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Non-Reciprocal Scattering in Shear Flow

Charlotte Saverna,1, a) Yves Aurégan,1 and Vincent Pagneux1

Laboratoire d’Acoustique de l’Université du Mans, Le Mans, 72000, France

This work presents a study of scattering phenomena in shear flows and its application to
impedance walls. These flows are described by a dimensionless shear layer thickness and a
mean Mach number. Both transmission through a given shear layer and reflection on an
acoustic treatment are studied. We show that the dimensionless thickness of the shear layer
may be an interesting tool to reach perfect absorption or large lateral displacement of a
Gaussian beam.
c©2019 Acoustical Society of America. [http://dx.doi.org(DOI number)]
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I. INTRODUCTION

Adding flow to an acoustic system is one of the sim-
plest ways to make it non-reciprocal. Recently, it has
been used to obtain sound isolation16 or asymmetric
propagation39, in the broad context of research on unidi-
rectional transmission devices for acoustic waves17,32. It
appears that sound-flow interactions have been studied
for a very long time42, early works being motivated by
the study of the deflection of sound in the wind12. For
instance, in the Theory of Sound, Rayleigh45 uses geo-
metric acoustics to show in which direction the sound is
deflected according to the direction of the wind. Sub-
sequently, varieties of studies were then led on the ef-
fect of shear flows on acoustic propagation, from a sim-
ple flow velocity discontinuity33,34,47, to piece-wise con-
stant profiles1,52 or continuous parallel shear flows23,26,28.
Many other papers deal with the propagation of sound
in parallel shear flow in the presence of walls, either for
ducts44 or for reflection problems5,8,21,25,31,36,40,41. For
impedance walls, it can be noted that analytic expres-
sions exist for very small boundary layers4,18, which tend
to the one given by Ingard25 and Myers37 for vanishing
boundary layers.

Though rarely mentioned as such, non-reciprocity is
obviously an existing feature in most of the previously
cited works. In this paper, we will inspect the effect of
basic parallel shear flows on the non-reciprocity proper-
ties. In the model we use, both the mean Mach num-
ber and the height of the shear layer can be varied inde-
pendently. Though not so realistic, this will allow us to
highlight some key aspects of the influence of shear. We
consider two specific scattering problems: i) reflection
and transmission, when the fluid is moving at two differ-
ent velocities above and under a layer of shear flow with
a linear profile, ii) reflection, when the fluid is flowing
above a lined wall with a shear layer. The first problem
we consider is similar to the ones studied in jet-like con-
figurations by Amiet1 and Jones26, except we consider it
as a scattering problem. This enables us to get a uni-
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FIG. 1. Scheme of the problem of scattering by a layer of

shear flow a) in the case when the incident wave comes from

below the shear layer, b) when it comes from above the shear

layer.

tary relation on the full scattering matrix. In the second
problem, we highlight other non-reciprocal effects such as
unilateral perfect absorption or asymmetric lateral dis-
placement of Gaussian beams. The latter phenomenon is
known as Goos-Hänchen shift2,22 in optics6,10 or Schoch
effect in ultrasounds13,24,50. In the presence of shear flow,
we show it is possible to reach large lateral displacement
due to non-reciprocity.

II. GENERAL SCATTERING PROPERTIES OF A SHEAR

FLOW

We consider the problem of the scattering of a plane
wave by a layer of shear flow between two fluids moving
at constant Mach number M1 and M2, as described in
Fig. 1. We study this problem using a scattering matrix
S linking the incident amplitudes A1,2 to the scattered
amplitudes B1,2.

