWIST. While more than 90% of cells expressing 
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the wild-type protein or the loop mutant exhibited a normal nuclear staining, this percentage fell to 

25-40% for mutations altering TWIST helices (Fig. 4a). These data were further confirmed by 

fractionating transfected cells into nuclear and non-nuclear fractions. Immunoblotting revealed that 

the wild-type protein and the loop mutant were only detectable in the nuclear fraction. Helix 

mutants were mostly present in the cytoplasm while mutant proteins carrying the insertion were 

detected in both fractions (Fig. 4b). However, in both assays the L159F helix mutant was apparently 

more cytoplasmic than the A129P helix mutant. 

 

DISCUSSION 

 

Although compelling evidence now exists that different types of mutations in the Twist gene 

account for common clinical features including craniofacial and limb anomalies, the phenotypic 

variability seen in SCS patients and the absence of genotype-phenotype correlation is far to be 

understood (14,19). The present study was thus undertaken to determine how mutations in the H-

Twist gene affected the protein function. To this purpose, a series of recombinant plasmids carrying 

mutations identified in SCS patients were produced. Expression analyses first demonstrated that 

nonsense mutations resulted in the synthesis of truncated proteins that were rapidly degraded, 

thereby leading to haploinsufficiency. Along these lines, it is worth keeping in mind that individuals 

carrying monosomy 7p21 and thus hemizygous for the Twist gene had a SCS phenotype (20). 

Similarly, Twist-null heterozygous mouse model mimicked the human phenotype (1,15).  

Since missense mutations or in frame insertion had no detectable effect on the stability of 

the translation product in transfected cells, we speculated that these mutations altered the TWIST 

function through a different mechanism. Class B bHLH proteins to which H-TWIST belongs are 

known to form stable heterodimers with members of class A bHLH transcription factors including 

gene products of E2A (E12 and E47) (8,9), E2-2 and E2-5 (ITF-2 and ITF-1 respectively) (21) or 

HEB/HTF-4 (22). However, D-TWIST homodimerization has been reported in Drosophila (11) and 

homodimerization of the mouse M-TWIST protein has been observed in an in vitro binding assay 
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(13). The yeast two-hybrid assay thus appeared as a relevant model to test the possible H-TWIST 

homodimerization or heterodimerization with a member of the E protein family (23). We found no 

homodimerization of the H-TWIST protein in this in vivo system further emphasizing the striking 

differences between in vitro and in vivo HLH dimerization (24). By contrast, E12 strongly 

interacted with H-TWIST in yeast. This finding was consistent with the previous observation that 

E12 was able to heterodimerize with M-TWIST in an in vitro assay (12). In addition, DERMO-1, a 

bHLH transcription factor closely related to M-TWIST, has emerged from a two-hybrid screen for 

factors interacting with E12 (25). The capacity of H-TWIST to form stable heterodimers with E12 

was further supported by in vitro binding experiments and co-immunoprecipitation studies. Hence, 

E12 appears as a putative partner in vivo for regulating the H-TWIST transcriptional activity. 

Interestingly, Twist and E2A transcripts have been detected in mouse osteoblastic cells (26) and 

were found to be co-expressed in the developing mandible and limb buds of human embryos 

(unpublished data). Based on the recent demonstration that H-TWIST has an inhibitory effect on 

osteogenic differentiation (27), the TWIST/E12 heterodimer might be regarded as a negative 

regulator of transcription in human osteoblastic cells. 

Heterodimerization proved to be mediated through the bHLH motif as deletion of the E12 

bHLH domain or nonsense mutations truncating the TWIST bHLH domain hampered heterodimer 

formation. This result is in accordance with previous in vitro data obtained with MyoD (28), E47 

(29), Lyl-1 (30) but does not rule out the possible influence of additional adjacent HLH sequences 

for in vivo dimerization (24). Within the HLH motif,  the two helices seem to play a more critical 

role than the loop as their alteration results in both a markedly impaired heterodimerization and an 

abnormal cellular location of the protein. Likewise, the helix 2 mutation affecting a highly 

conserved leucine residue at position 159 had a more dramatic effect on the protein mis-localization 

than  the A129P substitution in helix 1. This observation is consistent with the critical role of 

leucine residues in a helices stability (8). Interestingly, significant increase of the loop length due to 

in-frame insertion of seven amino-acids had little effect on dimer formation and nuclear location. 

