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Abstract

We performed a systematic review of studies focusing on the automatic prediction of
the progression of mild cognitive impairment to Alzheimer’s disease (AD) dementia,
and a quantitative analysis of the methodological choices impacting performance. This
review included 172 articles, from which 234 experiments were extracted. For each
of them, we reported the used data set, the feature types, the algorithm type, perfor-
mance and potential methodological issues. The impact of these characteristics on the
performance was evaluated using a multivariate mixed effect linear regressions. We
found that using cognitive, fluorodeoxyglucose-positron emission tomography or po-
tentially electroencephalography and magnetoencephalography variables significantly
improved predictive performance compared to not including them, whereas including
other modalities, in particular T1 magnetic resonance imaging, did not show a signif-
icant effect. The good performance of cognitive assessments questions the wide use
of imaging for predicting the progression to AD and advocates for exploring further
fine domain-specific cognitive assessments. We also identified several methodological
issues, including the absence of a test set, or its use for feature selection or parameter
tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast
doubts on the relevance of the method to clinical practice. We also highlight that short-
term predictions are likely not to be better than predicting that subjects stay stable over
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time. These issues highlight the importance of adhering to good practices for the use
of machine learning as a decision support system for the clinical practice.

Keywords: quantitative review, Alzheimer’s disease, Mild Cognitive Impairment,
progression, automatic prediction, cognition

1. Introduction

The early diagnosis of Alzheimer’s disease (AD) is crucial for patient care and
treatment. Machine learning algorithms have been used to perform automatic diagnosis
and predict the current clinical status at an individual level, mainly in research cohorts.
Individuals suffering from mild cognitive impairment (MCI) are however likely to have5

a change of clinical status in the coming years, and to be diagnosed with AD or another
form of dementia. Distinguishing between the MCI individuals that will remain MCI
(MCI stable, or sMCI) from those who will progress to AD (pMCI) is an important
task, that can allow for the early care and treatment of pMCI patients. In this article,
we will review methods that have been proposed to automatically predict if an MCI10

patient will develop AD dementia in the future by performing a careful reading of
published articles, and compare them through a quantitative analysis.

The application of machine learning to precision medicine is an emerging field, at
the cross roads of different disciplines, such as computer science, radiology or neurol-
ogy. Researchers working on the topic usually come from one field or the other, and15

therefore do not have all the skills that are necessary to design methods that would
be efficient and following machine learning best practices, while being understandable
and useful to clinicians.

Reviews of the automatic prediction of the patient’s current diagnosis from clinical
or imaging variables acquired at the same time in the context of AD have already been20

published, but none specifically target the prediction of progression from MCI to AD
dementia. They focus on the use of magnetic resonance imaging (MRI) (Falahati et al.,
2014; Leandrou et al., 2018), or of neuroimaging data more broadly (Rathore et al.,
2017; Arbabshirani et al., 2017; Haller et al., 2011; Sarica et al., 2017). Several of
them are systematic reviews such as Arbabshirani et al. (2017) with 112 studies on25

AD, Rathore et al. (2017) with 81 studies, Falahati et al. (2014) with 50 studies and
Sarica et al. (2017) with 12 studies. They often gather the findings of each individual
article and compare them, but no quantitative analysis of performance is proposed.

We propose here to perform a systematic and quantitative review of studies predict-
ing the evolution of clinical diagnosis in individuals with MCI. We will report different30

quantitative and qualitative characteristics of the proposed method such as the sam-
ple size, type of algorithm, reported accuracy, identification of possible issues. We
will then analyze this data to identify the characteristics which impact performance
the most, and list several recommendations to ensure that the performance is well es-
timated, and that the algorithm would have the best chance to be useful in clinical35

practice.
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2. Materials and Method

2.1. Selection process

The query used to find the relevant articles was composed of 4 parts:

1. As we study the progression from MCI to AD, the words MCI and AD should40

be present in the abstract ;
2. We removed the articles predicting only the patient’s current diagnosis using

variables acquired at the same time point by ensuring the words “prediction” and
“progression” or associated terms are present in the abstract ;

3. A performance measure should be mentioned ;45

4. A machine learning algorithm or classification related key-word should be in the
abstract. This fourth part ensures the selected articles make individual predic-
tions and reduces the presence of group analyses.

The full query can be found in Appendix A.1. Running it on Scopus on the 13th of
December 2018 resulted in 330 articles. The abstracts were read to remove irrelevant50

articles, including studies of the progression of cognitively normal individuals to MCI,
automatic diagnosis methods, review articles and group analyses. After this selection
206 articles were identified. As this first selection was quite conservative, 34 additional
articles were removed from the selection for similar reasons during the reading process,
leaving 172 studied articles which are listed in Appendix B. The selection process is55

described in Figure S1 in Appendix A.2.

2.2. Reading process

For each study, the number of individuals was first assessed and noted. Only studies
including more than 30 sMCI and 30 pMCI (111 articles) were then fully read, as we
considered that experience using fewer than 30 individuals cannot provide robust esti-60

mates of performance. Articles with fewer than 30 individuals in each category were
still considered when studying the evolution of the number of articles with time, and of
the number of individuals per article with time. The studies including enough individ-
uals were then analyzed by one of the 19 readers participating in this review, and a final
curation was performed by one of the authors (MA) to ensure homogeneity. 36 items,65

of which a list is available in Appendix A.3, were reported for each study, including
the used features, the cohort, the method (time to prediction, algorithm, feature selec-
tion, feature processing), the evaluation framework and the performance measures, as
well as identified biases in the method. When several experiments were available in an
article, they were all reported in the table. A total of 234 experiments was thus studied.70

A table containing the articles included in the review and the reported values can be
found on https://gitlab.com/icm-institute/aramislab/mci-progression-
review. The issues identified in each article were removed from this open-access ta-
ble, to avoid negatively pointing at studies. They can be made available if requested to
the corresponding author.75
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2.3. Quality check

Several methodological issues were identified during the reading process. This list
of issues was not previously defined, it has been established as issues were encountered
in the various studies. We identified the following list of issues:

• Lack of a test data set: use of the same data set for training and testing the algo-80

rithm, without splitting the data set or using any kind of cross-validation method.
The performance computed this way is the training performance, whereas a test
performance, computed on a different set of individuals, is necessary to measure
the performance that could be obtained on another data set (i.e. generalizability
of the method) .85

• Automatic feature selection performed on the whole data set. When a large num-
ber of features is available, automatic feature selection can be performed in order
to identify the most relevant features and use them as input. A variety of auto-
matic algorithms exist to do this. Some studies performed this automatic feature
selection on the whole data set, before splitting it into a training and a test set90

or performing cross-validation. An example of this issue is, first, using t-tests
to identify features that best separate pMCI from sMCI, using the whole data
set, then splitting the data set into a training and a test set, to respectively train
the classification algorithm and evaluate its performance. In this example, the
individuals from the test set have been used to perform the automatic feature se-95

lection and choose the most relevant features. This is an issue, as individuals in
the test set should be used for performance evaluation only.