A. Energy conservation

The propagation equation for a wave in a parallel
flow is given by44:

Dt[(∂
2
x + ∂2y)p− 1

c20
D2
t p]− 2∂yU(y)∂2x,yp = 0, (1)
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where Dt is a convective derivative term, Dt = ∂t+U∂x,
and U(y) is the mean velocity of the flow, such that
M(y) = U(y)/c0, with c0 the constant sound speed. To
study the energy conservation, non-trivial in shear flow,
we consider the pressure p to be a plane harmonic wave,
such that p(x, y, t) = <[P (y)e−i(ωt−αx)], where ω = 2πf
is the circular frequency, α = K sin(θi)/(1 + Mi sin(θi))
is the horizontal component of the wave wave number,
K = ω/c0 is the natural wave number, Mi = M1,2 the
mean Mach in the medium of incidence and θi = θ1,2,
the angle of incidence. Then, we obtain the Pridmore-
Brown44 equation for P :

P ′′ +
2αM ′(y)

K −M(y)α
P ′ + [(K −M(y)α)2 − α2]P = 0, (2)

where the prime notation stands for a derivation with re-
spect to y. The time-averaged energy equation, as given

by Myers38 is:

∇· < I >= − < D >, (3)

with I the energy flux given by I = (ρ0v+ρv0)(c20ρ/ρ0+
v0.v), and D the dissipation, given by D = ρ0v0 · ((∇×
v) × v) − ρv · ((∇ × v0) × v0). In these expressions,
ρ0 is the mean density, ρ is the density variation which
in adiabatic conditions is equal to p/c20, v0 is the mean
velocity field and v is the acoustic particle velocity which
we can evaluate using linearized Euler equations with
flow as:

v =

{
Vx(y)e−i(ωt−αx),

Vy(y)e−i(ωt−αx),
(4)

with: {
ρ0c0Vx(y) = [ αP

K−Mα −
M ′P ′

(K−Mα)2 ].

ρ0c0Vy(y) = −iP ′

K−Mα .
(5)

Substituting these values in the definition of D, we find:

< D >=
MM ′

2(K −Mα)3
=
[
(P ′′ +

2αM ′

K −Mα
P ′ + [(K −Mα)2 − α2]P )P ′∗

]
. (6)

Using Eq. 2, < D >= 0 and Eq. 3 can now be evaluated
to: [

=(PP ′∗)

(K −M(y)α)2

]y2
y1

= 0, (7)

meaning that the energy flux of plane waves is conserved
across the shear layer.

B. Scattering matrix

In the domains of constant velocity, the pressure is
given by:{

P (y) = A1eiβ1y +B1e−iβ1y for y < 0,

P (y) = A2e−iβ2y +B2eiβ2y for y > δ,
(8)

where β2
j = (K −Mjα)2 − α2 (j = 1, 2). Using Eq. 7

and the formalism shown in Fig. 1 we obtain:

β1
(K −M1α)2

|A1|2 +
β2

(K −M2α)2
|A2|2 =

β1
(K −M1α)2

|B1|2 +
β2

(K −M2α)2
|B2|2. (9)

We define a scattering matrix S by:[
B1

B2

]
= S

[
A1

A2

]
=

[
R1 T2
T1 R2

][
A1

A2

]
(10)

where R1 (respectively R2) is the reflection coefficient for
a wave coming from medium 1 (resp. 2) ; T1 (respectively
T2) is the transmission coefficient for a wave coming from
medium 1 (resp. 2). With the correct normalization on

the amplitudes, one can re-write equation 9 as S̃†S̃ = I,
where the † exponent stands for Hermitian transposition,
S̃ is the normalized scattering matrix and I is the 4-by-

4 identity matrix. This last relation is exactly the same
relation as in the no-flow case. The scattering coefficients
then satisfy the four relations:

|R1|2 + β2

β1
(K−M1α
K−M2α

)2|T1|2 = 1,

|R2|2 + β1

β2
(K−M2α
K−M1α

)2|T2|2 = 1,

|R1| = |R2|,
|T1| = β1

β2
(K−M2α
K−M1α

)2|T2|.

(11)

Equations 11 show that the relation between the scat-
tering coefficients is independent of the shear layer thick-
ness. However, their values do depend on it (see appendix
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FIG. 2. (color online) Dispersion relation curve in the (a; b)

plane (a and b being the dimensionless horizontal and vertical

wave numbers), when M0 = 0 (blue circle) ; M0 = 0.5 (red

ellipse) and M0 = 1.2 (yellow hyperbola).

A). In the case when on of the incident waves has zero-
amplitude, Eq. 11 verifies the relation found by Jones26.