Similarly, random mutations within the loop region of E47 do not alter protein dimerization (29) 
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and replacement of five residues of the loop in M-TWIST fail to abolish its interaction with MyoD 

or E12 (13).  

Mutations in transcription factors may affect their nuclear localization and thus account for 

their inability to bind DNA (31). Accordingly, the subcellular localization of mutant TWIST 

proteins was investigated in Cos cells following co-transfection with E12. Since heterodimerization 

of HLH proteins has been proposed to take place in the cytoplasm prior to nuclear import (32), the 

expected nuclear location of the wild-type TWIST protein appears to be a direct reflection of the in 

vivo interaction with E12. Consequently, the cytoplasmic location of TWIST proteins carrying 

single amino-acid changes in the helices might result from the loss of dimer formation. 

Alternatively, a rapid nuclear export of the mutant protein could account for its abnormal 

subcellular distribution (33). Nevertheless, the normal nuclear location of loop mutants suggests 

that loss of TWIST function in these cases occurs at still another step. Alteration of the DNA 

binding properties of the TWIST/E12 complex is the most likely explanation but will require 

identification of human target DNA sequences to be confirmed. 
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MATERIALS AND METHODS 
 

cDNAs constructs and expression vectors.  

For eukaryotic expression in Cos7 cells and in vitro expression of TWIST proteins, genomic DNA 

from control and SCS patients was PCR amplified and amplification products were directly cloned 

into the pCR3 unidirectional plasmid (Invitrogen, San Diego CA). Primers used for PCR allowed 

generation of a 5’BamHI and a 3’SalI restriction site used for subsequent subcloning. Normal and 

mutant inserts were sequenced to ensure integrity of the cloned allele. For E12 expression, a human 

full-length cDNA in a pSP65 vector was subcloned into the pCMV5 vector. For expression of the 

LexA fusion protein in yeast, we used the pVJL10 plasmid (34). Wild-type and mutant Twist 

cDNAs were subcloned from pCR3uni into pVJL10 using the BamHI and SalI restriction sites. The 

fusion between the activation domain of GAL4 and TWIST was generated by subcloning the wild 

type Twist cDNA from pCR3uni into pGAD1318 using BamHI as the 5’ restriction site and 

SalI/XhoI half sites in 3’. The GAL4 activation domain-E12 fusion was obtained by subcloning the 

E12 cDNA into the pGAD-GE plasmid using the EcoRI site. To produce GST-E12 fusion proteins, 

the full-length and a bHLH-deleted form of E12 were subcloned into the pGEX4T-1 vector 

(Pharmacia) between the EcoRI and XhoI sites. 

 

Cell cultures, transfection and immunofluorescence.  

Cos7 cells were grown in DMEM supplemented with 10% Fetal Calf Serum (FCS) and antibiotics. 

Six-well tissue culture plates and 8-well chamber slides were seeded with 1.5 X 105 and  104 

cells/well respectively and cultured to 70% confluency. Transfection were performed with Fugene-6 

(Roche) and 2µg or 0.1µg DNA/well in FCS supplemented DMEM according to the manufacturer 

instructions. Twenty four or 48h later, cells were used for immunofluorescence studies. Transfected 

cells in culture chamber slides were fixed with 4% paraformaldehyde for 30 min. After 

permeabilization with 0.1% Triton X-100 for 15 min, cells were incubated for 1h at room 

temperature with the above mentioned primary antibodies at the respective dilutions of 1:100 and 
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1:1000. Cells were then incubated with either a Fluorescent Isothiocyanate (FITC)-conjugated 

donkey anti-goat antibody (Santa Cruz Biotechnology) to visualize TWIST or a Cy3-conjugated 

goat anti-mouse antibody (Jackson ImmunoResearch Lab) to visualize E12. Cells were examined 

with a Zeiss LSM 510 confocal microscope. 

 

Immunoblotting and co-immunoprecipitation.  

Cell lysates were denatured by boiling in sample buffer, separated by 7% or 12% SDS-PAGE and 

electroblotted on PVDF membranes (Immobilon, Millipore Corp). The membranes were pre-

incubated for 1h at 4°C in TBS (20 mM Tris-HCl pH 7.4, 150 mM NaCl) containing 5% skim milk. 

The blots were then incubated with either goat polyclonal anti-TWIST or mouse monoclonal anti-

E12 antibodies (Santa Cruz Biotechnology) at respective dilutions of 1:200 and 1:100 overnight at 

4°C. After membrane washing, a second antibody coupled to peroxydase was added. Proteins were 

visualized with the ECL detection kit (Amersham). Co-immunoprecipitation was achieved by 

adding 5µg of anti-E12 antibody to 50µl of cell lysate followed by incubation at 4°C for 2h. Protein 

A-sepharose beads were added and the mixture was rotated at 4°C for 1h. Beads were washed twice 

with 0.1M Tris-HCl pH7.6 buffer containing 0.25M NaCl, and twice with 10mM Tris-HCl pH7.6, 

0.1M NaCl, 1mM EDTA then  resuspended in 40 µl of SDS-PAGE sample buffer and boiled for 5 

min. Cytoplasmic and nuclear extracts were prepared as described (35). Both fractions were 

submitted to immunoblot analysis as described above. 

 

Yeast two-hybrid assay 

The genotype of the Saccharomyces cerevisiae reporter strain L40 was MATa trp1 leu 2 his3 ade2, 

LYS2::lexA-HIS3 URA3::lexA-lacZ. Yeast strains were grown at 30°C in a rich medium (1% yeast 

extract, 2% Bacto-peptone, 2% glucose) or in a synthetic minimal medium containing appropriate 

supplements. The yeast reporter strain L40, which contains the reporter genes LacZ and HIS3 

downstream of the binding sequences for LexA, was co-transformed with pVJL10-TWIST (wild-

type or mutants) and either pGAD1318-TWIST (wild-type) or pGAD-GE-E12 plasmids using the 
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lithium acetate method. Double transformants were plated to synthetic medium lacking leucine and 

tryptophan. The plates were incubated at 30°C for 2 days. Leu+Trp+ colonies were patched on 

selective plates lacking histidine and assayed for b-galactosidase activity by a filter assay (36). 

Quantification of b-galactosidase activity was performed as described (37). 

 

In vitro protein-protein interaction assay 

Wild-type and mutant human Twist cDNAs were transcribed and translated in vitro from pCR3uni 

constructs using the TNT T7 Quick transcription/translation system (Promega,) in the presence of 

35S-Methionine (1000 Ci/mmol, Amersham). Synthesis of radio-labelled proteins was checked by 

SDS-PAGE in a 12% polyacrylamide gel, followed by fluorography. BL21 E.Coli cells, 

transformed with pGEX4T-1/E12wt or E12DbHLH were incubated for 3h at 30°C in the presence of 

1mM isopropyl-b-D-thiogalactopyranoside (IPTG)  to induce the production of wild-type GST-E12 

and bHLH-deleted GST-E12 fusion proteins respectively. Recombinant GST fusion proteins were 

purified on glutathione-Sepharose 4B beads (Pharmacia). Purity and yield of the GST-fusion 

proteins were assessed by SDS-PAGE in 7% polyacrylamide gels stained with  Coomassie Blue. 

In vitro interaction assays were performed by incubating 10µl GST-E12 beads with 5µl 35S-TWIST 

at 4°C for 1h in a 50mM Tris HCl pH 7.5, 100mM NaCl, 5mM MgCl2 buffer containing a mixture 

of protease inhibitors (Roche) and 0.1% X-100 Triton. Beads were washed six times for 2min in the 

same buffer containing 125mM NaCl and 1% X-100 Triton, boiled in SDS-PAGE sample buffer 

and analyzed in 12% polyacrylamide gels. 
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LEGENDS TO FIGURES 

 

Figure 1. 

Instability of truncated TWIST proteins. (a) Diagram of wild-type and mutant TWIST proteins 

reproducing seven SCS mutations. The helices (H), the basic (b) and the loop (L) regions of the 

bHLH domain are represented by white, gray and black boxes respectively. The positions of the in-

frame insertion and missense mutations are shown by a horizontal bar and black diamonds 

respectively. (b) Gel electrophoresis analysis of in vitro-translated wild-type and mutant proteins 

labeled with 35S-methionine. (c) Immunoblot analysis of the H-TWIST protein in Cos7 cells 

transfected with wild-type (lane 1) and mutant expression vectors carrying nonsense mutations 

(lanes 2,3,4), missense mutations (lanes 5,6,7), or a 21bp insertion 24h post-transfection (lane 8). 

(d) Immunoblot analysis of the same mutants 48h post-transfection. Similar amounts of protein 

(15µg) were loaded in each lane as shown by a mouse monoclonal anti b-actin antibody (lower 

panels). 

  

Figure 2. 

Identification of E12 as a dimerization partner for TWIST and analysis of Twist mutants by using 

the yeast two-hybrid system. (a) Two-hybrid assay showing the absence of TWIST 

homodimerization (lane 4) and strong heterodimerization with E12 (lane 6). Rap2B/RalGDS 

interaction was used as positive control (lane 7). Yeast expressing LexA and GAD alone were used 

as negative control (lane 1). Co-transformed yeast were selected on a leu-, trp- medium (lower 

panel) and protein-protein interaction was visualized by testing the ability of yeast to grow on a leu-, 

trp-, his- medium (upper panel). (b) Truncated TWIST proteins failed to heterodimerize (lanes 1-3); 

the L159F and the A129P mutants disclosed no interaction (lanes 4, 5); the P139ins7 and K145E 

mutants still heterodimerize with E12 (lanes 6, 7). (c) Histogram of b-galactosidase activity to 

measure interaction between E12 and either wild-type or mutants. (d) In vitro interaction between 
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35S-labelled TWIST and GST-E12. Interaction between the two wild-type proteins (lane 1) was lost 

upon deletion of the bHLH domains of either TWIST (lane 2) or E12 (lane 3). No interaction 

occured between GST alone and TWIST (lane 4). The amount of radio-labelled TWIST protein 

used for the assay is shown as an input (lane 5). (e) Co-immunoprecipitation of the TWIST/E12 

complex. Lysates from cells co-transfected with expression vectors encoding wild type TWIST and 

E12 proteins were immunoprecipitated with an anti-E12 antibody, separated on 12% SDS-PAGE 

and immunoblotted with the same antibody (lanes 1,2) or an anti-TWIST antibody (lanes 3,4).  

Immunoglobulin heavy and light chains are indicated by H and L. 

 

Figure 3. 

Subcellular immuno-localization of the wild-type and mutant TWIST proteins in Cos7 cells co-

transfected with E12. (a-c) Wild-type TWIST and E12 proteins were co-localized in the nucleus. 

(d-i) The A129P and L159F TWIST mutants disclosed a predominant cytoplasmic localization 

whereas E12 remained in the nucleus. (j-l) The 21bp in-frame insertion mutant (P139ins7) was 

detected in both the cytoplasmic and the nuclear compartments. (m-o) The K145E mutant gave the 

same pattern as the wild-type. (p and q) Negative controls were obtained by incubating cells with 

either the FITC-conjugated anti-goat antibody or the Cy3TM-conjugated anti-mouse antibody. (r) 

Phase contrast view of Cos 7 cells, bar = 20µm.  

 

Figure 4. 

Sub-cellular distribution of the wild-type and mutant TWIST proteins in Cos7 cells co-transfected 

with E12. (a) Histogram representing the proportion of FITC-nuclear positive transfected cells 

pending on the mutation. At least 200 cells were counted by three independent investigators. 

Results shown are the mean +/- S.D. of three separate experiments. (b) Immunoblot analyses of 

cytoplasmic (left) and nuclear fractions (right) isolated from co-transfected cells. The blots were 

sequentially incubated with anti-TWIST and anti-E12 antibodies. 










