Distributed modeling approach of discrete manufacturing systems by Parts of Plant
Alexandre Philippot, M Sayed Mouchaweh, Véronique Carré-Ménétrier

▶ To cite this version:
Alexandre Philippot, M Sayed Mouchaweh, Véronique Carré-Ménétrier. Distributed modeling approach of discrete manufacturing systems by Parts of Plant. 2009 European Control Conference (ECC), Aug 2009, Budapest, Hungary. hal-02337955

HAL Id: hal-02337955
https://hal.archives-ouvertes.fr/hal-02337955
Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Distributed modeling approach of discrete manufacturing systems by Parts of Plant

Article - March 2015

3 authors:

Alexandre Philippot
Université de Reims Champagne-Ardenne
79 PUBLICATIONS 202 CITATIONS
See Profile

M. Sayed Mouchaweh
Institut Mines-Télécom Lille Douai
128 PUBLICATIONS 827 CITATIONS
See Profile

Véronique Carré-Ménétrier
Université de Reims Champagne-Ardenne
61 PUBLICATIONS 236 CITATIONS
See Profile

Some of the authors of this publication are also working on these related projects:

Intelligent diagnosis View project

high machining process View project
Distributed Modeling Approach of discrete manufacturing systems by Parts of Plant

A. Philippot, M. Sayed-Mouchaweh and V. Carré-Ménétier, CReSTIC-URCA

Abstract— The paper presents an original approach to model a discrete manufacturing system by Parts of Plant (PoP). This approach takes into account technical and technological specifications of each plant element. The aim of this work is to realize a reliable simulation of discrete manufacturing systems in design stage before production stage. Models are distributed and established from the functional chain of a process. They take into account the distribution of information through each PoP with its sensors, pre-actuators and actuators. A PoP library is proposed with their corresponding model. An application example is used to illustrate the approach.

I. INTRODUCTION

A simulation is the execution of a model, represented by a computer program that gives information about the dynamic behavior of a system being investigated. This simulation allows evaluating system performances at the design stage. Hence, the latter becomes more flexible and convenient to obtain a more reliable system fulfilling the desired objectives. The simulation stage is based on the use of a model of the system. The model construction depends on several factors as the level of modeling and desired objective: analysis [1], [2], synthesis [3], [4], verification [5], [6], diagnosis [7], [8] or simulation [9].

Manufacturing systems can be represented as Discrete Event Systems (DES) [10]. They are composed of elements called “Part of Plant” (PoP). Each PoP can be modeled thanks to its states and its events. Generally, plant is composed of pre-actuators, actuators and sensors (Fig. 1). Each plant component is also divided in sub-components characterized by the technology used to produce them [11]. This division implicates a modular modeling where each sub-component is a PoP. However, in literature, plant is often modeled as a set of “pre-actuators / actuators / sensors”. These models are often an abstraction of the behavior according to the modeling objectives. For example, a pneumatic cylinder can be modeled as an automaton with 4 states in verification [5], with 12 states in synthesis [3] or with 18 states in analysis [9].

Fig. 1. Functional line of a process

The paper is structured as follows. In section 2, a library of the Parts of Plant commonly used in discrete manufacturing systems is presented. In section 3, the models for these different PoP are detailed. These models take into account the technology specifications used to produce them. Then, these models are used through a simulation tool to give information about the dynamic behavior of the system being investigated. An example illustrating these models is found in section 4.

II. PARTS OF PLANT LIBRARY

In manufacturing systems, controller sends commands to the plant to realize actions and receives information about the plant status, in response to these actions, through incoming sensors data. Plant is composed of actions and acquisitions chains (Fig. 1). The actions chain is composed of pre-actuators which
transform the controller commands into power. The latter is then transformed by the actuators into actions realized by the effectors. The acquisitions chain informs the controller about the effectors situation thanks to sensors.

A. Pre-actuators

Pre-actuators can be classified in three types: electrics, pneumatics or hydraulics [11]. Electrics pre-actuators are, in most cases, switch contacts or motor controller (e.g. variable-speed drive, regulator…). Switch contacts are discrete and can be open or closed whereas motor controller agrees continuous signals. In the paper, only switch contacts are studied. Readers can find more information on electrics pre-actuators and their symbol in the standard C03-207 of the Technical Union of Electricity (http://www.ute-fr.com/FR/).