• Other data-leakage. More broadly, data leakage is the use of data from the test set
outside of performance evaluation. Using the test data set for parameter tuning,
or for choosing the best data set out of a large number of experiments, are two100

common examples of data leakage.

• Feature embedding performed on the whole data set. Feature embedding (for ex-
ample principal components analysis) transforms the input features into a lower-
dimension feature space. It is often used to reduce the input dimension when
many features are available, but it does not use the individual labels (sMCI/pMCI)105

to do so, as feature selection often does. This issue is therefore similar to per-
forming feature selection on the whole data set, except that only the features of
the test individuals are used, and not their labels.

• Use of the date of AD diagnosis to select the input visit of pMCI individuals. An
example of this issue is using the visit 3 years before progression to AD for pMCI110

subjects, and the first available visit for sMCI subjects, to predict the progression
to AD at 3 years, even for testing the method. In this case, the date of progression
to AD of the individuals of the test set was used to select the input visit, which
is not possible in clinical practice, as the date of progression is not known. Such
experimental designs are also likely to introduce biases between pMCI and sMCI115

subjects in age or in total observation periods for instance, which may lead to a
better performance than what could be achieved in a real-life scenario.
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Other methodological issues, not belonging to these categories, were also reported,
such as incompatibility between different reported measures. The articles in which at
least one of these issues was identified were not used when analyzing the performance120

of the methods. Only articles with no reported issues were used, however it is possible
that some issues could not be detected from the elements given in the articles, and that
some issues were not identified during reading.

2.4. Statistical analysis
2.4.1. General model125

We studied the impact of various method characteristics (such as input feature and
algorithm) on the performance of the classification task, separating sMCI from pMCI
individuals. Several experiments were reported for each article, so we had to account
for the dependency between experiments coming from the same article. In order to do
so, we used linear mixed-effects models with a random intercept on the article.130

For the model to have enough power, we grouped the characteristics in a hierar-
chical manner, creating broad categories that can be expanded into finer ones several
times. The categories were created as such :

• linear models: linear regression, orthogonal partial least square (OPLS), linear
discriminant analysis (LDA), manual threshold135

• generalized linear models: linear support vector machine(SVM), logistic regres-
sion, survival analysis

• non-linear models: random forest, multi-kernel learning, non-linear SVM, bayesian
methods, neural networks, others

• imaging features140

– T1 MRI

∗ region-based features on selected regions of interest (T1-ROI)
∗ region-based features on the whole brain
∗ voxel-based features

– positron emission tomography (PET)145

∗ fluorodeoxyglucose (FDG) PET
∗ Amyloid PET

– white matter hyper-intensities

– electroencephalography (EEG) or magnetoencephalography (MEG)

– diffusion tensor imaging (DTI)150

– fMRI

• cerebrospinal fluid (CSF) biomarkers

• cognitive features

– general cognitive features
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– domain-targeted cognitive features155

– new, home-made cognitive features

• socio-demographic and genetic features

– socio-demographic features

∗ age
∗ gender160

– Apolipoprotein E (APOE)

• other features

• longitudinal approach

• use of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set

• number of subjects165

A first model was created with the broadest categories, and we used a two-sided t-
test on the regression coefficients to identify the categories of characteristics which had
a significant impact on performance. The next model was then created by expanding
only the significant categories and keeping the non-significant one at a coarse level.
The expansion and the creation of new models was repeated until we reached a model170

for which all significant coefficients belonged to categories that could not be expanded
further. We report the results of the final model in 4. The intermediate models leading
to the final one are reported in section Appendix A.4.1 of Supplementary Materials.

For each model, we only used the characteristics which were found in more than
one article with an associated performance measure and with no identified issue. The175

performance measure used for these models was the area under the receiver operating
characteristic (ROC) curve (AUC), experiments with no reported AUC were therefore
not taken into account.

Only the experiments with no identified methodological issues were included in the
model. This process was performed twice: once using all experiments without issues,180

and once using only the experiments performed on the ADNI database.
The p-values corrected for multiple comparisons were obtained by using the Benjamini-

Hochberg procedure.

2.4.2. Individual feature models
We wanted to test whether T1 MRI, cognitive or FDG PET features are predictors

of better performance if used alone or in combination with other features. To this
purpose, for a given feature type F, we selected the experiments using this feature
type and that had a reported AUC and no methodological issue. We then used a linear
mixed-effect model, defined as:

AUCi = α ∗ ηi + β + βarticlei

where i is the experiment, articlei is the article to which the experiment belongs (as185

several experiments can be reported in each article), and ηi is 0 when the experiment
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uses only the studied feature type Fand 1 when it uses other feature types as well. We
used a two-sided t-test on α to determine if including other feature types significantly
changed the performance compared to using F alone.

This analysis was performed for F being: (a) T1 MRI features, (b) cognitive fea-190

tures, (c) FDG PET features. These were the features selected for the final general
model as explained in 2.4.1, that have been used alone in at least 2 reported experi-
ments, and that have been used in combination with other features in at least 2 experi-
ments as well. Cognitive features were not divided into subsets so as to study the effect
of cognitive assessments as a whole.195

3. Descriptive analysis

(a) Evolution of number of article per year and of the number of
individuals per article

(b) Evolution of the AUC with time

Figure 1: Recent trends. (a) Evolution of number of article per year (in red) and of the number of individuals
per article with time (in blue). (b) Evolution of the area under the ROC (receiver operating characteristic)
curve (AUC) with time. The AUC of each article is represented by a dot. The AUC of articles published the
same year is represented as box-plots. The plain line corresponds to the regression of the AUC against time
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3.1. A recent trend
Figure 1a shows that the number of articles published each year on the prediction

of the progression of MCI to AD dementia has been steadily increasing since 2010.
Figure 1a also shows that the number of individuals used for the experiments is200

increasing over time (p= 10−5, slope of 12.15 subjects per year, R2 = 0.10). 84.6% of
articles used data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.
Starting in 2004, this multicenter longitudinal study provides multiple modalities for
the early detection of AD. As the recruitment of this largely used cohort is still ongoing,
it is not surprising to see the number of included individuals increasing over the years.205

Studies often select individuals with a minimal follow-up time, of 3 years for example,
and over the years more and more MCI individuals from the ADNI cohort fulfill these
criteria, so more individuals can be included.

As shown in Figure 1b, the reported AUC are also increasing over time (p= 0.045,
slope of 1.15 points of AUC per year), which can have multiple explanations. First, as210

new studies often compare their performance with those of previous methods, they tend
to be published only when the obtained results seem competitive compared to previous
ones. A more optimistic interpretation would be that algorithms tend to improve, and
that newly available features might have a better predictive power. It has also been
shown (Ansart et al., 2019; Domingos, 2012) that having a larger data set leads to a215

higher performance, so there may be a link between the increase in data set size and
the increase in performance.

3.2. Features
T1 MRI, cognition and socio-demographic features are used in respectively 69.2%,

43.2% and 33.8% of experiments. On the other hand, FDG PET, APOE and CSF220

AD biomarkers are used in 15 to 20% of experiments, and the other studied features
(white matter hyper-intensities, EEG, MEG, PET amyloid, amyloid binary status with-
out considering the PET or CSF value, DTI and PET Tau) are used in fewer than 10%
of experiments. No study using functional MRI has been identified.

