, CO2 Emissions from Fuel Combustion, IEA, p.9789264258563, 2016.

C. Quéré, R. Andrew, P. Friedlingstein, S. Sitch, J. Hauck et al., Earth Syst. Sci, vol.10, pp.2141-2194, 2018.

S. Mahmoudi, J. Baeyens, and J. P. Seville, NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass, Biomass Bioenergy, vol.34, pp.1393-1409, 2010.

P. Urone, The primary air pollutants-Gaseous. Their occurrence, sources, and effects, Air Pollution

A. C. Stern and . Ed, , vol.1, 1976.

S. Gibeaux, C. Thomachot-schneider, S. Eyssautier-chuine, B. Marin, and P. Vázquez, Simulation of acid weathering on natural and artificial building stones according to the current atmospheric SO2/NOx rate, Environ. Earth Sci, p.327, 2018.

O. Oruc and I. Dincer, Environmental impact assessment of using various fuels in a thermal power plant, Int. J. Glob. Warm, vol.18, pp.191-205, 2019.

E. Carnell, M. Vieno, S. Vardoulakis, R. Beck, C. Heaviside et al., Modelling public health improvements as a result of air pollution control policies in the UK over four decades-1970 to 2010, Environ. Res. Lett, 2019.

E. Amsalu, Y. Guo, H. Li, T. Wang, Y. Liu et al., Short-term effect of ambient sulfur dioxide (SO2) on cause-specific cardiovascular hospital admission in Beijing, China: A time series study, Atmos. Environ, vol.208, pp.74-81, 2019.

H. Wang, B. Yuan, R. Hao, Y. Zhao, and X. Wang, A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas, Chem. Eng. J, vol.378, p.122155, 2019.

L. Tao, X. Wang, P. Ning, L. Wang, and W. Fan, Removing sulfur dioxide from smelting flue and increasing resource utilization of copper tailing through the liquid catalytic oxidation, Fuel Process. Technol, vol.192, pp.36-44, 2019.

I. Iliuta and M. C. Iliuta, Modeling of SO2 seawater scrubbing in countercurrent packed-bed columns with high performance packings, Sep. Purif. Technol, vol.226, pp.162-180, 2019.

J. He, J. Zhang, and H. Shang, Dynamic modelling and simulation of the sulphur dioxide converter in an industrial smelter, Can. J. Chem. Eng, vol.97, pp.1838-1847, 2019.

A. Nurrohim and H. Sakugawa, Fuel-based inventory of NOx and SO2 emissions from motor vehicles in the Hiroshima Prefecture, Japan. Appl. Energy, vol.80, pp.291-305, 2005.

X. Ma, T. Kaneko, T. Tashimo, T. Yoshida, and K. Kato, Use of Limestone for SO2 Removal from Flue Gas in the Semidry FGD Process with a Powder-Particle Spouted Bed, Chem. Eng. Sci, vol.55, pp.4643-4652, 2000.

M. Moeini, M. S. Hatamipour, and . Flue, Gas Desulfurization by a Powder-Particle Spouted Bed, Chem. Eng. Technol, vol.31, pp.71-82, 2008.

J. R. Backhurst, R. K. Sinnott, and J. F. Richardson, Coulson & Richardson Chemical Engineering; Butterworth-Heinemann, pp.105-107, 2001.

J. G. Selmeczi and D. A. Stewart, Flue gas desulfurization/The Dravo Corp. Thiosorbic flue gas desulfurization process, Chem. Eng. Prog, vol.74, issue.2, 1978.

L. Benson, Development and Commercialization of the Thiosorbic Lime Wet Scrubbing Process for Flue Gas Desulfurization, Lime for Environmental Uses, pp.20-31, 1987.

K. Gutschick, Lime for Environmental Uses: A Symposium Sponsored by ASTM Committee C-7 on Lime, 1985.

D. Cunic and R. Lunt, Profiles in Flue Gas Desulphurization

P. M. Medellin, E. Weger, and M. P. Dudukovic, Removal of SO2 and NOxfrom Simulated Flue Gases by Alkalized Alumina in a Radial Flow Fixed Bed, Ind. Eng. Chem. Process. Des. Dev, vol.17, pp.528-536, 1978.