Pneumatics valves are pneumatics pre-actuators. They convert pneumatic power in compressed air transmitted to actuators (cylinders). Valves are composed of several exhaust ports and a slide with several positions. The behavior of a valve is characterized by a duo “number of ports/number of positions”. Consequently, a 5/2-way valve, 5 exhaust ports and 2 positions, will have a different behavior of a 2/2-way valve (Fig. 2). Valves can be controlled in single solenoid or bistable. A single valve has only one relax state thanks to a spring whereas bistable valve has two possible relaxes positions according to the last command sent. The control power of pneumatics valves can be electric, pneumatic, mechanic or combined. Another specification, if there is any pressure in relax position, the valve is said to be normally closed (NC). If there is pressure in the valve, then the valve is said to be normally open (NO). All symbols and explanations about pneumatics valves can be found in [11].

Hydraulics valves are also pre-actuators but with hydraulic fluid as power. They are used only with hydraulics actuators and have often the same characteristics as pneumatics valves. Table I enumerates the set of pre-actuators commonly used in a library.

<table>
<thead>
<tr>
<th>Pre-actuator</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch contact</td>
<td></td>
</tr>
<tr>
<td>2/2-way valve NC contact (single and bistable)</td>
<td></td>
</tr>
<tr>
<td>2/2-way valve NO contact (single and bistable)</td>
<td></td>
</tr>
<tr>
<td>3/2-way valve NC contact (single and bistable)</td>
<td></td>
</tr>
<tr>
<td>3/2-way valve NO contact (single and bistable)</td>
<td></td>
</tr>
<tr>
<td>4/2-way valve (single and bistable)</td>
<td></td>
</tr>
<tr>
<td>5/2-way valve (single and bistable)</td>
<td></td>
</tr>
<tr>
<td>5/3-way valve Centre Open Exhaust (COE)</td>
<td></td>
</tr>
<tr>
<td>5/3-way valves All Ports Blocked (APB)</td>
<td></td>
</tr>
<tr>
<td>5/3-way valve Centre Open Pressure (COP)</td>
<td></td>
</tr>
</tbody>
</table>

B. Actuators

Actuators are generally divided into three families [11]. The first is the electrics actuators as motors (induction motor, electric stepping motor, DC motor, AC motor,…), as well as solenoid, resistor, etc…. Readers can find more information about electrics actuators and their symbol in the standard C03-207 of the Technical Union of Electricity (http://www.ute-fr.com/FR/).

The second family is the pneumatics actuators. The most used ones of this family are the pneumatics cylinders. The latter (sometimes known as air cylinders) are mechanical devices which produce force, often in combination with movement, and are powered by compressed gas (typically air). They convert the potential energy of compressed gas into kinetic energy. They transform pressure in action and force a piston to move in the desired direction, to grow, pull, bend, grip, raise, put together, etc…. Pneumatic cylinders are always associated to one or several pneumatics valves. As the motors, there are many types of pneumatics cylinders as Single-Acting Cylinder (SAC) moving in one direction and Double Acting Cylinders (DAC) moving in both directions. Although SACs and DACs are the most common types of pneumatic cylinders, there exists also rotary air cylinders (actuators that use air to impart a rotary motion), rodless air cylinders (actuators that use a mechanical or magnetic coupling to impart force), etc.

The third type is the hydraulics actuators which produce an important mechanical effort and precision. Hydraulics cylinders are commonly used but in this paper only motors and pneumatics cylinders are studied (Table II).
Fig. 4. Pre-actuator block

Fig. 3. A Moore automaton

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor with 1 or 2 sense of rotation</td>
<td>M</td>
</tr>
<tr>
<td>Single-Acting Cylinder (pushing)</td>
<td></td>
</tr>
<tr>
<td>Single-Acting Cylinder (pulling)</td>
<td></td>
</tr>
<tr>
<td>Double-Acting Cylinder</td>
<td></td>
</tr>
</tbody>
</table>

C. Sensors

Sensors provide information about the response of PoP due to the actuators actions. There are several kinds of sensors as the ones indicating positions (digital sensors) or the ones measuring pressures, temperatures, flow rate, speed ... (analogical sensors). In this paper, we do not treat the analogical sensors but only digital ones with a binary response (active or inactive status) [11]. Sensor’s technology (proximity switch, electro-mechanical, inductive, capacitive, infrared ...) has no influence on their functioning.

III. PARTS OF PLANT MODELING

To model each Part of Plant of the libraries (Tables I, II and digital sensors), we have chosen Moore automata. A Moore automaton is a finite state automaton where the outputs are determined by the current state (Fig. 3). It can be defined as a 6-tuple \((Q, q_0, \Sigma, \Lambda, T, G)\) consisting of the following:

- a finite set of static’s states \((Q)\)
- an initial state \(q_0\) which is an element of \((Q)\)
- a finite set of events called the input alphabet \((\Sigma)\)
- a finite set of events called the output alphabet \((\Lambda)\)
- a transition function \(T : Q \times \Sigma \rightarrow Q\) mapping each state and the input alphabet to the next state
- an output function \(G : Q \rightarrow \Lambda\) mapping each state to the output alphabet

Each PoP is modeled as a block where inputs/outputs must be identified. In this section, a methodology is presented for the definition of each PoP with an example for illustration.