Studies using T1 MRI mainly use selected regions of interest (46.8%), whereas225

34.7% use the whole brain, separated into regions of interest, and 18.5% use voxel
features. Studies using neuro-psychological tests mainly use aggregated tests evalu-
ating multiple domains of cognition (51.2% of them), and 37.4% of them combine
aggregated tests with domain-specific ones. Seven experiments use new or home-made
cognitive tests. 35.7% of experiments use only T1 MRI (apart from socio-demographic230

features), and 15% use cognition only.
The prevalence of T1 MRI does not seem surprising, as researchers working on

automatic diagnosis often come from the medical imaging community, and T1 MRI is
the most widely available modality. The prevalence of the imaging community can also
explain the choice of cognitive features, and why more detailed and targeted cognitive235

tests are not used as much as more general and more well-known ones.

3.3. Algorithm
Support vector machines (SVM) and logistic regressions are the most used algo-

rithms, being used in respectively 32.6% and 15.0% of experiments. Among the ex-
periments using an SVM, 63.2% use a non-linear kernel, 30.3% use a linear kernel and240
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Figure 2: Evolution of the use of various algorithms with time. SVM with unknown kernel are simply noted
as "SVM". OPLS: orthogonal partial least square; SVM: support vector machine

6.6% do not mention the used kernel. Other algorithms are used in fewer than 10% of
cases. Figure 2 shows the evolution of the algorithm use over time.

The high proportion of methods using an SVM has already been shown for the
prediction of the current diagnosis in Falahati et al. (2014) and Rathore et al. (2017), it
is therefore not surprising that this algorithm is also commonly used for the prediction245

of future diagnosis. We see that random forests started being used around 2014, but
the proportion of methods using this algorithm, even recently, stays low compared to
the proportion of methods using an SVM. Neural networks started being used during
the last two years, as it can be seen in Figure 2, and we can assume the phenomenon
has been too recent to be visible just yet in the field. Overall, even if the proportion250

of SVM has been decreasing until 2013, the field has not been so prompt to use new
algorithms as one could have expected. A possible explanation is that the choice of
algorithm does not significantly impact performance.

3.4. Validation method
For evaluating their performance, 29.1 % of experiments use a 10-fold, and 12.8%255

use a k-fold with k different from 10. Leave-one individual out is also quite popular,
being used in 17.5% of cases. We noted that 7.3% of experiments were trained and
tested on the same individuals, and 7.3% train the method on a first cohort and test it
on a different one.

It should be kept in mind when comparing the performance of different studies that260

the cross-validation methods can impact the performance. Using a larger training set
and smaller test set is more favorable, hence the same method might result in a better
performance when evaluated using a leave-one out validation than using a 10-fold val-
idation, as shown in Lin et al. (2018). Bias and variance also vary across validation
methods (Efron, 1983). Varoquaux et al. (2017) also studied the impact of the cross-265

validation strategy on a range of classification tasks performed on fMRI and MEG data
sets, and showed that differences in performance tend to be smaller than the variance
of the estimated performance using a cross-validation method, mitigating the impor-
tance of the choice of cross-validation strategy. This study still warns against the use
of leave-one-out validation, leading to less stable estimates.270
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Reporting variance or confidence intervals is an important best practice to compare
results from different studies and experiments. We did not collect this information, and
further work regarding the adoption of this practice could complete this study.

4. Performance analyses

Characteristic coeff. p-value corrected
p-value

number
of exp.

intercept 78 0 0 NA
linear model -0.47 0.79 0.94 23
generalized linear model 0.19 0.89 0.96 28
non linear model 0.83 0.55 0.79 50
T1 features 0.92 0.26 0.76 77
amyloid PET 1.3 0.35 0.79 5
FDG PET 2.6 0.023 0.13 24
white matter hyper-intensities -0.58 0.49 0.79 3
EEG/MEG 3.4 2.9∗10−03 0.029 5
general cognitive features -0.14 0.91 0.96 49
domain targeted cognitive features 2.6 0.026 0.13 25
new or specific cognitive features 0.89 0.52 0.79 2
socio-demographic features 1.2 0.43 0.79 43
APOE 2.27 0.049 0.19 26
biomarkers 0.75 0.39 0.79 19
other features 0.53 0.54 0.79 12
longitudinal 0.25 0.80 0.95 13
ADNI 0.011 0.99 0.99 106
number of subjects -0.39 0.76 0.94 NA
individual intercept NA 0.072 0.24 NA

Table 1: Impact of method characteristics. This table shows the coefficients obtained using the linear mixed-
effect model described in section 2.4.1 on all experiments, the associated p-values and corrected p-values.
The last columns shows the number of experiments using the given characteristic, out of the 120 experi-
ments included in the model. Benjamini-Hochberg procedure was applied to get corrected p-values. co-
eff.:coefficient of the characteristics in the mixed effect model; FDG: fluorodeoxyglucose; PET: positron
emission tomography; EEG: electroencephalography; MEG: magnetoencephalography; APOE: Apolipopro-
tein E; ADNI: Alzheimer’s Disease Neuroimaging Initiative; NA: not applicable

The results of the linear mixed-effect model used to model the AUC based on the275

method characteristics are shown in Table 1, and the details of the intermediate models
can be found in section Appendix A.4.1 of Supplementary Materials. The performance
is significantly better when using EEG and MEG (coefficient=3.4, p=3∗10−3), domain-
targeted cognitive features (coefficient=2.6, p = 0.026), FDG PET (coefficient=2.2,
p=0.023) or APOE (coefficient=2.3, p=0.049). The use of the ADNI cohort and of280

longitudinal data are not shown to be significant. The impact of the algorithm type and
of the number of subjects are not shown to be significant either.
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We also run the performance analysis using only the experiments performed on the
ADNI cohort. The only characteristics with a significant impact on the AUC are the use
of T1-ROI features (coefficient = 1.7, p=0.014) (and not the other T1-based features285

which are regions based features on the whole brain and voxel-based features), FDG
PET features (coefficient = 4.4, p < 1 ∗ 10−7) and domain-targeted cognitive features
(coefficient=2.4, p = 9∗10−3). The complete results can be found in section Appendix
A.4.2 of Supplementary Materials.

We considered the impact of using each feature alone compared to a combination290

of them. It is significantly better to combine T1 MRI with other features than to use
it solely (coefficient = 5.5, p = 9∗10−3). The effect is not significant for cognition
(coefficient=3.0, p=0.19) and FDG PET (coefficient = -6.1, p=0.38).