C. Dispersion relation and anomalous refraction properties

A useful representation of scattering between two
media of different characteristics is to represent disper-
sion relations in both media in the (a, b) plane (a and b
being respectively the horizontal and vertical component
of the wave number, normalized by K). In our case, we
have the following dispersion relation:

a2j + b2j = (1−Mjaj)
2, (12)

with j the index of the considered medium. In this for-
mulation, we recognize a conic equation, with an eccen-
tricity directly given by |Mj |. Therefore, we will have a
circle of radius 1 in the (a, b) plane if Mj = 0 ; an ellipse
if |Mj | < 1 ; a parabola if |Mj | = 1 ; an hyperbola if
|Mj | > 1. This property is illustrated in Fig. 2. Plotting
such a relation gives access to both the group and the
phase velocity directions for the refracted wave (see Fig.
3). As we study Gaussian beams, the direction of the
group velocity, given by the direction of the normal to
the ellipse at the point (a(θ), b(θ)) will have a particular
interest as it will give the apparent direction of the beam.
The beams are built by summing weighed plane waves as
follows:

p(x, y) =

∫ +∞

−∞
e−(α−α0)

2/w2

p(α, x, y)dα, (13)

with α0 the horizontal wave number in the (imposed)
main direction of the beam, and w the waist of the beam.
In Fig. 3, these beams are represented for the propa-
gation from a medium 1 at rest to a medium 2 where
M2 = 0.4. By looking at the ellipses in the (a, b) plane,
and since α is constant between the two media, we can
see that for some incidence, θ1 and θ2 can be of oppo-
site sign. This result can be interpreted as an equivalent

c)

FIG. 3. (color online) Beams coming from medium 1 with an

incident angle a) θ = −0.2 or b) θ = 0.2. c) represents the

dispersion relations in the plane (ai, bi), with Mach numbers

M1 = 0 and M2 = 0.4. Conservation of a at the interfaces

allows us to find the direction of the phase velocity by find-

ing the point of the ellipse with abscissa a. The normal to

the ellipse in this point then gives the direction of the group

velocity (i.e. the visible direction of the beam). Green items

are linked to medium 1 and red items to medium 2. Solid ar-

rows stand for group velocity direction and dashed arrows for

phase velocity. In medium 1, only one arrow is represented as

phase and group velocity are co-linear in a medium at rest.

negative refractive index, analog to what is observed for
electromagnetic waves in left handed materials49 and in
hyperbolic meta-materials9,19,27. The shear layer thick-
ness will influence the value of the moduli of R and T but
not the direction of the transmitted beam which only de-
pends on the Mach numbers.

III. REFLECTION ON AN IMPEDANCE WALL

We now consider an acoustically treated wall with
uniform admittance Y0 placed in y = 0 with a shear flow
(see Fig. 4). Y0 is such that its imaginary part stands
for the reactance of the wall, and its real part stands for
the resistance of the wall (<(Y0) < 0 means that there
are losses at the wall, <(Y0) > 0 means that there is gain
at the wall).
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FIG. 4. Geometry of the problem for the reflection of a plane

on an admittance wall.

A. Energy conservation

We know that Eq. 7 is still valid, and that the pres-
sure field for y > δ is such that:

P (y) = Ae−iβy +Be+iβy, (14)

where β2 = (K−M0α)2−α2. Now, due to the impedance
wall, there is a mixed boundary condition involving the
admittance Y0 at y = 0:

P ′(0) = iKY0P (0). (15)

The scattering problem that we consider is only with re-
flection and the energy flux conservation 7 applied be-
tween y1 = 0 and y2 = δ leads to:

|R|2 = 1 +
(α2 + β2)

Kβ
|P (0)|2<(Y ). (16)

As long as the flow is subsonic, one can check that β
is positive. Therefore, the sign of |R|2 − 1 will only de-
pend on the sign of <(Y ), whatever the mean flow velocity
or the shear layer thickness. In particular, as noted by
Campos7, if the wall is purely reactive (<(Y ) = 0) then
the reflection will always be perfect i.e. |R| = 1.

