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Abstract
This paper presents Real-Time Network-on-chip-based ar-

chitecture Analysis and Simulation tool (ReTiNAS), with

a special focus on real-time communications. It allows fast

and precise exploration of real-time design choices onto NoC

architectures.

ReTiNAS is an event-based simulator written in Python. It
implements different real-time communication protocols and

tracks the communications within the NoC at cycle level. Its

modularity allows activating and deactivating different NoC

components and easily extending the implemented protocols

for more customized simulations and analysis.

Further, we use ReTiNAS to perform a comparative study

of analysis and simulation for different communication pro-

tocols using a wide set of synthetic experiments.

1 Introduction
The evolution and development of semiconductor technology

has made possible the integration of billions of transistors on

a single chip. With this technological explosion, designers

are able to develop Integrating Complex (ICs) functional

elements into a single chip, known as a Multi-Processor

System-on-Chip (MPSoC).

MPSoCs contain multiple processing elements (PEs) and

are typically classified into homogeneous and heterogeneous.

A homogeneous MPSoC contains identical PEs, whereas dif-

ferent types of PEs are integrated in an heterogeneous MP-

SoC. It provides increased parallelism towards achieving

high performance. In such a system, support for on-chip

communication is required. The first-generation MPSoCs

used buses, hierarchical buses, a point-to-point approach to
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guarantee the exchange of information between the differ-

ent components. With the increasing complexity of current

and future applications, the number PEs has been increased

whereas the main memory is still to be unique. As bus ac-

cess is exclusive, buses are often subject of high contention,

this limits the scalability and becomes quickly a bottleneck

of high performances. On-chip packet-switched networks

have been proposed as an alternative solution for complex

networks. The Network-on-Chip (NoC) communication has

been introduced to be power efficient and scalable intercon-

nection to support communication among the PEs.

Real-time systems are usually found in highly critical sys-

tems such as avionics, aeronautics, etc. These systems must

react to the evolution of the environment. Typically, they

have to capture data via several sensors (Cameras, pressure,

temperature, etc), process them and finally react to environ-

ment state via actuators. To ensure safety, these steps, called

also tasks, have to finish within a given time window. In a

typical real-time system, several tasks compete for different

resources and may also share data.

When executing real-time tasks on a NoC-based architec-

ture, the shared data has to be routed between PEs where

communicating tasks are allocated. The needed time to route

data from its source to its destination is called communi-

cation latency. Latency has to be bounded to ensure that

each task instance has been executed without violating the

real-time constraints (within its time window).

NoC components (routers and network interfaces, etc) are

designed to maximize network utilization without taking

into account predictability and temporal behavior of commu-

nications, whichmake them not suitable to real-time systems.

An arbitration schema is required to control the access of

communication links between PEs, where this mechanism

increases the complexity of the NoC. Several works in real-

time community have proposed architectural modifications
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to reduce the worst case of latency bounds. However, these

works are not properly compared against each other, due to

a lack of tools (especially simulation).

Contributions This paper presents an event-based simula-

tor and analysis tool for periodic and sporadic real-time com-

munications, allowing to compare the different approaches

proposed in the literature against each other by simulation

and analysis. We provide also a comparative study of fixed

priority and time division arbitration protocols and their

impact on latency and schedulability.

The remainder of this paper is organized as follows: in the

next section, we report NoC communication mechanisms.

Section 3 is reserved to present architecture and communi-

cations models. Our Simulator is briefly described in Section

4. Section 5 presents the different approaches to analyze the

behavior of fixed priority and TDMA arbitration protocols

provided by our tool. Results are discussed in Section 6, we

draw conclusion in Section 7.

2 NoC switching and routing mechanisms
Each communication consists of a message, communication

source and destination. First, each messageMi is decom-

posed into a set of packets (Mi = {Pi1,Pi2, · · · }), further,
packets are forwarded separately from a router to another.