4.1. Cognition
Cognitive variables can be easily collected in clinical routine, at a low cost, and295

they are proven to increase the performance of the methods, so their use should be
encouraged. This finding is consistent with comparisons performed in several studies.
Minhas et al. (2018); Kauppi et al. (2018); Ardekani et al. (2017); Tong et al. (2017);
Gavidia-Bovadilla et al. (2017); Moradi et al. (2015); Hall et al. (2015); Fleisher et al.
(2008) showed that using cognition and T1 MRI performed better than using T1 MRI300

only. Dukart et al. (2015); Cui et al. (2011); Thung et al. (2018); Li et al. (2018) showed
that adding cognition to other modalities also improved the results.

More surprisingly, we showed that using other modalities does not significantly
improve the results compared to using cognition only. Although Fleisher et al. (2008)
shows that using T1 MRI in addition to cognition does not improve the performance305

compared to using cognition only, several studies show the opposite on various modali-
ties (Samper-Gonzalez et al., 2019; Moradi et al., 2015; Ardekani et al., 2017; Li et al.,
2018; Kauppi et al., 2018). However, when taking all studies into account, it appears
that the improvement one gains by including other modalities along with cognitive
variables is not significant. As the cost of collecting cognitive variables compared to310

performing an MRI or a FDG PET is quite low, the non-significant improvement in
performance might not be worth the cost, logistics and patient inconvenience arising
from the collection of other modalities. Methods focusing on cognition only, such as
proposed by Johnson et al. (2014), should therefore be further explored. Such meth-
ods should include domain-specific cognitive scores, which have shown to increase the315

performance.

4.2. Medical imaging and biomarkers
Imaging modalities are not as widely available as cognitive features, but they can

represent a good opportunity to better understand the disease process by showing the
changes that appear before the individuals progress to AD dementia.320

Among the used imaging modalities, we showed that using FDG PET leads to a
better performance. Using T1-ROI features also leads to a better performance on the
ADNI experiments, but this effect is not significant when considering all experiments.
All the experiments using T1 MRI are performed on the ADNI database, so one can
assume the effect on performance is small and is diluted when considering all exper-325

iments instead of the experiments performed on ADNI. Even considering the ADNI
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experiments, the effect of using T1-ROI features is 2.6 times smaller than the effect of
using FDG PET, and 1.45 times smaller than the effect of using cognitive features. We
also showed that using T1 MRI features alone performs significantly worse than using
other features as well. Over all, T1 MRI features should not be used alone and PET330

images could represent a better alternative for the imaging community. Similar obser-
vations have been made by Samper-Gonzalez et al. (2018). FDG PET was included
as a supportive feature in AD diagnosis criteria in 2007 (Dubois et al., 2007), and al-
though it was removed - along with structural MRI - from IWG-2 diagnostic criteria
in 2014, Dubois et al. (2014) stressed that FDG PET can be useful to differentiate be-335

tween AD and other types of dementia and to measure disease progression. According
to the model hypothesized in (Jack et al., 2010a) changes in FDG PET appear earlier
in the AD process than changes in structural MRI, which has been corroborated by
different quantitative studies (Chetelat et al., 2007; Reiman et al., 1998; Jagust et al.,
2006). These changes might already be visible in MCI individuals several years before340

their progression to AD, which can explain why FDG PET is more predictive of this
progression.

Only one method using Tau PET has been identified in this review so we could not
evaluate the impact on performance. This new modality should also be affected early
in the disease process, and could therefore represent great hopes for the imaging com-345

munity. However, surprisingly, Amyloid PET or CSF value, which is also one of the
earliest markers, did not have a significant impact on the prediction performance. Al-
though amyloid load saturates several years before symptom onset (Jack et al., 2010b;
Yau et al., 2015), several studies show that MCI individuals who are amyloid posi-
tive are more likely to convert to dementia in the next 2 to 4 years than those who are350

amyloid negative (Landau et al., 2012; Jack et al., 2010b; Okello et al., 2009).
The use of EEG or MEG has a significant impact on the performance. However,

only 5 experiments using these features were included in the model, it is therefore
difficult to conclude if this effect is real, and if it is not due to methodological issues
that have not been identified during the quality check.355

4.3. Longitudinal data

Longitudinal data could give a better view of the evolution of the patient, and hence
be more predictive of the progression to AD than cross-sectional data. Nonetheless,
we did not find the use of longitudinal data to have a significant effect on the perfor-
mance. Similar findings are reported in Aksman (2017) for the classification of AD360

and in Schuster et al. (2015) for progressive diseases in general. Longitudinal analyses
are more difficult to design in age-related diseases since there is no temporal marker
of disease progression especially before diagnosis. Patients are also seen at different
time-points and not all features are acquired at each visit, leading to many missing
values. Methodologies for such designs are more exploratory than for cross-sectional365

approaches (Schiratti et al., 2015; Venkatraghavan et al., 2019)

4.4. Algorithm

Table 1 shows that the choice of algorithm has no significant impact on perfor-
mance. Even if non-linear models seem to be associated to a higher coefficient (0.83)
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Characteristic coeff. p-value corrected
p-value

number
of exp.

intercept 78 0 0 NA
linear model -8.1 1∗10−03 5.5∗10−03 23
generalized linear model -3.7 0.12 0.25 28
non linear model -0.13 0.96 0.96 50
imaging features -1.6 0.42 0.52 94
cognitive features 2 0.028 0.073 53
socio-demographic features and
APOE 2.4 0.012 0.04 49

biomarkers 0.92 0.28 0.45 19
other features 0.87 0.31 0.45 12
longitudinal 0.35 0.72 0.82 13
ADNI -1.42 0.26 0.45 106
number of subjects -0.066 0.96 0.96 NA
interaction: linear model and
imaging features 7.85 5.8∗10−04 4.6∗10−03 19

interaction: generalized linear
model and imaging features 4.41 0.036 0.083 21

interaction: non linear model and
imaging features 2.13 0.41 0.52 38

individual intercept 2.27 8.6∗10−03 0.034 NA

Table 2: Impact of method characteristics, taking into account the interaction between the model type and the
use of imaging features. This table shows the coefficients obtained using the linear mixed-effect model de-
scribed in section 2.4.1 on all experiments, the associated p-values and corrected p-values. The last columns
shows the number of experiments using the given characteristic, out of the 120 experiments included in the
model. Benjamini-Hochberg procedure was applied to get corrected p-values. coeff.:coefficient of the char-
acteristics in the mixed effect model; APOE: Apolipoprotein E; ADNI: Alzheimer’s Disease Neuroimaging
Initiative; NA: not applicable
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than linear and generalized linear models (-0.47 and 0.19 respectively), these coeffi-370

cients are far from significant.
The model displayed in Table 2 takes into account the interaction between the

model choice and the usage of imaging features. These results show that linear models
perform significantly worse than other models (coefficient=-8.11, p=0.001), however
the interaction between linear models and imaging features is significantly positive375

(coefficient = 7.85, p=0.0006); using imaging features therefore leads to a significant
increase in performance when using a linear model. Similar conclusions can be drawn
from the interaction between generalized linear model and imaging features (coeffi-
cient = 4.41, p=0.04), whereas this effect is not significant for non-linear models (co-
efficient=2.13, p=0.4). By combining the different coefficients, one can see that the380

best results are obtained using non-linear models. In this case, the use of imaging
feature does not significantly impact performance. A possible explanation is that non-
linear models are more powerful and better leverage the information contained in non-
imaging data, whereas linear and generalized-linear models have a lower performance
on non-imaging data. They therefore benefit from the addition of imaging data, leading385

to a performance similar to the one obtained using non-linear models.

