S. Naama, T. Hadjersi, A. Keffous, and G. , CO 2 gas sensor based on silicon nanowires modified with metal nanoparticles, Mater. Sci. Semicond. Process, vol.38, pp.367-372, 2015.

S. Lee, J. Oh, D. Kim, and Y. Piao, A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions, Talanta, vol.160, pp.528-536, 2016.

N. B. Tanvir, C. Wilbertz, S. Steinhauer, A. Köck, G. Urban et al., Work function based CO 2 gas sensing using metal oxide nanoparticles at room temperature, Mater. Today.: Proc, vol.2, pp.4190-4195, 2015.

D. Wang, Y. Chen, Z. Liu, L. Li, C. Shi et al., CO 2 -sensing properties and mechanism of nano-SnO 2 thick-film sensor, Sens. Actuators B: Chem, vol.227, pp.73-84, 2016.

S. Mulmi, R. Kannan, and V. Thangadurai, CO 2 and SO 2 tolerant Fe-doped metal oxides for solid state gas sensors, Solid State Ion, vol.262, pp.274-278, 2014.

K. Fan, H. Qin, L. Wang, L. Ju, and J. Hu, CO 2 gas sensors based on La 1 x Sr x FeO 3 nanocrystalline powders, Sens. Actuators B: Chem, vol.177, pp.265-269, 2013.

L. Gómez, V. Galeano, R. Parra, C. R. Michel, C. Paucar et al., Carbon dioxide gas sensing properties of ordered oxygen deficient perovskite LnBaCo 2 O 5+?, Sens. Actuators B: Chem, vol.221, pp.1455-1460, 2015.

H. Jaouali, N. Hamrouni, M. F. Moussa, M. A. Nsib, A. Centeno et al., LaFeO 3 ceramics as selective oxygen sensors at mild temperature, Ceram. Int, vol.44, pp.4183-4189, 2018.

L. Gildo-ortiz, J. Reyes-gómez, J. M. Flores-Álvarez, H. Guillén-bonilla, M. De-la et al., Synthesis, characterization and sensitivity tests of perovskite-type LaFeO 3 nanoparticles in CO and propane atmospheres, Ceram. Int, vol.42, pp.18821-18827, 2016.

R. Dhahri, M. Hjiri, L. E. Mir, E. Fazio, F. Neri et al., ZnO:Ca nanopowders with enhanced CO 2 sensing properties, J. Phys. D, vol.48, p.255503, 2015.

P. K. Kannan, R. Saraswathi, and J. B. Rayappan, CO 2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film, Ceram. Int, vol.40, pp.13115-13122, 2014.

L. Li, H. Qin, C. Shi, L. Zhang, Y. Chen et al., CO 2 sensing properties of La 1 x Ba x FeO 3 thick film and packed powder sensors, RSC Adv, vol.5, pp.103073-103081, 2015.

D. Mardare, N. Cornei, C. Mita, D. Florea, A. Stancu et al., Low temperature TiO 2 based gas sensors for CO 2, Ceram. Int, vol.42, pp.7353-7359, 2016.

C. R. Michel, A. H. Martínez-preciado, R. Parra, C. M. Aldao, and M. A. Ponce, Novel CO 2 and CO gas sensor based on nanostructured Sm 2 O 3 hollow microspheres, Sens. Actuators B: Chem, vol.202, pp.1220-1228, 2014.

J. P. Morán-lázaro, O. Blanco, V. M. Rodríguez-betancourtt, J. Reyes-gómez, and C. R. Michel, Enhanced CO 2 -sensing response of nanostructured cobalt aluminate synthesized using a microwave-assisted colloidal method, Sens. Actuators B: Chem, vol.226, pp.518-524, 2016.

R. U. Mene, M. P. Mahabole, and R. S. Khairnar, Surface modified hydroxyapatite thick films for CO 2 gas sensing application: effect of swift heavy ion irradiation, Radiat. Phys. Chem, vol.80, pp.682-687, 2011.

A. A. Yadav, A. C. Lokhande, R. B. Pujari, J. H. Kim, and C. D. Lokhande, The synthesis of multifunctional porous honey comb-like La 2 O 3 thin film for supercapacitor and gas sensor applications, J. Colloid Interface Sci, vol.484, pp.51-59, 2016.

T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato et al., CdO-based nanostructures as novel CO 2 gas sensors, Nanotechnology, vol.22, p.325501, 2011.

S. Sen, P. Anand, M. Narjinary, S. K. Md, R. Mursalin et al., Ethanol sensing evaluation of sol-gel barium calcium ferrite, Ceram. Int, vol.42, pp.12581-12585, 2016.