Wormhole switching is the mechanism that describes how

a packet moves forward from a router to another. In the

wormhole switching, each packet P is broken into small

pieces called FLITs
1
, P = {FP

1
, FP

2
, · · · FPn }.

The first flit FP
1
, called the header flit, holds needed in-

formation to packet routing (for example, the destination

address) and sets up the behavior of all other flits associated

within the same packet. Final flit, FPn is called the tail flit.

Between the header and the tail flit, flits are called body flits.

In wormhole switching, flits are stored in VCs
2
. Each VC

is either idle or allocated to only one packet. A header flit

can be forwarded to the next router if at least next router

has one idle VC. The VC allocator decides where each packet

is stored (selects the idle VC for the header flit). When the

VC is selected, the header flit locks the VC. Body and tail

flits can be forwarded to the same VC as the header, using a

credit-based flow control. When the tail flit is routed, it frees

the latest VC it has occupied.

In a NoC architecture where each router is composed by

one VC per port, if two header flits or more are blocked

in a circular dependency, it may lead to a deadlock. Thus,

using multiple virtual channels allows to reduce wormhole

blocking.

Routing is an operation performed in router to determine

which is the next hop of packets. In this paper, we focus

1
FLow control unITs

2
Virtual Channels

only on XY routing. The packets are first transferred in X-

direction and then in Y-direction in order to transfer them

from the source router to the destination router.

3 System model
Network on Chip are tightly coupled with computing ele-

ments such processors, accelerators, etc. When executing

real-time applications on NoC-based architecture, tasks are

allocated onto cores such that all real-time requirements

are respected. The respect of real-time constraints implies

achieving real-time communications in a bounded time. In

this paper, we are not interested in task allocation, we fo-

cus only on real-time communications. In this section, we

present hardware architecture design and task models used

in the rest of this paper.

3.1 Architecture model
3.1.1 NoC topology and architecture
We model a NoC architecture A as a set ofm ×m routers.

Routers are connected to each other in a 2D-mesh topology

(see Figure 1). Each Router is connected to its left, right, top,

bottom neighbor except those on the edges.
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Figure 1. 2D-mesh NoC architecture

Rjm denotes the router at row j and column m. For ex-

ample R22 denotes the router in the second line and second

column. It has for neighbor R21 on the left, R23 on the right,

R12 on the top, R32 on the bottom. Routers are linked be-

tween them by an uni-directionals links λ (i, j ) (m,n) , where

this latter is communicating link from Ri j to Rmn .

3.1.2 Router architecture
A router is the main unit in a network-on-chip. Mainly it

has k ports, one for each neighbor. In 2D-mesh, each router

has 5 in-ports and 5 out-ports connected to its neighbors.

The fifth port is local port and connected to the local PE.

Figure 2 presents a typical router architecture. Each router

is composed of:
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Figure 2. 2D-mesh NoC architecture

• In/Out-ports: are the physical media that links a router

with its neighbor routers.

• Virtual Channels (VC): are message buffers. It can con-

tain a fixed number of flit arriving from a neighbor,

stored for a while, before being sent to its next desti-

nations (routed). the number of VC per port denoted

by |VC| allows a router to support multiple communi-

cations using the same port at the same time

• VC Allocator: is the entity responsible of selecting for

a given packet, the VC where it is going to be stored.

• Route Computation: is the unit responsible to select the

output port for any given packet. Here is implemented

XY routing.

• Crossbar: is the unit able to route the non-conflicting

communications. By conflicting communication, we

denote the packets available at the same time in a given

router and need to be routed using the same output

port

• Arbiter: the unit that schedules outports for conflicting
communications. It can be configured to by selecting

an arbitration policy to ensure tighter bounds of la-

tency for real-time communications.