4.5. Other methodological characteristics

One could expect the performance to increase when the data set size increases,
however we find that the effect of the number of subjects is not significant (coefficient=-
0.39, p=0.76). The impact of data set size is further investigated in 5.1.2.390

The impact of using the ADNI data set is not significant (coefficient=0.011, p=0.995).
This finding is mitigated by the fact that our results slightly vary when using all exper-
iments or only the ADNI experiment. As only 14 included experiments do not use the
ADNI database it is difficult to estimate the impact of its usage independently from the
other characteristics.395

Although we used a hierarchical grouping of the variables in order to have more
statistical power, few p-values and fewer corrected p-values are significant. This small
number of significant effects means that the variance of the reported performance mea-
sures is high compared to the effect sizes.

5. Design of the decision support system and methodological issues400

5.1. Identified issues

5.1.1. Lack or misuse of test data
The lack of a test data set is observed in 7.3% of experiments. In 16% of articles

using feature selection, it is performed on the whole data set, and 8% of articles do not
describe this step well enough to draw conclusions. Other data leakage (use of the test405

set for decision making) is identified in 8% of experiments, and is unclear for 4%.
Overall, 26.5% of articles use the test set in the training process, to train the algo-

rithm, choose the features or tune the parameters. This issue, and in particular perform-
ing feature selection on the whole data set, has also been pointed out by Arbabshirani
et al. (2017) in the context of brain disorder prediction.410
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Figure 3: Relationship between the AUC (area under the ROC curve) and the number of individuals. The
black dotted lines represent the upper and lower limits.

5.1.2. Performance as a function of data set size
We plotted the AUC against the number of individuals for each experiment in Fig-

ure 3, with the colored dots representing experiments with identified issues. The col-
ored dots show that there is a higher prevalence of studies with identified issues among
high-performance studies: a methodological issue has been identified in 18.5% of ex-415

periments with an AUC below 75%, whereas this proportion rises to 36.4% for experi-
ments with an AUC of 75% or higher (significant difference, with p = 0.006).

We can observe an upper-limit (shown in dashed line) decreasing when the num-
ber of individuals increases, suggesting that high-performance achieved with a small
number of subjects might be due to overfitting. This phenomenon has already been420

identified by Arbabshirani et al. (2017) and Varoquaux (2018) regarding the use of
neuroimaging for brain disorders.

A lower limit is also visible, with the AUC increasing with the number of individu-
als. This may reflect the fact that, on average, methods generalize better when correctly
trained on larger data sets. But it might also suggest that it is harder to publish a method425

with a relatively low performance if it has been trained on a large number of subjects,
such a paper being then considered as reporting a negative result. Within papers also,
authors tend to focus on their best performing method, and rarely explain what they
learned to achieve this. The machine learning field has the chance to have simple met-
rics, such as AUC or accuracy, to compare different methods on an objective basis.430

However, we believe that one should use such metrics wisely not to discourage the
publication of innovative methodological works even if it does not yield immediately
better prediction performance, and not to overshadow the need to better understand
why some methods work better than others.
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Figure 4: Evolution of the performance with respect to the time to prediction. Box plots represent the
accuracy reported in the articles using ADNI included in this review. The straight line represents the accuracy
that we computed by predicting that all MCI subjects remain MCI, that is the proportion of MCI subjects in
ADNI who remain MCI at the follow-up visit. The shaded area corresponds to the 90% confidence interval.
Although some papers in the literature use a sub-set of ADNI and not all ADNI, this plot still shows that
results reported in the literature do not out-perform the naive constant prediction for time-to-predictions
smaller than 3 years. This comparison is rarely done in the articles.

As the number of subjects increases, the two lines seem to converge to an AUC435

of about 75%, which might represent the true performance for current state-of-the-art
methods.

5.1.3. Use of features of test subjects
Feature embedding is performed on the whole data set in 6.8% of experiments,

meaning that the features of the test individuals are used for feature embedding during440

the training phase. As the diagnosis of the test individuals is often not used for feature
embedding, as it is for feature selection, performing it on test individual can be consid-
ered a less serious issue than for feature selection. It however requires to re-train the
algorithm each time the prediction has to be made on a new individual, which is not
suited for a use in clinical practice.445

5.1.4. Use of the diagnosis date
In 5.6% of the experiments, the date of AD diagnosis is used to select the input visit

of pMCI individuals, for training and testing. As explained in section 2.3, this practice
can prevent the generalization of the method to the clinical practice, as the progression
date of test individuals is by definition unknown.450

This type of experiments answers the question "may one detect some characteristics
in the data of a MCI patient 3 years before the diagnosis which, at the same time, is
rarely present in stable MCI subjects?". Which should not be confused with: "can
such characteristics predict that a MCI patient will progress to AD within the next 3
years". What misses to conclude about the predictive ability is to consider the MCI455

subjects who have the found characteristics and count the proportion of them who will
not develop AD within 3 years.

This confusion typically occurred after the publication of Ding et al. (2018). The
paper attracted a great attention from general media, including a post on Fox News (Wooller,
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2018), stating “Artificial intelligence can predict Alzheimer’s 6 years earlier than medics”.460

However, the authors state in the paper that “final clinical diagnosis after all follow-
up examinations was used as the ground truth label”, thus without any control of the
follow-up periods that vary across subjects. Therefore, a patient may be considered as
a true negative in this study, namely as a true stable MCI subject, whereas this subject
may have been followed for less than 6 years. There is no guarantee that this subject is465

not in fact a false negative for the prediction of diagnosis at 6 years.

5.1.5. Choice of time-to-prediction
We found that 22.6% of experiments work on separating pMCI from sMCI, regard-

less of their time to progression to dementia. We advise against this practice, as the
temporal horizon at which the individuals are likely to progress is an important infor-470

mation in clinical practice. Methods predicting the exact progression dates, such as
what is asked in the Tadpole challenge (Marinescu et al., 2018), should be favored over
methods predicting the diagnosis at a given date.

The other experiments have set a specific time to prediction, often between 1 and 3
years, meaning that they intend to predict the diagnosis of the individual at the end of475

this time interval. Figure 4 shows the evolution of the accuracy of these methods tested
on ADNI with respect to the time to prediction. The time to prediction did not have
a significant effect on AUC, accuracy, balanced accuracy, specificity nor sensitivity.
Figure 4 also shows the accuracy that one would get on ADNI when using a constant
prediction, that is predicting that all individuals stay MCI at future time points. The480

accuracy of this constant prediction has been computed using the proportion of MCI
remaining stable at each visit. We show that most methods predicting the progression
to AD within a short-term period smaller than 3 years do not perform better than this
constant prediction. This finding is consistent with results from the Tadpole challenge
(Marinescu et al., 2020), in which no participants significantly outperformed the con-485

stant prediction, to which a random noise was added, on prediction of cognitive scores
within a 18 month period. We therefore advise to use a time to prediction of at least 3
years. For shorter time intervals the proportion of MCI individuals progressing to AD
is so small that predicting that all individuals remain stable gives a better accuracy than
most proposed methods.490

This fact also shows that the accuracy may be arbitrarily increased by using a cohort
with a large proportion of stable subjects. The algorithm may then yield high accuracy
by mimicking a constant predictor. This effect may be alleviated by optimizing the
balanced accuracy instead of the accuracy.