Y. Jeong, C. Balamurugan, and D. Lee, Enhanced CO 2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method, Sens. Actuators B: Chem, vol.229, pp.288-296, 2016.

D. D. Trung, L. D. Toan, H. S. Hong, T. D. Lam, T. Trung et al., Selective detection of carbon dioxide using LaOCl-functionalized SnO 2 nanowires for air-quality monitoring, Talanta, vol.88, pp.152-159, 2012.

N. V. Hieu, N. D. Khoang, D. D. Trung, L. D. Toan, N. V. Duy et al., Comparative study on CO 2 and CO sensing performance of LaOCl-coated ZnO nanowires, J. Hazard. Mater, pp.209-216, 2013.

Y. Xiong, Q. Xue, C. Ling, W. Lu, D. Ding et al., Effective CO 2 detection based on LaOCl-doped SnO 2 nanofibers: insight into the role of oxygen in carrier gas, Sens. Actuators B: Chem, pp.725-734, 2017.

W. Zhang, C. Xie, G. Zhang, J. Zhang, S. Zhang et al., Porous LaFeO 3 /SnO 2 nanocomposite film for CO 2 detection with high sensitivity, Mater. Chem. Phys, vol.186, pp.228-236, 2017.

G. G. Mandayo, J. Herrán, I. Castro-hurtado, and E. Castaño, Performance of a CO 2 impedimetric sensor prototype for air quality monitoring, Sensors, vol.11, pp.5047-5057, 2011.

J. Herrán, O. Fernández-gonzález, I. Castro-hurtado, T. Romero, G. G. Mandayo et al., Photoactivated solid-state gas sensor for carbon dioxide detection at room temperature, Sens. Actuators B: Chem, vol.149, pp.368-372, 2010.

F. Chapelle, L. Oudrhiri-hassani, A. Presmanes, P. Barnabé, and T. , CO 2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin films, Appl. Surf. Sci, vol.256, pp.4715-4719, 2010.

I. Chapelle, S. E. Younsi, Y. Vitale, T. Thimont, L. Nelis et al., Improved semiconducting CuO/CuFe 2 O 4 nanostructured thin films for CO 2 gas sensing, Sens. Actuators B: Chem, vol.204, pp.407-413, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01170563

T. P. Sumangala, Y. Thimont, V. B. Carles, L. Presmanes, C. Bonningue et al., Study on the effect of cuprite content on the electrical and CO 2 sensing properties of cuprite-copper ferrite nanopowder composites, J. Alloy. Compd, vol.695, pp.937-943, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01764766

J. Mürbe and J. Töpfer, Ni-Cu-Zn ferrites for low temperature firing: i. ferrite composition and its effect on sintering behavior and permeability, J. Electroceram, vol.15, pp.215-221, 2005.

P. Tailhades, L. Presmanes, I. Pasquet, C. Bonningue, and F. Laporte, Spinel oxides thin films for write-once optical recording with blue laser sources, Trans. Magn. Soc. Jpn, vol.2, pp.198-201, 2002.

S. Roy and S. B. Majumder, Recent advances in multiferroic thin films and composites, J. Alloy. Compd, vol.538, p.153, 2012.

H. F. Wang, R. Kavanagh, Y. L. Guo, Y. Guo, G. Lu et al., Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature, J. Catal, vol.296, p.110, 2012.

Z. ?im?a, P. Thailhades, L. Presmanes, and C. Bonningue, Magneto-optical properties of manganese ferrite films, J. Magn. Magn. Mater, pp.381-383, 2002.

C. V. Reddy, S. V. Manorama, and V. J. Rao, Preparation and characterization of ferrites as gas sensor materials, J. Mater. Sci. Lett, vol.19, pp.775-778, 2000.

K. A. Gross and . Sutkaa, Spinel ferrite oxide semiconductor gas sensors, Sens. Actuators B: Chem, vol.222, pp.95-105, 2016.

S. Ghosh, U. Chowdhury, S. Roy, and R. Bandyopadhyay, Detection of low ppm carbon monoxide with charge ordered LuFe2O4 gas sensor -a novel sensing mechanism, Ceram. Int, vol.42, pp.14944-14948, 2016.

W. Zhao, H. Lan, J. Gong, R. Bai, S. Ramachandran et al., Highly sensitive acetone-sensing properties of Pt-decorated CuFe 2 O 4 nanotubes prepared by electrospinning, Ceram. Int, vol.44, pp.2856-2863, 2018.