B. Non-reciprocal perfect absorption

The computation of R will be achieved numerically
using the method detailed in appendix B. The addition
of flow leads to non-reciprocity testified in the value of
the absorption coefficient, defined as A = 1 − |R|2. In-
deed, an incoming plane wave will not be absorbed to the
same extend at the wall depending on whether it comes
in the direction of the flow or against the flow. This non-
reciprocal property is highlighted in Fig. 5, for a liner of
admittance Y = 0.1i−0.1. This figure shows clearly that
varying Kδ allows to reach high absorption for one inci-
dence. This is a typical behaviour as long as the shear
layer thickness is large enough. One can also remark
on this figure that the higher the Mach number and the

FIG. 5. (color online) Value of the absorption coefficient A

as a function of θ for several flows, described by their mean

Mach number M0 and the height of their shear layer δ for a

liner of admittance Y = 0.1i− 0.1.

a) b)

FIG. 6. (color online) Value of the absorption coefficient A

for a liner of admittance Y = 0.1i− 0.1 as a function of a) θ

and Kδ for M0 = 0.1, b) θ and M for Kδ = 30.

height of the shear layer, the more non-reciprocal the sys-
tem becomes. For a clearer view of this asymmetry, we
plot in Fig. 6 the value of the absorption coefficient as
a function of both θ and Kδ and θ and M0. A clear dif-
ference can be noted whether incident waves come from
the left (in the direction of the flow) or from the right
(against the flow). In particular, what is striking on Fig.
6 is that, above a certain thickness of shear layer, waves
coming against the flow with a wide angle are fully re-
flected. This could be explained by a strong refraction
of the rays, such that the incident wave does not see the
effects of the liner before being pushed back towards the
”sky”. This corresponds to the ”turning points”, evo-
qued by Rienstra48. On the other side, waves coming
with the flow (θ > 0) with an almost grazing incidence
can either be perfectly reflected or perfectly absorbed de-
pending on the shear layer thickness. The quasi-periodic
phenomenon which appears is related to resonance phe-
nomena inside the shear layer. For the previous Mach
number, for small incidence angles, the absorption does
not vary a lot. Therefore, we look at the variation of A
with respect to both θ and M0 to see if the peak absorp-
tion can be displaced towards normal incidence for higher
Mach numbers (see Fig. 6). The position of the near-to-
perfect absorption for negative θ then depends linearly
on M0. Using numerical simulations, we want to design
a system which would enhance the absorption of a given
liner by adding a specific flow above it, so that it reaches
perfect absorption, or zero reflection. The admittance of
the liner is fixed at Y0 = −0.1 + 0.1i, and the incident
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FIG. 7. (color online) Value of A as a function of M0 and

Kδ for waves coming either in the direction of the flow (case

a) or counter-flow (case b). Black lines show the values of

M0 and Kδ for which <(R) = 0 (dashed lines) or =(R) = 0

(solid lines). It appears that we can find one crossing point,

corresponding to |R| = 0 (i.e. A = 1) for waves coming

counter-flow only, for Kδ = 69.68 and M0 = 0.355.

angle such that |θ| = π
6 . Without flow, in such a situa-

tion A ≈ 0.36 (see Fig. 8). In order to get a physically
consistent simulation, it is not the direction of the phase
velocity which is held constant, but the direction of the
group velocity θg. A relation between θ and θg can be
found using the dispersion relation (as shown in Fig. 2):

θg = arctan[tan(θ) +
M0

cos(θ)
], (17)

or θ = arcsin[sin(θg) cos(θg)
√

1
cos2(θ) −M

2
0 −

M0 cos2(θg)]. We now look at the variations of |R|
as both M0 and Kδ vary for θg = π/6. In Fig. 7,
an optimum is found, leading to no reflection when
θg = −π/6 (counter-flow propagation). We precisely
read it as being linked to the values M0 = 0.355 and
Kδ = 69.68. Non-reciprocity can also be pointed out
here, as there is no way to reach perfect absorption
if the opposite incidence is considered. We can check
that theses values are also associated with an optimal
absorption in terms of incidence by plotting A as a
function of θ without flow or with a flow corresponding
to the optimum previously identified. Figure 8 gives
us this confirmation: the absorption (the absorption
coefficient is 0.36 without flow) can be enhanced all the
way to perfect absorption with the right flow parameters.