Fig. 3. A Moore automaton

Commands

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>/Out1</td>
<td>/Out2</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Out1</td>
<td>/Out2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Out1</td>
<td>Out2</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>/Out1</td>
<td>Out2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 4. Pre-actuator block
B. Actuators block

Based on Fig. 1, we can note that actuators are preceded by pre-actuators. Thus, actuators block receives the valves positions in its input to provide at its output the actuator functional state (Fig. 7).

Let us take a Double-Acting Cylinder (DAC). This latter is piloted by a pneumatic valve with 2 positions. It accepts the position of this one in input (A or B). In output, the DAC can take 4 states: (i) piston rod back, (ii) piston rod out, (iii) piston rod going back, (iv) piston rod going out. The truth table of the DAC block (Table IV) is provided by an expert. When the valve is in position A, the piston rod of the cylinder must go out. Consequently, the model goes to a dynamic state V_{out} where the piston rod is totally out. Conversely, when the valve is in position B, the piston rod comes back and goes to a dynamic state V_{in} where the piston rod of the cylinder is totally back. As the pre-actuators blocks, at the initialization state of the process, it is impossible to know if the piston rod of the cylinder is back or totally out. Consequently, we add an initial state to the model without output to avoid giving wrong information.

After the choice of a cylinder type, the dynamic aspect can be established by the time of displacement of the piston rod. This latter needs time to arrive from a stable position to another one. This time is called “Time of stroke” and noted T_s. It defines of the piston rod stroke s and of the speed v by: $T_s = s/v$. However, the speed of a cylinder is a function of the piston rod area A (depending of the piston rod diameter) and of the volumetric rate of the compressed gas R (which is also a function of the presence or not of a pneumatic device like a pressure-reducing valve). Then, the speed is represented by: $v = R/A$.

All these technical and technological characteristics are primordial to the modeling. They are often available by the provider in the technical documentation or otherwise can be determined by learning cycles. To integrate this dynamic into models, we have defined a timed Moore automaton where dynamic states are represented by a circle in dotted line. A timed Moore automaton can be defined as a 11-tuple $(Q, q_0, \Sigma, \Lambda, T, G, Q^*, T_s, \Delta, t, \Psi)$ with the 6-tuple $(Q, q_0, \Sigma, \Lambda, T, G)$ of a Moore automaton and the following:

- a finite set of dynamic’s states (Q^*)
- a Time of stroke (T_s)
- a variable of temporary allocation (Λ)
- a local clock between 2 events (t)
- a finite set called operand (Ψ) for allocation (\rightarrow) and equality test (\Rightarrow)

For the DAC example, the model is given in Fig. 8. From the initial state q_0 and according to the inputs, the model evolves towards state q_1/V_{in} or q_4/V_{out}. From the state q_1/V_{in}, representing the piston rod in position come back, the cylinder can go out if it accepts position A from the valve. In this transition, the time of stroke T_s is appointed to variable Δ. The model stays in dynamic state q^*/V_{in} until the local clock t becomes equal at the time of stroke. In this case, the model is considered in a state q_2/V_{out} where the piston rod is out. On the contrary, if during its exit, the model accepts a new position B from the valve, then the variable Δ is affected by a new value corresponding to the current time t. The model goes to a dynamic state q^*/V_{in} where t is re-initialized to 0. The cylinder goes back to the state q_4/V_{out} at the end of time Δ defined by the last value of t. The functioning from the state q_4/V_{out} is similar. As the pre-actuators, the addition of an initial state depends of its technology.

C. Sensors block

The sensor block broadcasts information on the presence or not of a product or an actuator (Fig. 9). Then, the state of the sensor is sent to the controller. Consequently, the truth table of the sensor model is function of an input E and deducts from it the output state d (Table V). Then, sensor model has only 2 states (Fig. 10). We take the assumption that at the initialization, the sensor is always to 0.

TABLE IV

Truth Table of DAC Model

<table>
<thead>
<tr>
<th></th>
<th>V_{in}</th>
<th>V_{in}^*</th>
<th>V_{out}</th>
<th>V_{out}^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1*</td>
</tr>
</tbody>
</table>

Fig. 6. 5/2-way bistable valve model

Fig. 7. Actuator block

Fig. 8. Double-Acting Cylinder model
D. Discussion

Two characteristics can only implicate a modification on the model. The first one concerns the piloting in single solenoid or bistable of pre-actuators and the second on the number of positions (2 or 3) which they can take. These two characteristics make possible only 3 different models: (i) single solenoid with 2 positions, (ii) bistable with 2 positions, (iii) bistable with 3 positions (Table VI). The others technological variations, like the number of ports or the fact than a valve is in NO contact or NC contact, don’t change the models structure but can influence on the initial state.

