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Abstract 

The morphology of zeolite W (MER topology) synthesized from Hydrated Silicate Ionic 

Liquids (HSILs) shows a distinct temperature dependence, reflected in a fundamental 

difference in the underlying crystal growth mechanism as revealed by Atomic Force 

Microscopy (AFM). Zeolite W crystals obtained at 90 °C develop in a highly supersaturated 

solution through birth and spread growth, whereas synthesis at 175 °C results in elongated, 

spiral grown zeolite W particles. Supersaturation was measured through the concentration of 

dissolved aluminate, being the limiting species. The evolution of the aluminum concentration 

during crystallization at different temperatures was monitored with 27Al Nuclear Magnetic 

Resonance (NMR) spectroscopy. Supersaturation conditions determine the nucleation rate, 

the prevailing crystal growth mechanism, and resulting crystal morphology. 
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1. Introduction 

 Nucleation and growth of zeolite crystals are complex processes and have been a 

topic of extensive research over de past decades [1]. Zeolite structures have long been 

considered as ordered compilations of secondary building units (SBUs). Zeolite SBUs 

are defined as arrangements of atoms represented by a graph, with tetrahedrally 

coordinated atoms (T-atoms) as nodes and siloxane bonds between them as links [2]. 

A recent development in crystal description is however the construction of the 

topology from tiles rather than graphs. As its main advantage the tiling representation 

offers a simple criterion for accepting an arrangement of building units as a valid 

crystal: crystals are compact tilings without any voids. This concept has led to the 

definition of natural building units (NBUs) [3]. NBUs represent a variety of polyhedra, 

ranging from large cage-like structures and channel segments to small units such as 

cubes and hexagonal prisms, which allow an unambiguous description of the crystal 

space [2, 3]. In contrast with SBUs, NBUs are sharing faces rather than corners. Each 

face of a unit is consequently shared between two tiles. Upon dissolution, the most 

fragile bonds in a structure are broken so that discrete units are removed from the 

surface. This implies dissolution does not involve a statistical removal of arbitrary 

“pieces”, but rather the extraction of discrete well-defined species, so that the 

remaining surface ideally consists of closed tiles only [4, 5]. This process can be 

observed with ‘contact-mode’ Atomic Force Microscopy (AFM), revealing the 

relevance of NBUs in describing a zeolite crystal. 
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 The potential of ‘contact-mode’ AFM for investigating the growth of zeolites was initially 

demonstrated by Brent et al. (2008) for zeolite L [6] and by Meza et al. (2007) for zeolite A 

[5]. Very recently, Anderson et al. (2017) extended this approach and combined the 

information on prevailing growth patterns and features on the crystal surface with other 

techniques to gain deeper insight in the crystal growth. This led to the construction of a model 

capable of accurately predicting the growth of a wide range of zeolite crystals. The option to 

simultaneously simulate crystal habit and surface topology provides an unprecedented tool 

to investigate crystallization [7]. 

Despite the wealth of information obtained from AFM, molecular understanding of zeolite 

growth can only be obtained by matching the crystal growth with the chemistry occurring in 

solution and at the crystal surface. Here, zeolite synthesis from Hydrated Silicate Ionic 

Liquids (HSILs), first reported by Taulelle’s group (2014), offers valuable opportunities [8, 

9]. The homogeneity of the HSIL and the absence of a gel phase enable identification of 

speciation in the liquid phase via liquid-state high resolution Nuclear Magnetic Resonance 

(NMR) spectroscopy, optical and X-ray scattering techniques as well as Electrochemical 

Impedance Spectroscopy (EIS) [8, 10-12]. This allows the characterization of crystal growth 

on a molecular scale and the investigation of less explored synthesis parameters such as 

zeolite solubility products and supersaturation conditions [13-15]. The absence of a gel phase 

also allows to quench syntheses at different points in time and to recover well-defined 

separate crystals next to the exact supernatant composition. Preparation of an HSIL entails 

the hydrolysis of tetraethyl orthosilicate (TEOS) in an aqueous KOH solution and removal 

of the upper water-ethanol layer after spontaneous phase separation [8]. Addition of 

aluminum as e.g. alkali-aluminate to the HSIL results in a clear, homogeneous synthesis 
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mixture yielding various zeolite frameworks, among them extra-large zeolite W crystals 

depending on the composition of the precursor mixture, temperature and time [8, 9]. HSIL 

based synthesis, similar to zeolite transformation in inorganic media [16, 17], precludes the 

need for organic structure directing agents (SDAs), which asides the absence of a gel phase 

is a further asset of this method. 