Let us now illustrate the non-reciprocal perfect ab-
sorption with Gaussian beams following either upstream
or downstream propagation. The results are plotted in
Fig. 9. The reflection becomes highly non-reciprocal
when flow is added: perfect absorption here is only
achieved for waves coming counter-flow. Waves travel-
ing in the direction of the flow actually encounter more
reflection than they did in a medium at rest on the same
liner (as pointed in Fig. 8). This behaviour is in agree-
ment with the refraction of acoustic rays in shear flow:
rays are pushed towards the regions of low local wave
speed, consequently they are trapped near the wall when

FIG. 8. Value of A as a function of θg with and without flow

(M0 = 0.355), for Y = −0.1 + 0.1i and Kδ = 69.68.

FIG. 9. (color online) Pressure field for an incident Gaussian

beam coming with a constant incident angle θg = π
6

between

its group velocity and the normal to the wall, either from the

left (cases a and c) or from the right (cases b and d) on a liner

of admittance Y0 = −0.1 + 0.1i in a medium at rest (cases

a and b) or in which we impose a flow with Mach number

M0 = 0.355 and a boundary layer such that Kδ = 69.68. Red

arrows show the direction of the group velocity, blue arrows

show the direction of the flow.

propagating upstream and pushed towards the sky when
propagating downstream.

C. Non-reciprocal Goos-Hänchen shift

When the reflection implies an incidence-depending
phase shift, Gaussian beams are shifted along the wall.

J. Acoust. Soc. Am. / 29 October 2019 5
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FIG. 10. Scheme of the lateral shift phenomenon for an in-

cident beam. d is the shift along the wall, d′ is the shift

perpendicularly to the direction of the beam.

This phenomenon is called Goos-Hänchen shift22, and
can be quantified using Artmann’s formula2:

d = −∂φR
∂α

= − (1 +M sin(θ))2

K cos(θ)

∂φR
∂θ

, (18)

where φR is the angle of the reflection coefficient, and
d is the lateral shift, as displayed in Fig. 10. We also
define the displacement of the beam perpendicularly to
its direction of propagation: d′ = cos(θ)d.

1. Without flow

We know that, without flow, the reflection coefficient
is given by:

R =
cos(θ) + Y0
cos(θ)− Y0

. (19)

In the following, Y0 = Y1 + iY2. Then its angle φR is
given by:

φR = arctan(
Y2

cos(θ) + Y1
) + arctan(

Y2
cos(θ)− Y1

). (20)

In the case of a lossless wall, Y1 = 0, Eq. 20 reduces to

φR = 2 arctan

(
Y2

cos(θ)

)
. (21)

We can then compute the value of d′, and we get:

Kd′ = − 2Y2 sin(θ)

cos2(θ) + Y 2
2

. (22)

By differentiating Eq. 22 with respect to Y2, we find a
maximum displacement of the beam Kd′max = ± tan(θ)
for Y2 = ± cos(θ). Thus, it appears that, for lossless
walls, the value of Kd′max is small for small incident an-
gles. Nevertheless, it is possible to make this limitation
disappear by adding losses to the liner. Indeed, in the
case when Y1 6= 0, we find that Kd′ can take much larger
values. With losses (Y1 6= 0), Eq. 22 takes the form:

Kd′ = −Y2 sin(θ)
cos2(θ) + |Y |2

[(cos(θ) + Y1)2 + Y 2
2 ][(cos(θ)− Y1)2 + Y 2

2 ]
(23)

where, for Y1 = ± cos(θ) and Y2 is close to zero, the de-
nominator can go to zero leading to largeKd′. This result
is also the one leading to perfect absorption. Therefore,
large lateral shift is associated with large absorption coef-
ficient. This phenomenon is easily understandable if one
is to look at the phase portrait of the reflection coefficient
when it varies with θ (see Fig. 11): phase variation of R
is enhanced near zero reflection.