R. Hao, X. Wang, X. Mao, B. Tian, Y. Zhao et al., An integrated dual-reactor system for simultaneous removal of SO2 and NO: Factors assessment, reaction mechanism and application prospect, Fuel, vol.220, pp.240-247, 2018.

H. Park and S. Uhm, Various technologies for simultaneous removal of NO and SO from flue gas, Appl. Chem. Eng, vol.28, pp.607-618, 2017.

I. Ar and S. Balci, Sulfation reaction between SO2 and limestone: Application of deactivation model, Chem. Eng. Process. Process Intensif, vol.41, pp.179-188, 2002.

R. Baege and H. Sauer, Recent Developments in CFB-FGD Technology, 2000.

A. Basfar, O. Fageeha, N. Kunnummal, S. Al-ghamdi, A. G. Chmielewski et al., Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels, Fuel, vol.87, pp.1446-1452, 2008.

J. Licki, A. Chmielewski, E. Iller, Z. Zimek, J. Mazurek et al., Electron-beam flue-gas treatment for multicomponent air-pollution control, Appl. Energy, vol.75, pp.145-154, 2003.

E. Zwoli?ska, V. Gogulancea, Y. Sun, V. Lavric, and A. Chmielewski, A kinetic sensitivity analysis for the SO2 and NOx removal using the electron beam technology, Radiat. Phys. Chem, vol.138, pp.29-36, 2017.

M. Toftegaard, J. Brix, P. Jensen, P. Glarborg, and A. D. Jensen, Oxy-fuel combustion of solid fuels, Prog. Energy Combust. Sci, vol.36, pp.581-625, 2010.

L. Chen, C. Wang, T. Si, and E. J. Anthony, Modelling the simultaneous calcination/sulfation behavior of limestone under circulating fluidized bed combustion conditions, Fuel, vol.257, p.116072, 2019.

S. Mahmoudi, C. W. Chan, A. Brems, J. Seville, and J. Baeyens, Solids flow diagram of a CFB riser using Geldart B-type powders, Particuology, vol.10, pp.51-61, 2012.

J. Van-caneghem, A. Brems, P. Lievens, C. Block, P. Billen et al., Fluidized bed waste incinerators: Design, operational and environmental issues, Prog. Energy Combust. Sci, vol.38, pp.551-582, 2012.

M. Van-de-velden, J. Baeyens, B. Dougan, and A. Mcmurdo, Investigation of operational parameters for an industrial CFB combustor of coal, biomass and sludge. China Particuol, vol.5, pp.247-254, 2007.

J. Yi, H. Sauer, F. Leuschke, and R. Baege, What is possible to achieve on flue gas cleaning using the CFB technology, Proceedings of the 8th International Conference on CFB, pp.10-13, 2005.

G. T. Hollett, Dry removal of SO/sub 2: Application to industrial coal-fired boilers, Proc. Annu. Meet. Air Pollut. Control Assoc, 1979.

H. Sauer and D. E. Porter, Dry Removal of Gaseous Pollutants from Flue Gases with the Circulating Fluid Bed Scrubber

, Report, 1994.

S. K. Hansen, J. Toher, G. Lanois, H. Sauer, . High et al., Dry Flue Gas SOx and Combined SOx/NOx Removal Experience with the Lurgi Circulating Fluid Bed Dry Scrubber-a new economical retrofit option for U.S. utilities for acid rain remediation, 1991.

F. Leuschke, S. Bleckwehl, L. Ratschow, and J. Werther, Flue gas desulphurization in a circulating fluidized bed: Investigation after 10 years of successful commercial operation at the facility of Pilsen/Cz, 9 th International Conference on Circulating Fluidized Beds, pp.943-948, 2008.

S. Mahmoudi, J. Seville, and J. Baeyens, The residence time distribution and mixing of the gas phase in the riser of a circulating fluidized bed, Powder Technol, vol.203, pp.322-330, 2010.

H. Zhang, W. Kong, T. Tan, F. Gilles, and J. Baeyens, Experiments support an improved model for particle transport in fluidized beds, Sci. Rep, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01892669

C. Chan, J. P. Seville, D. J. Parker, and J. Baeyens, Particle velocities and their residence time distribution in the riser of a CFB, Powder Technol, 2010.