Zeolite W§ (framework code MER), also referred to as synthetic merlinoite, is a small-

pore zeolite with a channel system consisting of three-dimensional, interconnected 8-

membered ring (8MR) pores§§ as illustrated in Figure 1 [18, 19]. Natural merlinoite was first 

discovered in 1977 in the cracks of a mineral deposit near Rieti, Italy [20]. Surprisingly, its 

synthetic counterpart had already been synthesized by Breck in 1953 and was designated 

zeolite W [21-23].  

 

 

 

 

 

 

 

Figure 1. The MER framework structure of zeolite W can be assembled from three natural tiles: t-

opr (red), t-pau (green) and t-ste (blue). 
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Zeolite W (Figure 1) has hitherto remained absent from crystal growth studies, most likely 

because of its typically small crystal size and the heavily aggregated nature of available 

synthetic samples. However, large MER crystals can be obtained using HSILs and allow the 

detailed study of habit and mechanism of growth [8]. 

 

2. Experimental 

In this work, large zeolite W crystals were grown from a 0.5 SiO2 : 0.013 Al2O3 : 

1 KOH : 8 H2O synthesis mixture which was prepared according to the procedure described 

by Haouas et al. (2014) [8]. The synthesis mixture was transferred to a Teflon-lined stainless 

steel autoclave and heated at 90, 150 and 175 °C for 48 hours in a tumbling oven. The 

recovered solid phase was characterized with X-ray Diffraction (XRD), 27Al solid state 

Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM) 

and Atomic Force Microscopy (AFM). The corresponding supernatants were analyzed with 

27Al liquid state NMR. 

X-ray diffraction patterns were recorded on a STOE STADI P Combi diffractometer 

with focusing Ge(111) monochromator (CuKα1 radiation,  = 0.154 nm) with high 

throughput set-up in transmission geometry and with 140°-curved image plate position 

sensitive detector (IP PSD) from 0 to 62.5° 2 θ. 

Solid-state MAS NMR investigation into the molecular structure of the zeolite W samples 

was performed at 298 K (BCU II) using a standard bore Bruker AVANCE III HD 

spectrometer with a H/X CP-MAS probe operating at 300.13 MHz for 1H and 78.172 MHz 

for 27Al. Data collection was performed at spinning speeds of 14 kHz, using a π/12 flip angle, 

a repetition delay of 2 s and chemical shift referencing with respect to a 0.5 M aluminum 
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nitrate solution at 0 ppm. Proton decoupling was performed during acquisition with spinal64 

[24]. 

High-resolution SEM was performed on a Nova NanoSEM 450 (FEI Eindhoven). Powder 

samples were dispersed on carbon tape attached to aluminum stubs and imaged without any 

further sample modification. High-resolution images were obtained at low voltages (2 

kV) using a Centered Back Scattering detector (CBS, a new type of BSE detector) combined 

with Beam Deceleration Mode. 

‘Contact-mode’ AFM was carried out on a JPK Nanowizard II Bio-AFM mounted on an 

inverted Axiovert 200 MAT optical microscope. Samples were prepared by heating a small 

fragment of thermoplastic resin on a glass slide at 50 °C for 1.5 minutes. A small amount of 

sample was then dispersed on the softened resin and re-heated at 50 °C for an additional 

minute to firmly fix the sample in the thermoplast. Finally, excess sample was removed using 

compressed air. Silicon nitride tips (Bruker probes NP-10, spring constant 0.58 Nm-1) were 

used with a scan rate of 1-2 Hz. Images were analyzed using the JPK Data Processing 

software. 

Analysis of the supernatant solutions was carried out on a Bruker Avance 500 

spectrometer, operating at 130.326 MHz for 27Al. In a modified background-free probe, 10 

mm PTFE tubes were used to avoid the strong background signal of glass and quartz tubes. 

The 27Al NMR spectra were obtained by applying 2.14 µs (π/12 ) pulses, a recycle delay of 

0.1 s, an acquisition time of 26 ms and accumulating 1024 scans. The chemical shifts were 

determined with respect to an aqueous solution (0.7 mol.L-1) of Al(NO3)3. NMR 
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quantification was performed by spectral decomposition analysis. Simulation of all lines was 

conducted by using NMR notebook software program with Lorenzian shape. 

3. Results and discussion 

The zeolite W crystals recovered after 48 hours of aging exhibit a distinctive elongation 

of the morphology with increasing temperature, as revealed by SEM (Figure 2). 