2. With Flow

When flow is added, the Goos-Hänchen displacement
has to be computed numerically. It is then interesting to
study the impact of both the flow and the wall admit-
tance on the beam displacement. Results shown in Fig.
12 illustrate that the effect of the flow is predominant.
Indeed, the two maximal values of displacement visible
without flow for θ ≈ ±π/6 are still visible when the flow
is added but are negligible compared to the effect of the
flow with a much larger displacement at θ ≈ −π/4. Re-
mark that this displacement is comparable to the large
displacement of beams observed in the case of reflection
on multi-layered materials in optics11,15,50.

As in the previous section, where we illustrated non-
reciprocal perfect absorption, Gaussian beams can nicely
illustrate the Goos-Hänchen effect (Fig. 13). By choos-
ing the angle for which the flow has the most visible ef-
fect (θ = −0.89), we see a large lateral shift. Besides,
a strong non-reciprocal effect is demonstrated by taking
the opposite angle.

IV. CONCLUSION

In the global context of acoustics with flow we have
shown that the presence of a shear layer leads to non-
reciprocal effects whose origin can be found in the known
effects due to convection. We have illustrated some of
these phenomena by considering diffraction by a shear
layer that can lead to negative refraction, as well as ab-
sorption by an acoustic material and lateral displacement
of a beam along this material which both depend on the
direction of propagation relatively to the flow. In this
paper, we have only considered homogeneous problems
along the direction of flow. Interesting new effects ap-
pear as soon as inhomogeneities are considered along the
flow direction.

6 J. Acoust. Soc. Am. / 29 October 2019
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Fast phase 
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a) b)

FIG. 11. Phase portrait of R as θ varies from −π/2 to

+π/2, with M0 = 0.23, Kδ = 15.04 and a) Y0 = 0.1i, b)

Y0 = 0.1i − 0.2. When losses are added on the wall and in

a situation where perfect absorption can be achieved, the re-

flection coefficient can cross the zero point, and therefore ex-

perience a sudden phase jump of amplitude π, resulting in a

high phase gradient and therefore a large lateral displacement

of the beam.

FIG. 12. Value of d′/δ as a function of θg for a reflection

either on a hard wall or with an acoustic treatment, with and

without flow. The flow used here is such that M0 = 0.3 and

Kδ = 50.

FIG. 13. (color online) Pressure field for Gaussian beam with

a constant main direction θg = ±0.877, reflecting on a hard

wall, with M0 = 0.3 and Kδ = 30. In case a), the beam comes

in the direction of the flow and is slightly displaced backwards

in case b), the beam comes against the direction of the flow

and is widely displaced forwards. The black dashed line shows

the height of the shear layer.

APPENDIX A: NUMERICAL DETERMINATION OF

THE SCATTERING COEFFICIENTS IN A

TRANSMISSION PROBLEM

To find the scattering coefficients, we need to solve
Eq. 2. For this, we define Q:

Q(y) =
P ′(y)

KP (y)
. (A1)

Then Eq. 2 can be re-written as a first-order differential
equation for Q, and becomes a Ricatti equation. More-
over, to make its integration easier, a dimensionless vari-
able s is introduced, such that s = y

δ . The integration
will then be done on [0, 1]. Finally,the equation to solve
is:

Q′(s) = −Kδ[Q(s)2+(1−M0as)
2−a2]− 2M0a

1−M0as
Q(s),

(A2)
where M0 = M2−M1 and a = α

K . Solving for the whole
scattering matrix requires the study of two cases:

• if the incident wave comes from medium 1, A2 is
null, and Eq. 8 gives us the following boundary
condition in s = 1:

Q(1) = ib2, (A3)

where b2 = β2/K. Equation A2 could have be
solved with a common numerical method (such as a
Runge-Kutta algorithm), but large heights of shear
layer resulted in divergences in the result. Thus,
we implemented a Magnus-Moebius scheme (as de-
scribed in43) for s going from 1 to 0. In order to do
so, it is necessary to go back to Eq. 2 which, when
written on s, becomes:

P ′′+
2a(M2 −M1)

1− [M1 + (M2 −M1)s]a
P ′+(Kδ)2[((1−M1+(M2−M1)s)a)2−a2]P = 0.