5.1.6. Problem formulation and data set choice495

A common theme that arises from the previous issues is that the methods are not
always designed to be the most useful in clinical practice. It is for example true of
methods that do not use a specific time-to-prediction, or that use the date of AD diag-
nosis to select the included visits.

More generally, we think the most useful decision support system should not only500

focus on Alzheimer’s disease but perform differential diagnosis. Clinicians do not
usually need to distinguish between individuals who will develop AD and individuals
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who will not develop any neurological disorder. They most likely need help to deter-
mine which disorder an MCI individual is likely to develop. Unfortunately, no widely
available data set allows the development methods for differential diagnosis to date.505

Methods focusing on AD should therefore target individuals who have already been
identified as at risk of developing AD, by providing insight on the date at which this
conversion is likely to happen. Such methods could be trained on MCI subjects that
are at risk to develop Alzheimer’s disease, defined for instance as the ones who have a
MMSE of 27 or smaller and are amyloid positive. In addition to being closer to what510

can be expected in clinical practice, such data sets of at risk subjects should include a
larger proportion of pMCI, leading to a better performance compared to the constant
prediction. For example in ADNI, 71.6% of MCI subjects stay stable 2 years after
inclusion, whereas this proportion drops to 53.7% for MCI subjects who are amyloid
positive and have a MMSE of 27 or lower. Similarly, one should think carefully of515

the possible other biases introduced by the selection of sMCI or pMCI sub-sets, for
instance bias in age, gender or cognitive state. One choice is to match the two sub-sets
for these factors. This choice is justified for the detection of the features that are spe-
cific to the progressers and to the stable MCI. However, to analyze the performance of
a decision support system, one should better reproduce the biases within the population520

that will be tested by the system in a real case scenario.
The diagnosis of Alzheimer’s disease highly depends on the clinical practice, and

varies greatly across sites and countries (Beach et al., 2012). Therefore, the short-term
prediction of progression to Alzheimer’s disease is unlikely to generalize well outside
the well controlled environment of a research study. Studies on clinical data sets, such525

as performed in Archetti et al. (2019) regarding the prediction of current diagnosis,
could assess how these methods would perform in clinical settings. An interesting
alternative may be to predict the changes in the imaging or clinical biomarkers in time
rather than the change in diagnosis, such as in Koval et al. (2020), Iddi et al. (2019)
and Marinescu et al. (2020).530

5.2. Need to adhere to best practice guidelines
Given the number of methodological issues that we found in the preparation of this

review and that we have discussed above, we feel the need to list here several best
practices recommendations.

We first list general guidelines to ensure best generalization of the method and limit535

the risk for overfitting, following Hastie et al. (2009); Bishop (2006); Géron (2019);
Poldrack et al. (2019):

• Separate train and test data sets by using independent cohorts or, if not available,
cross-validation. Following Hastie et al. (2009); Varoquaux et al. (2017); Borra
and Di Ciaccio (2010); Davison and Hinkley (1997); Kohavi (1995), guidelines540

for best practices recommend to favor k-fold, repeated k-fold and repeated hold-
out over leave-one-out method.

• No element of the test data set, both labels and features, should be used except for
performance evaluation. In particular, parameter tuning should not be performed
on test data, therefore nested cross-validation or train, validation and test splits545

should be used to tune the algorithm parameters.
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• Use a large data set or pool different cohorts to obtain a large data set. Figure 3
shows that overfitting is reduced for more than 300 subjects, at which point the
maximum AUC seems to stabilize. This is concordant with results from Arbab-
shirani et al. (2017), showing a similar point around 200 subjects. Similarly,550

Poldrack et al. (2019) recommends using data sets of at least several hundred
subjects.

We also compile a list of guidelines to carefully design the experiments so that they
could support the conclusion about the predictive performance of the method which, in
this particular context, includes:555

• pre-registration of the time window within which one aims to predict conversion
to AD, as we show that performance may greatly vary depending on the time-
window and that no conclusion could be drawn regarding the ability to predict
the future without it,

• definition of data sets that best reflect the use of the method in the clinical prac-560

tice, for instance by selecting subjects that would be considered at risk of devel-
oping the disease rather than all possible subjects in ADNI, or by using sex ratio,
distribution of age, cognitive state and other similar factors that best mimic the
population characteristics that will be tested by the system.

• systematic benchmark of the method against the prediction that the subjects will565

remain stable over time, as we show that this naive method often outperforms
proposed method with a time-to-prediction smaller than 3 years.

6. Conclusion

We conducted a systematic and quantitative review on the automatic prediction of
the evolution of clinical status of MCI individuals. We reported results from 234 exper-570

iments coming from 111 articles. We showed that studies using cognitive variables or
FDG PET reported significantly better results than studies that did not, and that includ-
ing other feature types does not significantly improve performance compared to using
cognition or FDG PET alone. These modalities should be further explored, cognition
because it can be easily collected in clinical routine, and FDG PET for the interest it575

might represent for the imaging community and for increasing our understanding of the
disease. On the other hand, we showed that using solely T1 MRI yields a significantly
lower performance, despite the great number of methods developed for this imaging
modality. These findings call into question the role of imaging, and more particularly
of MRI, for the prediction of the progression of MCI individuals to dementia. In light of580

this review, we believe that one should give higher priority to other modalities. More
specific cognitive tests could be created, and the impact of using digitized tests, that
can be frequently used at home by the patients themselves, should be studied. The
creation of digitized tests for clinical routine, such as proposed by Souillard-Mandar
et al. (2016); Müller et al. (2017); Schinle et al. (2018) is a first step in this direction.585

We identified several key points that should be checked when creating a method
which aims at being used as a clinical decision support. When possible, an indepen-
dent test set should be used to evaluate the performance of the method, otherwise a test
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set can be separated by carefully splitting the cohort. In any case, the test individuals
should not be used to make decisions regarding the method, such as the selection of590

the features or parameter tuning. The time window in which one aims at predicting the
progression to AD should be pre-registered, as the temporal horizon at which an indi-
vidual is likely to progress to AD is a useful information for clinicians. Alzheimer’s
disease being a very slowly progressive disease, algorithm performance should be sys-
tematically compared with the prediction that no change will occur in the future. We595

have shown indeed that the constant prediction may yield very high performance de-
pending on the time frame of the prediction and the composition of the cohort. Finally,
the cohort on which the method is tested should be carefully chosen and defined, so as
to reflect the future use in clinical practice as best as possible. We noticed that there
is often a confusion between two different objectives : understanding the specificities600

of subjects who will or will not convert to dementia on the one hand, and predicting
the progression to dementia on the other hand. Experiments are often designed to ad-
dress the first objective, but results are then misinterpreted in relation with the second
objective. Addressing each objective requires indeed a rather different experimental
design.605