3.2 Communication model
Real-time tasks are recurrent. Liu and Layland [9] are the

first to model recurrence in real-time systems by defining

a real-time task by its deadline, period and offset. The Liu

and Layland model is the most used in real-time community

and industry. We use similar model for real-time commu-

nications. Let T denote a set of n communications T =

{C1,C2, · · · ,Cn }. Each communication is sporadic and can

generate an infinite number of recurrent messages. It is char-

acterized by Ci = (Mi ,Di , Ti ,Rs ,Rd ) where:

• Rs ,Rd are the communication source, and destination

routers

• Mi is the message size sent from Rs to Rd .

• Ti is the communication period. It represents the mini-

mum arrival time between two communications. Thus,

the communication j + 1 can not start before at least

Ti time from the arrival of communication j.
• Di is the communication relative deadline. The jth

communication fromRs toRd has to be finishedwithin

the time interval [ai, j , ai, j + Di ] where ai, j is the time

where communication Ci is requested from the router.

In our tool, task parameters are specified using YAML

input file.

4 Real-time Communication simulator
Simulation tools allow faster exploration of design space

and quick evaluation of the design choices performance. Re-

cently, a lot of simulators [1–5, 7, 8, 10, 11, 13] have been pro-

posed to explore design choices in NoC-based architectures

at different abstraction and precision levels. For example,

GPNoCSIM [7] and DynaMapNocSim [2] are event-based

simulators written in JAVA, the first focuses on communica-

tions, whereas the second focusesmore on the task allocation,

both at high level of abstraction. Hermes [11], is low-level

simulation tool withen in VHDL. It allows to emulate design

choices on FPGA boards, however it is time consuming to

explore design choices and evaluate their performances.

However, none of the simulators, cited above, offers a

support for real-time communications, neither periodicity or

recurrence in general. The latter are designed for non-critical

systems and need lot of modifications to make them support

real-time communication protocols. Thus, we propose a new

simulation tool for real-time communication protocols.

Our simulator is modular, and extensible. A first version is

available
3
and is still under continual upgrading and devel-

opment to include extra-features. In this section, we describe

how the simulator has been designed.

4.1 Packages

Architecture Communication

Simulation

Core Engine

Tracer

Comm.

YAML

Archi.

YAML

Figure 3. Package diagram

Our simulation tool is compound of 5 packages, detailed

in the follow :

3
https://github.com/chawki27000/retina-sim
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Architecture : It contains all the classes and structures

to define a NoC.We focus mainly on 2DMesh topology.

However, our design can be extended to specify other

topologies like torus and ring.

Communication: This package defines the router com-

munication structures and their parameters. Allowing

to define periodic and aperiodic communications, mes-

sage decomposition, structure and serveral extra-real-

time parameters.

Core engine: Here are implemented all the algorithms

that contributes in NoC functioning. They are mostly

implementated by different interfaces (CROSS BAR,

VC allocator, Arbitrer, · · · ).

Simulation : The simulation package contains the sim-

ulation core. It is responsible for events and time man-

agement. It contains discrete event-based simulation

engine. The simulation engine can be re-used for any

other simulation purposes.

Tracer : Responsible of registering at cycle level, all ac-
tions taken onto each router and the state of each VC

at each time instance are save in a log file. It allows

also to automatically generate formatted results and

some predefined plots using PGF-plots.

4.2 NoC & Simulation Engines
Our simulator handles three types of events :

• MESSAGE_ARRIVAL : This event occurs to signal a

communication between two routers. It starts from

message splitting to reach flit granularity until gener-

ate next events.

• SEND_HEAD_FLIT : This event handles flit header

forwarding, by defining the next hop router, reserving

an idle VC, triggering arbitration (if conflict occurs)

and generate the next events if all is done without

errors.

• SEND_BODY_TAIL_FLIT : Finally, this event handles

body or tail flit. It checks free space in the allocated VC,

blocking flit sending if no space available and releasing

VC if the current flit is tail.

Algorithm 1 shows different steps and main function calls

of the simulator. It starts by parsing a NoC settings and

communication scenario by instanciating all periodic or ape-

riodic communications. Further, it sorts all events and loops

on them one by one. The clock is updated when the event is

handled. The simulation ends when simulation time reaches

the hyper-period or events list is empty.