For the actuators library (Table II), it is also possible to consider the same model for several types. Both types of motors, 1 sense and respectively 2 senses of rotation, have different models because they are piloted by 1 or respectively 2 switch contacts. For the cylinders, it is possible to have only one model for SAC or DAC when they have 2 positions because they keep the same type of functioning. The only feature concerns the cylinders piloted by a valve with 3 positions. A new intermediate state is created when the valve is on position C (Table VII).

TABLE VI
LIBRARY OF PRE-ACTUATORS MODELS

<table>
<thead>
<tr>
<th>Pre-actuator</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single solenoid</td>
<td></td>
</tr>
<tr>
<td>Bistable with 2 positions</td>
<td></td>
</tr>
<tr>
<td>Bistable with 3 positions</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VII
LIBRARY OF ACTUATORS MODELS

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor with 1 sense of rotation</td>
<td></td>
</tr>
<tr>
<td>Motor with 2 sense of rotation</td>
<td></td>
</tr>
<tr>
<td>SAC and DAC with 2 positions</td>
<td></td>
</tr>
<tr>
<td>DAC with n positions (n>2 and with 5/3-way valve or equivalent intermediate position C)</td>
<td></td>
</tr>
</tbody>
</table>

Only digital sensors with a binary response are considered in this paper, and then model of the Fig. 10 is the only one possible.

IV. APPLICATION AND SIMULATION

In this section, we present a real flexible manufacturing system cellflex (http://meserp.free.fr). The task of the system consists in filling bottles to condition them by 6 in a sixpack and finally to stock them. Firstly, the Import/Export station provides sixpacks which are going to be transported from stations to stations thanks to a central conveyor. Each sixpack is deposited on a wagon. At the same time, the filling station filled the bottles of liquid and deposits a cap there. They are then transported to the transfer station. If a group of six bottles is available, a sixpack is ordered and bottles in wait are put, three in the first line and three in the second line. Then, sixpack returns to the Import/Export station to be put out of the system. If this station is full or blocked, sixpacks is provisionally stocked in the storage station (Fig. 11).

For the moment, the modeling approach by PoP has been realized on the Import/Export station. When a wagon comes front of the import belt, an empty sixpack is put on it thanks to a pneumatic system on 3 axes. After the packaging, the wagon with a full sixpack is situated in front of one of the export...
slides. The pneumatic system on 3 axes takes a sixpack and put it on a slide (Fig. 12).

This station is composed of 10 actuators piloted by 12 pre-actuators with different technologies. The information about the behavior of the station is given by 23 sensors. Consequently, all these Parts of Plant can be modeled from our library. These models have been implemented in the software Stateflow of Matlab® for simulation. Our approach represents 45 local models with a maximum of 6 states and a totality of 127 states (34 states for the pre-actuators, 47 for the actuators and 46 for the sensors). To compare with a global model of this plant, composition operations are need and succeeded to one model with more of 400 states. Consequently, without composition, there is no combinatorial explosion in the construction of ours models.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented an original approach to model a plant of manufacturing systems. This modeling is based on distributed information of a plant. We consider that a plant can be divided in several Parts of Plant (PoP) which are different according to the family (pre-actuators, actuators, sensors) and to the specifications (3/2-ways valves, 5/2-ways valves, motors, cylinders…) of their local elements. PoP are modeled by classical and timed Moore automata to allow the communication between models. A library of the commonly used PoP has been established to deduce of it a library of their models.

The first objective of these works is the simulation of systems before production. The distributed modeling introduced in this paper allows validating local Parts of Plant. However, the global behavior of the plant is not validated because it corresponds to correlations between the different local PoP. These correlations are linked to physical constraints of high level which must be also modeled. For example, two cylinders moving in a common area will not have the same global behavior as if they were independent. This problem is a part of ours future works. Another drawback is that there is no product model for the moment whereas this one can influence the process.

To finish, we want to extend ours models to realize the diagnosis of manufacturing systems. This requires integrating faulty behaviors in PoP models for the detection, isolation and identification of a fault. Each model will be extended towards a faulty model called diagnoser.

ACKNOWLEDGEMENT

This work is integrated in the regional project MOSYP (Performances Measurements and Optimization of Production Systems). For this, the authors would like to thank the Champagne-Ardennes region.

REFERENCES