(A4)
When put under a matrix form, Eq. A4 becomes:

J. Acoust. Soc. Am. / 29 October 2019 7



ds

(
P

P ′

)
=

[
0 1

−(Kδ)2[((1−M1 + (M2 −M1)s)a)2 − a2] − 2a(M2−M1)
1−[M1+(M2−M1)s]a

](
P

P ′

)
. (A5)

The matrix involved in Eq. A5 will later be de-
noted M(s) Discretizing the domain in N+1 points
(intervals of size h = 1/N) allows us to apply the
following scheme :(

P (nh)

P ′(nh)

)
= eHn

(
P ((n+ 1)h)

P ′((n+ 1)h)

)
, (A6)

where Hn = −hM[(n + 1/2)h]. Note that the ex-
ponential in Eq. A6 is a matrix exponential. At
each iteration, it is possible to compute Q(nh) from
Q((n+ 1)h):

Q(nh) =
E2,1

Kδ + E2,2Q((n+ 1)h)

E1,1 +KδE1,2Q((n+ 1)h)
, (A7)

where the Ei,j are the coefficients of eHn . After N
iterations, we can access R1 via Eq. 8, and we find:

R1 =
ib1 −Q(0)

ib1 +Q(0)
, (A8)

where b1 = β1

K .

• if the incident wave comes from medium 2, A1 is
null and we can now write a boundary condition in
s = 0:

Q(0) = −ib1. (A9)

Once again, Eq. A5 is solved iteratively for s going
from 0 to 1. This time, we have:(

P ((n+ 1)h)

P ′((n+ 1)h)

)
= e−Hn

(
P (nh)

P ′(nh)

)
. (A10)

Thus:

Q((n+ 1)h) =
E2,1

Kδ + E2,2Q(nh)

E1,1 +KδE1,2Q(nh)
, (A11)

and we can access R2 using:

R2 =
ib2 +Q(1)

ib2 −Q(1)
e−2iKδb2 . (A12)

The determination of transmission coefficients T1 and T2,
now that Q is known in [0, 1], requires to integrate Eq.
A4 one more time, but in the opposite direction. Here
also, we will need to study the two cases of upward and
downward traveling incident waves.

• if the incident wave comes from medium 1, we know
from Eq. 8 that the boundary condition in s = 0
is:

P̃ (0) = 1 +R1, (A13)
where P̃ is the y-dependant component of the pres-
sure field normalized by the incident amplitude A1.
Then, by solving for P̃ on [0, 1] using the scheme
in Eq. A10, we can access T1 using:

T1 = P̃ (1)e−iKδb2 . (A14)

• if the incident wave comes from medium 2, then
this time the boundary condition is:

P̃ (1) = e−iKδb2 +R2eiKδb2 , (A15)

where P̃ (s) is normalized by A2. Then, by solving

for P̃ on [1, 0] using the scheme in Eq. A6, we can
access T2 using:

T2 = P̃ (0). (A16)

The whole matrix can then be reconstituted. It turns
out from Eq. A2 that three parameters will influence the
values of the scattering coefficients: the dimensionless
width of the shear layer Kδ, the relative Mach number
M2−M1 and the direction of the incident wave given by
the horizontal wave number a.

APPENDIX B: NUMERICAL DETERMINATION OF R IN

A REFLECTION PROBLEM

In order to determine R, we apply the same method
as for the transmission problem : solving Eq. A2 for s in
[0; 1], but this time the boundary condition will be given
by the wall admittance:

Q(0) = iY0. (B1)

Here also, the resolution is led to its end using a Magnus-
Moebius scheme30 of the second order as described in43.
In order to compute the solution, we go back to Eq. A5,
and after writing P and P ′ in discrete forms, we get:

(
P ((n+ 1)h)

P ′((n+ 1)h)

)
= eHn

(
P (nh)

P ′(nh)

)
=

[
E1,1 E1,2

E2,1 E2,2

](
P (nh)

P ′(nh)

)
, (B2)
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where Hn = hM[(n+ 1/2)h]. Thus:

Q((n+ 1)h) =
E2,1

Kδ + E2,2Q(nh)

E1,1 +KδE1,2Q(nh)
. (B3)

R is finally given by:

R =
ib+Q(1)

ib−Q(1)
e−2ibKδ. (B4)
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