 

 

Figure 2. SEM images (Nova NanoSEM 450) of the solid products recovered from the 

0.5 SiO2 : 0.013 Al2O3 : 1 KOH : 8 H2O precursor mixture after 48 hours of synthesis at 90, 150 and 

175 °C. As temperature increases, the MER crystals become increasingly more elongated. 

 The change in morphology is not reflected on molecular level, as indicated by the 27Al 

direct excitation MAS NMR spectra and X-ray diffraction patterns of the crystals as function 

of temperature (Figure 3). AFM characterization of their surface however revealed a 

fundamentally different crystal growth mechanism between samples obtained at 90 and 

175 °C (Figure 4). Synthesis at 90 °C favors the formation of zeolite W through ‘birth and 

spread’ growth, whereas higher temperatures result in a spiral growth mechanism. ‘Birth and 

spread’ and spiral growth mechanisms are typically observed for crystals grown in high and 
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low supersaturation conditions, respectively. In the case of ‘birth and spread’ growth, the 2D 

nucleation rate is high, so that a new terrace is started before an entire layer is completed. 

Consequently, a terraced surface resembling the one shown in Figure 4a is obtained [25, 26]. 

  

  

  

  

  

  

  

  

  

 

Figure 3. X-ray diffraction patterns (left) and 27Al MAS NMR spectra (right) of zeolite W crystals 

obtained after 48 hours of synthesis at different temperatures. the diffraction patterns are fitted with 

the typical MER space group Immm, resulting in unit cell parameters between a = 14.16 Å and 

14.23 Å, b = 13.99 Å and 14.055 Å, c = 10.02 Å and 10.05 Å. 

For crystallization processes, supersaturation can generally be defined as the difference 

between the actual concentration of a solute, its ion activity product (IAP) and the 

equilibrium concentration or solubility of the solute at a given temperature [28]. All 

syntheses in this work were HSIL based, and could be quenched at different points in time 

to separate the homogeneous supernatant solution from the crystals to determine the 

speciation of its components. As only a few crystals were formed and the potassium based 

HSILs contained a limited fraction of Al, the concentration of potassium and silicon could 
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be considered constant throughout the synthesis. Consequently, supersaturation conditions 

could be directly derived from the monitored concentration of dissolved aluminate species. 

 

 

 

 

  

 

  

 

Figure 4. ‘Contact-mode’ AFM image (JPK Nanowizard II Bio-AFM) of the a) layered surface of a 

MER sample synthesized at 90 °C, indicating a ‘birth and spread’ growth mechanism; and b) 

(double) spiral surface patterns obtained at 175 °C which are specific for spiral growth [27]. 

Liquid state 27Al NMR was used to analyze the supernatant solutions collected from 

syntheses quenched after 2, 4, 8, 16, 32 and 48 hours of synthesis (Figure 5). As sampling of 

the supernatant occurred after the reaction mixtures were allowed to cool to room 

temperature (RT, 23 °C), supersaturation is determined with respect to the solubility of the 

aluminate species at 23 °C (Figure 5). 

The consumption of aluminate species appears to follow an S-shaped curve, typically 

observed in zeolite crystallization. The study was extended to include two intermediate 

temperatures (110 and 130 °C) to further evidence such behavior and to allow a detailed 

kinetic analysis of the formation process (see Supporting Information). Using the Avrami 
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equation [29], the activation energy (Ea) for crystallization of zeolite W in the HSIL based 

growth medium was estimated to be 47 ± 2 kJ/mol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Evolution of the aluminum concentration in the supernatant after 2, 4, 8, 16, 32 and 48 

hours of synthesis at 90 (black), 150 (red) and 175 °C (blue curve). The arrows mark the first 

appearance of solid crystallization products. All curves converge around 16 ± 3 mole%, indicating 

the solubility of zeolite W. Concentrations are expressed as percentages of the initial aluminate 

concentration (= 100%). 

 

 At the start of all syntheses, supersaturation is high, independent of the synthesis 

temperature. In these conditions, crystallization theory dictates that nucleation prevails. For 

the synthesis at 90°C, however (black curve, Figure 5), the thermal energy provided by the 

system appears to be too low to easily overcome the energetic barrier associated with 3D 

nucleation. Nucleation thus proceeds at a very slow rate and no significant change in 
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dissolved aluminum concentration is observed for 10 hours. Only after 16 hours, the 

aluminum content of the supernatant solution has decreased significantly, indicating an 

appreciable amount of stable nuclei has been formed and crystal growth has set in. 