5 Analysis
In this section, we present priority-based and TDMA-based

arbitration mechanisms and their analysis.

Algorithm 1 Simulation

1: noc_f: YAML FILE

2: task_f: YAML FILE

3: parse_noc(noc_f)
4: create_events(task_f)
5: sort_events_time(task_f)
6: while (event_list , ∅) do
7: e = select_next_event()
8: update_clock()
9: switch e do
10: caseMESSAGE_ARRIVAL :
11: Process_message(e)
12: case SEND_HEAD_FLIT :
13: send_header_flit(e)
14: case SEND_BODY_TAIL_FLIT:
15: send_body_tail_flit(e)
16: if (sim_time_finished) then
17: empty_event_list()
18: end if
19: end while

5.1 Fixed priority
Shi et al. [12] propose to assign a priority to virtual channels.

Therefore a communication in VC of priority p, is selected
by the arbiter before any communication in all VCs of pri-

ority less than p. Moreover, if the communication in VC of

priority p has already started, it can be interrupted by com-

munications in VCs of higher priority, allowing preemptions.

Once the high priority communication finishes, the low pri-

ority communication resume their forwarding in a classical

preemption scheme. Authors in [12] provided worst case

communication latency bounds analysis. Tighter bounds has

been provided by Xiong et al. [14] and [15] by distinguish-

ing two types of interference : Upstream and Downstream.

In a 2D-NoC topology, Upstream interference is caused by

conflicting messages arriving from the south port, whereas

the downstream interference is caused by incoming commu-

nication from north port. Equation 1 have been proposed

by the authors of [15] to compute a communication latency

bounds.

Ri =
∑
∀τj ∈SDi

⌈
Ri + Jj + I

U
ji

Tj
⌉ (Cj + I

D
ji ) +Ci (1)

Equation 1 is iterative:

It starts by assuming R (0)
i =

∑
∀τj ∈SDi

(Cj + I
D
ji ) +Ci , where

• SDi is a set of messages that constitutes a direct inter-

ference

• IUji I
D
ji is the set of conflicting messages belonging to

Upstream and Downstream (indirect interference)
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This equation converges if fixed point is found (R (n+1)
i = R (n)

i )

or if latency is already greater than the deadline, resulting

to a deadline miss (R (n)
i > Di ).

Although this approach is easy to implement and analyze,

it presents major limitations. First, preempting a communica-

tion can be a costly operation. In fact, the router is forced to

create and schedule a tail FLIT for the preempted message so

it can continue onward its routing and a new head FLIT for

the FLITs that are still not yet forwarded. Moreover, a real

implementation of such solutions requires as much VCs per

input port as number of priorities (tasks). However, increas-

ing the number of VC (which are mainly buffers) increases

drastically the chip size and lead to heat dissipation and volt-

age problems. One solution may be to limit the number of

scheduled tasks or to manage the priorities in a hierarchical

schedule scheme.

5.2 Time division multiple access
Abbreviated by TDMA, the second main approach aims to

share output port between conflicting communications based

on time sharing. Therefore, each VC has its own service time

slots, where FLITs within that VC are forwarded. Several

works have been interested in optimizing the time slot size

and slot assignment. A exhaustive survey can be found in [6].

Under TDMA, each communication is achieved in isola-

tion to the others. Its latency can be computed as shown in

Equation 2.

Ri =
Li

nslot
·
∆

δi
+ Hi (2)

Where :

• Li : number of flits in the message.

• nslot : The amount of data sent in one slot (1 Flit by

default).

• ∆ / δi : The total number of slots in a TDMA cycle / the
assigned slot number.

• Hi : Hop number between Rs and Rd .

This approach is more complex and requires implementing

timers and their synchronization mechanisms in the routers.

However, it provides isolation of FLIT forwarding, therefore

prevents "miss-behaving" communications from monopo-

lizing the network. Furthermore, it does not require other

modifications to VC structures, nor to arbitration protocols.