Following the guidelines will help to design better systems that would eventually
lead to similar results in real life. In any case, the final evaluation of such systems will
be done in a prospective manner, either in the framework of a challenge like the TAD-
POLE challenge (Marinescu et al., 2018, 2019, 2020), or even better in a prospective
clinical trial (Bruun et al., 2019).610

This review focused on the prediction of progression to dementia, as this problem
has, by far, attracted most attention from the scientific community. Nevertheless, pre-
dicting the future values of the biomarkers or the images may be of greater interest
for such clinical decision support systems to be adopted in practice (Marinescu et al.,
2020; Koval et al., 2020; Ansart, 2019).615
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Appendix A. Supplementary Materials

Appendix A.1. Query

The full query was:

TITLE-ABS-KEY ("alzheimer’s" OR alzheimer OR ad) AND TITLE-ABS-925

KEY ("Mild Cognitive Impairment" OR "MCI") AND TITLE-ABS-
KEY ((predicting OR prediction OR predictive) AND (
conversion OR decline OR progression OR onset) OR prognosis
) AND TITLE-ABS-KEY (accuracy OR roc OR auc OR specificity
OR sensitivity) AND (TITLE-ABS-KEY ("Deep learning" OR "930

neural network" OR "neural networks" OR "convolutional
network" OR "convolutional networks" OR "bayesian network"
OR "bayesian networks") OR TITLE-ABS-KEY ("Matrix
completion" OR "Support vector machine" OR "linear mixed-
effect" OR "logistic regression" OR "Random Forest" OR "935

kernel classifier" OR "kernel" OR "decision tree" OR "
decision trees" OR "least-squares") OR TITLE-ABS-KEY ("
Machine learning" OR "pattern recognition" OR "pattern
classification" OR "classifier" OR "algorithm" OR "
classification"))940

Appendix A.2. Selection process diagram

The process used to select the articles included in the review is shown in Figure S1.

Appendix A.3. Reported items

For each article, the following elements were reported:945

• number of MCI subjects progressing to AD;

• number of stable MCI subjects;

• time to prediction;

• used cohorts;

• use of socio-demographic features (yes/no);950

• use of APOE (yes/no);

• use of general cognitive features (yes/no);

• use of domain-targeted cognitive features (yes/no);

• use of new, home-made cognitive features (yes/no);

• use of voxel based features from T1 MRI (yes/no);955
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Figure S1: Diagram representing who the articles were selected
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• use of regions of interest on the whole brain, from T1 MRI (yes/no);

• use of selected regions of interest from T1 MRI (yes/no);

• use of white matter hyper-intensities (yes/no);

• use of PET FDG features (yes/no);

• use of PET amyloid features (yes/no);960

• use of PET tau features (yes/no);

• use of CSF features (yes/no);

• use of amyloid status (yes/no);

• use of DTI features (yes/no);

• use of functional MRI features (yes/no);965

• use of EEG or MEG features (yes/no);

• use of other features (yes/no, precision given as a free note);

• use of longitudinal features (yes/no);

• is feature selection performed (yes/no);

• used algorithm (categories defined below);970

• validation method (categories defined bellow);

• feature selection performed on the whole data set (yes/no/unclear);

• feature embedding performed on the whole data set (yes/no/unclear);

• selection of the input visit of the test subjects using their date of progression to
AD (yes/no);975

• other data leakage (use of the test set to make decisions) (yes/no/unclear);

• other issue (yes/no)

• AUC value;

• accuracy value;

• balanced accuracy value;980

• sensitivity value;

• specificity value;
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Free notes describing the issues, or important points that did not fit in the previous
list, were added.

The possible algorithm categories were added by the readers and aggregated. The985

final list was: bayesian algorithms, classification by clinicians, gaussian process, lin-
ear discriminant analysis (LDA), low rank matrix completion (LRMC), linear regres-
sion, logistic regression, manifold learning, multiple kernel learning, neural network,
orthogonal partial least square (OPLS), random forest, regularized logistic regression,
linear support vector machine (linear SVM), non-linear SVM, SVM with unknown ker-990

nel (simply noted as SVM), survival analysis, use of a threshold and others (including
home-made algorithms).

The same process was used to create the cross-validation category list, composed
of: 10-fold, k-fold, repeated k-fold, leave one out, out of the bag, single split, repeated
single split, validation on an independent cohort, validation on different groups (when995

the algorithm is trained on separating AD and CN subjects, and tested on predicting the
progression of MCI subjects), none, not described (when the use of cross-validation
is mentioned but the used validation method is not described) and not needed (for
thresholding with a manually chosen threshold for example).

Appendix A.4. Additional performance analysis1000

Appendix A.4.1. On all experiments
As explained in 2.4.1, we first built a coarse model, grouping the characteristics

into broad categories. The results are shown in Table S1. As several of the broad
categories had a significant effect on performance (imaging and cognitive features),
these categories were expanded into finer ones, building the model shown in Table1005

S2. The significant categories were expanded once again (PET and socio-demographic
features and APOE, EEG/MEG was already expanded at maximum level), leading to
the model shown in table 1. As all the significant characteristics were expanded at the
maximum level, no further model was created.

Appendix A.4.2. On the ADNI experiments1010

We also analysed the impact of method characteristic on performance using only
the experiments performed on ADNI. Table S3 shows the model obtained by using the
broadest characteristic categories. Table S4 shows the results obtained by expanding
the categories significant in Table S3 (imaging and cognitive features). Table S5 shows
the results obtained by expanding the categories significant in Table S4 (PET and T11015

features, domain targeted cognitive features being expanded at maximum level).

32



Characteristic coeff. p-value corrected
p-value

number
of exp.

intercept 78 0 0 NA
linear model -1.4 0.32 0.46 23
generalized linear model 0.34 0.81 0.90 28
non linear model 1.87 0.17 0.37 50
imaging features 2.2 0.012 0.074 94
cognitive features 2 0.033 0.12 53
socio-demographic features and
APOE 1.7 0.093 0.24 49

biomarkers 1 0.24 0.41 19
other features 0.46 0.58 0.75 12
longitudinal 0.22 0.83 0.90 13
ADNI -1.4 0.25 0.41 106
number of subjects -0.018 0.99 0.99 NA
individual intercept 1.2 0.017 0.074 NA

Table S1: Impact of method characteristics on all experiments, using the broadest categories. This table
shows the coefficients obtained using the linear mixed-effect model described in section 2.4.1 on all exper-
iments, the associated p-values and corrected p-values. The last columns shows the number of experiments
using the given characteristic, out of the 120 experiments included in the model. Benjamini-Hochberg proce-
dure was applied to get corrected p-values. coeff.:coefficient of the characteristics in the mixed effect model;
APOE: Apolipoprotein E; ADNI: Alzheimer’s Disease Neuroimaging Initiative; NA: not applicable

33



Characteristic coeff. p-value corrected
p-value

number
of exp.

intercept 78 0 0 NA
linear model -0.79 0.67 0.86 23
generalized linear model 0.2 0.89 0.92 28
non linear model 0.95 0.49 0.73 50
T1 features 0.99 0.21 0.53 77
PET 2.82 6.8∗10−03 0.03 25
white matter hyper-intensities -0.64 0.44 0.72 3
EEG/MEG 3.5 1.1∗10−03 0.01 5
general cognitive features 0.5 0.67 0.86 49
domain targeted cognitive features 2.2 0.051 0.15 25
new or specific cognitive features 1.1 0.4 0.72 2
socio-demographic features and
APOE 2.8 4.7∗10−03 0.028 49

biomarkers 0.84 0.32 0.72 19
other features 0.75 0.37 0.72 12
longitudinal 0.34 0.74 0.88 13
ADNI 0.2 0.9 0.92 106
number of subjects -0.13 0.92 0.92 NA
individual intercept 2.7 0.03 0.11 NA

Table S2: Impact of method characteristics on all experiments, after refining the categories that were signif-
icant in table S1. This table shows the coefficients obtained using the linear mixed-effect model described
in section 2.4.1 on all experiments, the associated p-values and corrected p-values. The last columns shows
the number of experiments using the given characteristic, out of the 120 experiments included in the model.
Benjamini-Hochberg procedure was applied to get corrected p-values. coeff.:coefficient of the characteris-
tics in the mixed effect model; PET: positron emission tomography; EEG: electroencephalography; MEG:
magnetoencephalography; APOE: Apolipoprotein E; ADNI: Alzheimer’s Disease Neuroimaging Initiative;
NA: not applicable
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Characteristic coeff. p-value corrected
p-value

number
of exp.

intercept 78 0 0 NA
linear model 0.5 0.72 0.86 16
generalized linear mode 0.91 0.51 0.68 27
non linear mode 1.7 0.19 0.45 48
imaging features 2.3 3.5∗10−04 2.1∗10−03 87
cognitive features 2.4 3∗10−03 0.012 48
socio-demographic features and
APOE 0.099 0.92 0.96 42

biomarkers 0.6 0.46 0.68 16
other features 0.79 0.26 0.52 9
longitudinal 0.86 0.34 0.59 13
number of subjects 0.074 0.96 0.96 NA
individual intercept 4.1 8.9∗10−03 0.027 NA

Table S3: Impact of method characteristics on ADNI experiments, using the broadest categories. This table
shows the coefficients obtained using the linear mixed-effect model described in section 2.4.1 on the ADNI
experiments, the associated p-values and corrected p-values. The last columns shows the number of experi-
ments using the given characteristic, out of the 106 experiments included in the model. Benjamini-Hochberg
procedure was applied to get corrected p-values. coeff.:coefficient of the characteristics in the mixed effect
model; APOE: Apolipoprotein E; NA: not applicable; ADNI: Alzheimer’s Disease Neuroimaging Initiative
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Characteristic coeff. p-value corrected
p-value

number
of exp.

intercept 77 0 0 NA
linear model 1.9 0.11 0.25 16
generalized linear model 1.4 0.26 0.4 27
non linear model 1.3 0.23 0.4 48
T1 features 1.4 6.3∗10−03 0.022 77
PET 4.6 3.8∗10−09 2.7∗10−08 25
general cognitive features 0.64 0.48 0.56 46
domain targeted cognitive features 2.3 9.1∗10−03 0.026 23
socio-demographic features and
APOE 0.69 0.43 0.53 42

biomarkers 0.18 0.8 0.8 16
other features 0.55 0.37 0.51 9
longitudinal 0.94 0.22 0.4 13
number of subjects 0.73 0.62 0.67 NA
individual intercept 9.9 4.7∗10−03 0.022 NA

Table S4: Impact of method characteristics on ADNI experiments, after refining the categories that were sig-
nificant in table S3. This table shows the coefficients obtained using the linear mixed-effect model described
in section 2.4.1 on the ADNI experiments, the associated p-values and corrected p-values. The last columns
shows the number of experiments using the given characteristic, out of the 106 experiments included in the
model. Benjamini-Hochberg procedure was applied to get corrected p-values. coeff.:coefficient of the char-
acteristics in the mixed effect model; PET: positron emission tomography; APOE: Apolipoprotein E; NA:
not applicable; ADNI: Alzheimer’s Disease Neuroimaging Initiative
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Characteristic coeff. p-value corrected
p-value

number
of exp.

intercept 77 0 0 NA
linear model 2 0.095 0.26 16
generalized linear model 1.4 0.27 0.42 27
non linear model 1.3 0.24 0.41 48
T1 region-based features on se-
lected regions of interest 1.1 0.11 0.26 17

T1 region-based features on the
whole brain 0.71 0.31 0.44 20

T1 voxel-based features 1.7 0.014 0.046 42
amyloid PET 1.5 0.38 0.5 5
FDG PET 4.38 1.5∗10−08 1.3∗10−07 24
general cognitive features 0.31 0.74 0.83 46
domain targeted cognitive features 2.4 9.1∗10−03 0.039 23
socio-demographic features and
APOE 1.1 0.18 0.37 23

biomarkers 0.15 0.83 0.83 16
other features 0.39 0.53 0.64 9
longitudinal 0.96 0.2 0.37 13
number of subjects 0.39 0.8 0.83 NA
individual intercept 11 5∗10−03 0.029 NA

Table S5: Impact of method characteristics on ADNI experiments, after refining the categories that were sig-
nificant in table S4. This table shows the coefficients obtained using the linear mixed-effect model described
in section 2.4.1 on the ADNI experiments, the associated p-values and corrected p-values. The last columns
shows the number of experiments using the given characteristic, out of the 106 experiments included in
the model. Benjamini-Hochberg procedure was applied to get corrected p-values. coeff.:coefficient of the
characteristics in the mixed effect model; PET: positron emission tomography; FDG: fluorodeoxyglucose;
APOE: Apolipoprotein E; NA: not applicable; ADNI: Alzheimer’s Disease Neuroimaging Initiative
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Appendix A.5. Journals and conference proceedings

Table S6 shows the journals and conference proceedings in which more than one
included article has been published, and the associated number of articles.

Journal or conference proceedings Number of included
articles

Journal of Alzheimer’s Disease 12
NeuroImage 11
Lecture Notes in Computer Science 7
PLoS ONE 9
Neurobiology of Aging 6
Neurology 3
Brain Topography 3
Current Alzheimer Research 3
Medical Image Analysis 3
Frontiers in Aging Neuroscience 3
Scientific Reports 2
Frontiers in Neuroscience 2
IEEE Journal of Biomedical and Health Informatics 2
IEEE Transactions on Biomedical Engineering 2
NeuroImage: Clinical 2
Journal of Neuroscience Methods 2

Table S6: Number of included articles published in each journal or conference proceedings. Only the journals
with more than one included article are shown here. The articles taken into account are the one considered
for analysis, and that use a large enough data set.
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