Crystallization then proceeds at elevated rates and the aluminum concentration diminishes 

until solubility of the formed product is reached. This effect is similar to seeding, where 

addition of seed crystals to the synthesis mixture greatly improves the crystallization rate, as 

the nucleation step is omitted [30]. 

 At 175 °C however, the system provides sufficient thermal energy to overcome the 

activation energy for nucleation and stable nuclei are rapidly and extensively formed. This 

results in low supersaturation conditions leading to domination of spiral growth, which at 

these conditions is faster than 2D nucleation of a new terrace (Figure 4b) [25, 31]. This 

particular growth mechanism is believed to initiate at screw dislocations: line defects in the 

crystal structure that result in the formation of a step on the crystal surface, making the need 

for 2D nucleation obsolete [32]. 

 Zeolite formation is, similar to other crystallization processes, governed by the 

equilibrium between nucleation and growth. Supersaturation conditions typically determine 

nucleation rate and prevailing growth mechanism [28]. As zeolites are Q4 silicates, typically 

forming in highly alkaline conditions, the final step in the assembly of a zeolitic precursor or 

zeolite framework requires the conversion of pairs of SiO- groups in solution-born oligomers 

into Si-O-Si bridges on the precursor, nuclei, or crystal surface. As the activation energy for 

this condensation is high, zeolite synthesis is mostly limited to high temperatures and has 

long been considered special. Partial isomorphic substitution of Si with Al assists nucleation 

and growth as the formation of Si-O-Al bridges from SiO- + AlOH- has a much lower 
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activation energy as compared to the less favorable SiO- + SiO- pathway [9, 33]. Scheme 1 

presents an overview of the reaction pathways discussed above. 

Scheme 1. Reaction pathways leading to the formation of (alumino)silicate nano-aggregates 

 

      ► Deprotonation of silicic acid in highly alkaline medium (pH = ± 13) 

 

      ► Di- and oligomerization of tetrahedral building units into (alumino)silicate 

   nano-aggregates through condensation by oxolation 
 

 

      ► Formation of Si-O-Si or Si-O-Al bridges between nano-aggregates through 

          condensation; the latter forms preferentially due to its lower activation energy 
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Considering the evolution of the dissolved Al concentration during the synthesis in 

combination with the reactions in Scheme 1, it becomes evident that the yield of the 

synthesis of zeolite W from K based HSIL precursors is limited by the availability of 

Al and the synthesis kinetics is dependent on the synthesis temperature. 

4. Conclusion 

In this work, large zeolite W crystals (MER topology) were synthesized at different 

temperatures following a novel zeolite synthesis procedure based on the use of Hydrated 

Silicate Ionic Liquids (HSILs) as silicon source. Although the final yield appeared to depend 

almost exclusively on the overall Al concentration, growth mechanism and crystal 

morphology of the zeolite W crystals were shown to depend on the synthesis temperature. 

‘Contact-mode’ Atomic Force Microscopy (AFM) revealed that samples grown at 

90 °C develop through ‘birth and spread’ growth, whereas synthesis at 175 °C resulted in 

spiral grown zeolite W crystallites. The higher the temperature, the more elongated the crystal 

shape. Contrary to similar studies [34], supersaturation conditions were not ‘deduced’ but 

were qualitatively determined through speciation of the aluminate species in the supernatant 

solutions by 27Al NMR, providing quantifiable thermodynamic evidence for the observed 

morphological transformation and differing growth mechanism: high supersaturation during 

crystal growth initiation at 90 °C resulted in a characteristic ‘birth and spread’ growth, 

whereas significantly lower supersaturation conditions were observed at 175 °C and, 

consequently, crystal growth proceeded through spiral growth. The methodology described 

in this work could be extended to other zeolitization and/or crystallization processes, 

provided a homogeneous synthesis mixture and supernatant are available. 
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§ Chemical composition: (K,Na)5 (Ba,Ca)2 [Al9Si23O64] . 24 H2O;[20] crystal structure is 

orthorhombic (space group Immm, No. 71) with a = 14.116 Å, b = 14.229 Å and c = 9.946 Å [18, 

23]. §§ Pore dimensions vary with orientation: [100] = 3.1 x 3.5 Å, [010] = 2.7 x 3.6 Å and [001] = 

3.4 x 5.1 Å and 3.3 x 3.3 Å [35]. 
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