However, communication-to-VC assignment mechanisms

must be achieved offline.

6 Experiments
In this section, we present a wide set of synthetic simula-

tions to study performances of fixed-priority-based approach

against TDMA based approaches in terms of worst case la-

tency bounds and resource augmentation. ReTiNAS is used

to simulate the real-time task communication behavior. Com-

munications latency change drastically when all conflicting

communications are active at the same time. Therefore, we

start by describing how conflicting communications are gen-

erated.

6.1 Conflicting communications generation
First, a communication com is selected between src and dst .
Further, the route between src and dst is computed using XY-

routing algorithm. Later, stressing communications which

has a goal to create contention in either X-axe or Y-axe

or both, are iteratively generated until reaching an input

contention rate threshold.
The contention rate is computed as follows:∑

τi ∈ConflictSet

Mi

Ti
(3)

where ConflictSet represents the higher priority tasks that

share at least a link with the current task as depicted in

Figure 4.
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Figure 4. Interference on the message path

6.2 Simulation
We perform a wide set of experiments using ReTiNAS, us-

ing a personal computer including Intel i5-7200U CPU and

8GB of RAM. All experiments where achieved on the NoC

configuration summarized on Table 1.

Topology 4x4 2D-Mesh

VC per InputPort 6

Buffer size per VC 10 Flits

Periods (cycle) [1000, 1500, 2000, 3000, 4000, 6000]

TDM Slots [4, 2, 3, 5, 3, 3]

Message 8 Packets (10 Flits each)

Number of hop 5

Table 1. NoC configuration and Communication detail
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Figure 5. Experimentation results in diffrent arbitration

mode

Figure 5a reports the worst case latency obtained by sim-

ulation against the one obtained by analysis as a function

of contention rate for fixed priority approach. When the

contention is low, the analysis tend to compute very large

latency bounds compared to the measured latency using the

simulator. In fact, the analysis assume always the worst case

of task arrivals, therefore a congestion level that may never

be reached when tasks execute. The more contention, the

high latency is, in both simulation and analysis. In fact, in

such scenario, the worst scenarios can often happen when all

tasks are activated, therefore the simulation worst bounds

are close to the analytical ones. However, analysis is still

slightly over-estimating the worst case latency bounds.

TDMA is a contention-free arbitration approach as all

communications are executed in isolation. Therefore, it is

not interesting to study the impact of congestion on latency

itself. Thus, in Figure 5b, we report the latency using TDMA
approach as a function of the time slot size. As expected,

the bigger time slot size, the shorter latency is. However,

communications may not be able to be served using unlim-

ited time-slot size. The problem is to define the exact time

slot per time period for a given task to respect its real-time

constraints.

Figure 6 represents the average VC number required, for

fixed priority and TDMA, to respect deadlines for the same

tasks as a function of contention rate. This allows us to com-

pare the efficiency of each approach regarding the respect

of real-time constraints. We highlight that we modify the

time-slot size to have schedulable tasks for TDMA. Therefore,
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Figure 6. NoC Resource Augmentation

even if results reported here show the efficiency TDMA and

fixed priority, it does not allow a fair comparison of TDMA

against fixed priority.

When contention is low, we can see that TDMA approach

need the same number of VCs as fixed priority.When the con-

tention rate is increased, the congestion increases, therefore

more of higher priority messages are scheduled and more

VCs are needed to keep the latency less than the deadline.

TDMA is not contention sensitive, therefore always requires

less VCs compared to fixed priority. The gap between both

keeps increasing as the contention is increased.

7 Conclusion
In this paper, we presented the design and implementation of

a real-time network-on-chip communication simulator and

analysis tool. We provided also an overview of techniques to

perform real-time communication in a NoC architectures.We

presented a comparative study of TDMA and fixed priority

approachs as a function of worst case latency and resource

augmentation bounds. As future work, we would like to

investigate exact solutions for budgeting VCs including the

task allocation problem for TDMA.
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