R. Wu, C. W. Lin, and W. J. Tseng, Preparation of electrospun Cu-doped ?-Fe 2 O 3 semiconductor nanofibers for NO 2 gas sensor, Ceram. Int, vol.43, pp.535-540, 2017.

F. Falsahi, B. Hashemi, A. Mirzaei, E. Fazio, F. Neri et al., Sm-doped cobalt ferrite nanoparticles: a novel sensing material for conductometric hydrogen leak sensor, Ceram. Int, vol.43, pp.1029-1037, 2017.

M. Sugimoto, The past, present, and future of ferrites, J. Am. Ceram. Soc, vol.82, pp.269-280, 1999.

T. Maehera, K. Konishi, T. Kamimori, H. Aono, T. Naohara et al., Heating of ferrite powder by an AC magnetic field for local hyperthermia, Jpn. J. Appl. Phys, vol.41, pp.1620-1621, 2002.

G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, and S. A. Rossini, IR study of alkene allylic activation on magnesium ferrite and alumina catalysts, J. Chem. Soc. Faraday Trans, vol.92, pp.4687-4693, 1996.

T. P. Sumangala, C. Mahender, N. Venkataramani, and S. Prasad, A study of nanosized magnesium ferrite particles with high magnetic moment, J. Magn. Magn. Mater, vol.382, pp.225-232, 2015.

T. P. Sumangala, C. Mahender, B. N. Sahu, N. Venkataramani, and S. Prasad, Study of magnesium ferrite nano particles with excess iron content, Physica B, vol.448, pp.312-315, 2014.

Y. L. Liu, Z. M. Liu, Y. Yang, H. F. Yang, G. L. Shen et al., Simple synthesis of MgFe 2 O 4 nanoparticles as gas sensing materials, Sens. Actuators B: Chem, vol.107, pp.600-604, 2005.

N. S. Chen, X. J. Yang, E. S. Liu, and J. L. Huang, Reducing gas-sensing properties of ferrite compounds MFe 2 O 4 (M = Cu, Zn, Cd and Mg), vol.66, pp.178-180, 2000.

D. C. Bharti, K. Mukherjee, and S. B. Majumder, Wet chemical synthesis and gas sensing properties of magnesium zinc ferrite nano-particles, Mater. Chem. Phys, vol.120, pp.509-517, 2010.

E. Doroftei, N. Rezlescu, P. D. Rezlescu, and . Popa, Magnesium ferrite with Sn 4+ and / or Mo 6+ substitutions as sensing element for acetone and ethanol, Rom. J. Phys, vol.51, pp.631-640, 2006.

S. Darshane and I. S. Mulla, Influence of palladium on gas-sensing performance of magnesium ferrite nanoparticles, Mater. Chem. Phys, vol.119, pp.319-323, 2010.

B. Gadkari, T. J. Shinde, and P. N. Vasambekar, Effect of Sm 3+ ion addition on gas sensing properties of Mg 1 x Cd x Fe 2 O system, Sens. Actuators B: Chem, vol.178, pp.34-39, 2013.

J. Smit and H. P. Wijn, Ferrites : physical properties of ferrimagnetic oxides in relation to their technical applications, 1959.

P. Poix, Liaison interatomique et propriétés des composés minéraux, p.82, 1968.

P. Poix, F. Basile, and C. Djega-mariadassou, Study of parameter cell variation with cation distribution in YFe 3 O 4 , (1-y) FeCr 2 O 4 and YFe 3 O 4 , (1-y) Fe 2 SnO 4 system using invariants method, Ann. Chim, vol.10, pp.159-162, 1975.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr, vol.32, pp.751-767, 1976.

E. J. Verwey, Electronic conduction of magnetite (Fe 3 O 4 ) and its transition point at low temperatures, Nature, vol.144, pp.327-328, 1939.

M. S. Lee and J. U. Meyer, A new process for fabricating CO 2 -sensing layers based on BaTiO 3 and additives, Sens. Actuators B: Chem, vol.68, pp.293-299, 2000.

G. Marsal, A. Dezanneau, J. R. Cornet, and M. , A new CO 2 gas sensing material, Sens. Actuators B: Chem, vol.95, pp.266-270, 2003.

D. Y. Kim, H. Kang, N. J. Choi, K. H. Park, H. K. Lee et al., A carbon dioxide gas sensor based on cobalt oxide containing barium carbonate, Sens. Actuators B: Chem, vol.248, pp.987-992, 2017.

U. Hoefer, G. Kuhner, W. Schweizer, G. Sulz, and K. Steiner, CO and CO 2 thin-film SnO 2 gas sensor on Si substrates, Sens. Actuators B: Chem, vol.22, pp.115-119, 1994.