R. Dewil, J. Baeyens, and B. Caerts, CFB cyclones at high temperature: Operational results and design assessment, Particuology, vol.6, pp.149-156, 2008.

H. Zhang, J. Degrève, J. Baeyens, and S. Wu, Powder attrition in gas fluidized beds, Powder Technol, vol.287, pp.1-11, 2016.

S. Mahmoudi, J. Baeyens, and J. Seville, The solids flow in the CFB-riser quantified by single radioactive particle tracking, Powder Technol, vol.211, pp.135-143, 2011.

K. Han, C. Lu, S. Cheng, G. Zhao, Y. Wang et al., Effect of characteristics of calcium-based sorbents on the sulfation kinetics, Fuel, vol.84, pp.1933-1939, 2005.

M. Hartman, K. Svoboda, O. Trnka, and V. Veselý, Reaction of sulphur dioxide with magnesia in a fluidised bed, Chem. Eng. Sci, vol.43, pp.2045-2050, 1988.

D. Kunii and O. Levenspiel, Fluidization Engineering, 1991.

J. Benitez, Process Engineering and Design for Air Pollution Control, vol.8, 1993.

J. Li and L. Wang, Concentration distributions during mass transfer in circulating fluidized beds, Proceedings of the 7th International Conference on Circulating Fluidized Beds, pp.5-8, 2002.

R. Zevenhoven and M. Järvinen, Particle/Turbulence Interactions, Mass Transfer and Gas/Solid Chemistry in a, CFBC Riser. Flow Turbul. Combust, vol.67, pp.107-124, 2001.

D. Gunn, Transfer of heat or mass to particles in fixed and fluidised beds, Int. J. Heat Mass Transf, vol.21, pp.467-476, 1978.

M. Van-de-velden, J. Baeyens, A. Brems, and B. Janssens, Dewil, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction, Renew. Energy, vol.35, pp.232-242, 2010.

A. B. Fuertes, G. Velasco, E. Fuente, and T. Alvarez, Study of the direct sulfation of limestone particles at high CO2 partial pressures, Fuel Process. Technol, vol.38, pp.181-192, 1994.

Q. Zhong, Direct sulfation reaction of SO2 with calcium carbonate, Thermochim. Acta, vol.260, pp.125-136, 1995.

M. R. Hajaligol, J. P. Longwell, and A. F. Sarofim, Analysis and Modeling of the Direct Sulfation of CaCO2, Ind. Eng. Chem. Res, 1988.

K. Iisa, M. Hupa, and P. Yrjas, Product layer diffusion in the sulphation of calcium carbonate, Symp. Combust, vol.24, pp.1349-1356, 1992.

H. Liu, S. Katagiri, U. Kaneko, and K. Okazaki, Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion, Fuel, vol.79, pp.945-953, 2000.

K. Qiu and O. Lindqvist, Direct sulfation of limestone at elevated pressures, Chem. Eng. Sci, vol.55, pp.3091-3100, 2000.

R. Zevenhoven, P. Yrjas, and M. Hupa, Sulfur dioxide capture under PFBC conditions: The influence of sorbent particle structure, Fuel, vol.77, pp.285-292, 1998.

M. J. Snow, J. P. Longwell, and A. F. Sarofim, Direct sulfation of calcium carbonate, Ind. Eng. Chem. Res, vol.27, pp.268-273, 1988.

G. A. Simons and W. T. Rawlins, Reaction of Sulfur Dioxide and Hydrogen Sulfide with Porous Calcined Limestone, Ind. Eng. Chem. Process. Des. Dev, vol.19, pp.565-572, 1980.

R. H. Borgwardt, Kinetics of the Reaction of SO2 with Calcined Limestone, Environ. Sci. Technol, 1970.

H. Zhang, J. Degrève, R. Dewil, and J. Baeyens, Operation Diagram of Circulating Fluidized Beds (CFBs). Procedia Eng, vol.102, pp.1092-1103, 2015.

H. Zhang, J. Degrève, J. Baeyens, and R. Dewil, The Voidage in a CFB Riser as Function of Solids Flux and Gas Velocity, Procedia Eng, vol.102, pp.1112-1122, 2015.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI