K. Abe, A. Ueki, Y. Ohtaki, N. Kaku, K. Watanabe et al., Anaerocella delicata gen. nov., sp. nov., a strictly anaerobic bacterium in the phylum Bacteroidetes isolated from a methanogenic reactor of cattle farms, J. Gen. Appl. Microbiol, vol.58, pp.405-412, 2012.

M. J. Aguerre, M. A. Wattiaux, J. M. Powell, G. A. Broderick, and C. Arndt, Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion, J. Dairy Sci, vol.94, pp.3081-3093, 2011.

A. , Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, 1999.

K. Atarashi, T. Tanoue, T. Shima, A. Imaoka, T. Kuwahara et al., Induction of colonic regulatory T cells by indigenous clostridium species, Science, vol.331, pp.337-341, 2011.

A. Bach, I. Guasch, G. Elcoso, F. Chaucheyras-durand, M. Castex et al., Changes in gene expression in the rumen and colon epithelia during the dry period through lactation of dairy cows and effects of live yeast supplementation, J. Dairy Sci, vol.101, pp.2631-2640, 2018.

A. Bach, C. Iglesias, and I. Busto, Technical note: A computerized system for monitoring feeding behavior and individual feed intake of dairy cattle, J. Dairy Sci, vol.87, pp.73565-73566, 2004.

A. Bach, C. Iglesias, M. Devant, A. Bach, I. K. Yoon et al., Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation, Anim. Feed Sci. Technol, vol.136, issue.99, pp.75219-75226, 1999.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. B, vol.57, pp.289-300, 1995.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

T. Castro-carrera, P. G. Toral, P. Frutos, N. R. Mcewan, G. Hervás et al., Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae, J. Dairy Sci, vol.97, pp.1661-1669, 2014.

A. Chao, Non-parametric estimation of the number of classes in a population, Scand. J. Stat, vol.11, pp.265-270, 1984.

F. Chaucheyras-durand, G. Fonty, G. Bertin, M. Théveniot, and P. Gouet, Fate of Levucell@ SC I-1077 yeast additive during digestive transit in lambs, Reprod. Nutr. Dev, vol.38, pp.275-280, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00900206

F. Chaucheyras-durand, N. D. Walker, and A. Bach, Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future, Anim. Feed Sci. Technol, vol.145, pp.5-26, 2008.

T. Clavel, D. Borrmann, A. Braune, J. Doré, and M. Blaut, Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans, Anaerobe, vol.12, pp.140-147, 2006.

M. Cotta and R. Forster, The family Lachnospiraceae, including the genera Butyrivibrio, Lachnospira and Roseburia. The Prokaryotes, vol.4, pp.1002-1021, 2006.

M. B. De-ondarza, C. J. Sniffen, L. Dussert, E. Cheveaux, J. Sullivan et al., Case study: Multiple-Study analysis of the effect of live yeast on milk yield, milk component content and yield, and feed efficiency, Prof. Anim. Sci, vol.26, issue.15, pp.30664-30665, 2010.

B. A. Dehority, Rumen Microbiology, 2003.

B. Delgado, A. Bach, I. Guasch, C. González, G. Elcoso et al., Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle, Sci. Rep, vol.9, p.11, 2019.

S. Deusch, A. Camarinha-silva, J. Conrad, U. Beifuss, M. Rodehutscord et al., A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments, Front. Microbiol, vol.8, p.1605, 2017.

A. S. Devlin and M. A. Fischbach, A biosynthetic pathway for a prominent class of microbiota-derived bile acids, Nat. Chem. Biol, vol.11, pp.685-690, 2015.

T. J. Devries and E. Chevaux, Modification of the feeding behavior of dairy cows through live yeast supplementation, J. Dairy Sci, vol.97, pp.6499-6510, 2014.

R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, and R. Knight, UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, vol.27, pp.2194-2200, 2011.

S. C. Fernando, H. T. Purvis, F. Z. Najar, L. O. Sukharnikov, C. R. Krehbiel et al., Rumen microbial population dynamics during adaptation to a highgrain diet, Appl. Environ. Microbiol, vol.76, pp.7482-7490, 2010.

B. E. Fomenky, J. Chiquette, N. Bissonnette, G. Talbot, P. Y. Chouinard et al., Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves, 2017.

, Anim. Feed Sci. Technol, vol.234, pp.151-161

C. W. Forsberg and B. A. White, Polysaccharide degradation in the rumen and large intestine. Pages 319-379 in Gastrointestinal Microbiology, 1997.

D. E. Fouts, S. Szpakowski, J. Purushe, M. Torralba, R. C. Waterman et al., Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen, PLoS One, vol.7, 2012.

J. K. Goodrich, J. L. Waters, A. C. Poole, J. L. Sutter, O. Koren et al., Human genetics shape the gut microbiome, Cell, vol.159, pp.789-799, 2014.

S. C. Harris, S. Devendran, C. Méndez-garcía, S. M. Mythen, C. L. Wright et al., Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243, Gut Microbes, vol.9, pp.523-539, 2018.

G. Henderson, F. Cox, S. Ganesh, A. Jonker, W. H. Young-;-p et al., Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range, Sci. Rep, vol.5, p.14567, 2015.

E. Humer, K. Ghareeb, H. Harder, E. Mickdam, A. Khol-parisini et al., Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis, J. Dairy Sci, vol.98, pp.8788-8799, 2015.

S. N. Jenkins, I. S. Waite, J. Mansfield, J. C. Kim, and J. R. Pluske, Relationships between diets different in fibre type and content with growth, Escherichia coli shedding, and faecal microbial diversity after weaning, Anim. Prod. Sci, vol.55, p.1451, 2015.

J. Y. Jeong, H. D. Park, K. H. Lee, H. Y. Weon, and J. O. Ka, Microbial community analysis and identification of alternative host-specific fecal indicators in fecal and river water samples using pyrosequencing, J. Microbiol, vol.49, pp.585-594, 2011.

K. A. Jewell, C. A. Mccormick, C. L. Odt, P. J. Weimer, and G. Suen, Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency, Appl. Environ. Microbiol, vol.81, pp.4697-4710, 2015.

Y. Jiang, I. M. Ogunade, K. G. Arriola, M. Qi, D. Vyas et al., Effects of the dose and viability of Saccharomyces cerevisiae. 2. Ruminal fermentation, performance of lactating dairy cows, and correlations between ruminal bacteria abundance and performance measures, J. Dairy Sci, vol.100, pp.8102-8118, 2017.

Y. Jiang, I. M. Ogunade, S. Qi, T. J. Hackmann, C. R. Staples et al., Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed 6198 BACH ET AL, Journal of Dairy Science, vol.102, issue.7, 2017.

, by Illumina MiSeq sequencing and quantitative PCR, J. Dairy Sci, vol.100, pp.2016-11263

J. P. Jouany, Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows, Anim. Reprod. Sci, vol.96, pp.250-264, 2006.

M. Kim, J. Kim, L. A. Kuehn, J. L. Bono, E. D. Berry et al., Investigation of bacterial diversity in the feces of cattle fed different diets, J. Anim. Sci, vol.92, pp.683-694, 2014.

A. Klindworth, E. Pruesse, T. Schweer, J. Peplies, C. Quast et al., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res, vol.7, 2013.

Y. Kong, R. Teather, and R. Forster, Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages, FEMS Microbiol. Ecol, vol.74, pp.612-622, 2010.

F. S. Lima, G. Oikonomou, S. F. Lima, M. L. Bicalho, E. K. Ganda et al., Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows, Appl. Environ. Microbiol, vol.81, pp.1327-1337, 2015.

P. J. Mcmurdie and S. Holmes, phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS One, vol.8, 2013.

M. Morotomi, F. Nagai, and Y. Watanabe, Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov, Int. J. Syst. Evol. Microbiol, vol.62, pp.144-149, 2012.

T. G. Nagaraja and E. C. Titgemeyer, Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook, J. Dairy Sci, vol.90, pp.17-38, 2007.

. Nrc, Nutrient Requirements of Dairy Cattle. 7th rev, 2001.

K. Perea, K. Perz, S. K. Olivo, A. Williams, M. Lachman et al., Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestinelocated microbiota, J. Anim. Sci, vol.95, pp.2585-2592, 2017.

R. M. Petri, T. Schwaiger, G. B. Penner, K. A. Beauchemin, R. J. Forster et al., Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge, PLoS One, vol.8, 2013.

D. W. Pitta, S. Kumar, B. Vecchiarelli, D. J. Shirley, K. Bittinger et al., Temporal dynamics in the ruminal microbiome of dairy cows during the transition period, J. Anim. Sci, vol.92, pp.4014-4022, 2014.

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucleic Acids Res, vol.41, pp.590-596, 2013.

. R-core-team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2018.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

J. B. Russell and D. B. Dombrowski, Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture, Appl. Environ. Microbiol, vol.39, pp.604-610, 1980.

P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann et al.,

J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. Van-horn et al., Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol, vol.75, pp.7537-7541, 2009.

M. V. Selma, D. Beltrán, R. García-villalba, J. C. Espín, F. A. Tomás-barberán et al., Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species, Food Funct, vol.5, pp.70-82, 1996.

D. M. Stevenson and P. J. Weimer, Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR, Appl. Microbiol. Biotechnol, vol.75, pp.165-174, 2007.

L. Sun, M. Toyonaga, A. Ohashi, N. Matsuura, D. M. Tourlousse et al.,

. Sekiguchi, Isolation and characterization of Flexilinea flocculi gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi, Int. J. Syst. Evol. Microbiol, vol.66, pp.988-996, 2016.

M. Terré, G. Maynou, A. Bach, and M. Gauthier, Effect of Saccharomyces cerevisiae CNCM I-1077 supplementation on performance and rumen microbiota of dairy calves, Prof. Anim. Sci, vol.31, pp.153-158, 2015.

M. Thrune, A. Bach, M. Moreno, M. D. Stern, and J. G. Linn, Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows, Livest. Sci, vol.124, pp.261-265, 2009.

E. F. Tigchelaar, M. J. Bonder, S. A. Jankipersadsing, J. Fu, C. Wijmenga et al., Gut microbiota composition associated with stool consistency, Gut, vol.65, pp.540-542, 2016.

P. J. Van-soest, J. B. Robertson, and B. A. Lewis, Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition, J. Dairy Sci, vol.74, issue.91, pp.78551-78553, 1991.

T. V?trovský and P. Baldrian, The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses, PLoS One, vol.8, p.57923, 2013.

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol, vol.73, pp.5261-5267, 2007.

S. L. Westcott and P. D. Schloss, OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units, MSphere, vol.2, pp.73-90, 2017.

C. J. Yeoman, S. L. Ishaq, E. Bichi, S. K. Olivo, J. Lowe et al., Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract, Sci. Rep, vol.8, p.3197, 2018.

A. Zened, S. Combes, L. Cauquil, J. Mariette, C. Klopp et al., Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets, FEMS Microbiol. Ecol, vol.83, pp.504-514, 2013.

M. Zhou, E. Hernandez-sanabria, and L. L. Guan, Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies, Appl. Environ. Microbiol, vol.75, pp.6524-6533, 2009.

Z. Zhu, L. Kristensen, G. F. Difford, M. Poulsen, S. J. Noel et al., Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows, J. Dairy Sci, vol.101, pp.2017-14366, 2018.