G. Bianchini, J. M. Balko, I. A. Mayer, M. E. Sanders, and L. Gianni, Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease, Nat Rev Clin Oncol, vol.13, issue.11, pp.674-90, 2016.

P. Schmid, S. Adams, H. S. Rugo, A. Schneeweiss, C. H. Barrios et al., Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer, The New England journal of medicine, 2018.

F. Vignon, F. Capony, M. Chambon, G. Freiss, M. Garcia et al., Autocrine growth stimulation of the MCF 7 breast cancer cells by the estrogen-regulated 52 K protein, Endocrinology, vol.118, issue.4, pp.1537-1582, 1986.

J. A. Foekens, M. P. Look, J. Bolt-de-vries, M. E. Meijer-van-gelder, W. L. Van-putten et al.,

, Cathepsin-D in primary breast cancer: prognostic evaluation involving 2810 patients, Br J Cancer, vol.79, issue.2, pp.300-307, 1999.

G. Ferrandina, G. Scambia, F. Bardelli, P. Benedetti-panici, S. Mancuso et al., Relationship between cathepsin-D content and disease-free survival in node-negative breast cancer patients: a meta-analysis, Br J Cancer, vol.76, issue.5, pp.661-667, 1997.

M. Glondu, E. Liaudet-coopman, D. Derocq, N. Platet, H. Rochefort et al., Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells, Oncogene, vol.21, issue.33, pp.5127-5161, 2002.

V. Vetvicka, P. Benes, and M. Fusek, Procathepsin D in breast cancer: what do we know? Effects of ribozymes and other inhibitors, Cancer Gene Ther, vol.9, issue.10, pp.854-63, 2002.

V. Laurent-matha, S. Maruani-herrmann, C. Prebois, M. Beaujouin, M. Glondu et al., Catalytically inactive human cathepsin D triggers fibroblast invasive growth, J Cell Biol, vol.168, issue.3, pp.489-99, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00153783

M. Beaujouin, C. Prebois, D. Derocq, V. Laurent-matha, O. Masson et al., Procathepsin D interacts with the extracellular domain of the beta chain of LRP1 and promotes LRP1-dependent fibroblast outgrowth, J Cell Sci, vol.123, pp.3336-3382, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00518213

G. Berchem, M. Glondu, M. Gleizes, J. P. Brouillet, F. Vignon et al., Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis, Oncogene, vol.21, issue.38, pp.5951-5956, 2002.

M. Pranjol, N. J. Gutowski, M. Hannemann, and J. L. Whatmore, Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways, Biochimica et biophysica acta, vol.1865, issue.1, pp.25-33, 2017.

A. Hasilik, K. Figura, E. Conzelmann, H. Nehrkorn, and K. Sandhoff, Lysosomal enzyme precursors in human fibroblasts. Activation of cathepsin D precursor in vitro and activity of beta-hexosaminidase A precursor towards ganglioside GM2, Eur J Biochem, vol.125, issue.2, pp.317-338, 1982.

P. Benes, V. Vetvicka, and M. Fusek, Cathepsin D--many functions of one aspartic protease, Critical reviews in oncology/hematology, vol.68, issue.1, pp.12-28, 2008.

O. Masson, A. S. Bach, D. Derocq, C. Prebois, V. Laurent-matha et al.,

, Pathophysiological functions of cathepsin D: Targeting its catalytic activity versus its protein binding activity?, Biochimie, vol.92, issue.11, pp.1635-1678, 2010.

Z. Khalkhali-ellis and M. J. Hendrix, Two Faces of Cathepsin D: Physiological Guardian Angel and Pathological Demon, Biology and medicine, vol.6, issue.2, 2014.

M. Wolf, I. Clark-lewis, C. Buri, H. Langen, M. Lis et al., Cathepsin D specifically cleaves the chemokines macrophage inflammatory protein-1 alpha, macrophage inflammatory protein-1 beta, and SLC that are expressed in human breast cancer. The American journal of pathology, vol.162, pp.1183-90, 2003.

L. Hasan, L. Mazzucchelli, M. Liebi, M. Lis, R. E. Hunger et al., Function of liver activation-regulated chemokine/CC chemokine ligand 20 is differently affected by cathepsin B and cathepsin D processing, Journal of immunology, vol.176, issue.11, pp.6512-6534, 2006.

V. Laurent-matha, P. F. Huesgen, O. Masson, D. Derocq, C. Prebois et al.,

, Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment, FASEB J, 2012.

, Linear regression analysis of TAM and tumor volumes

. ***, , p.26

, Total RNA was extracted from MDA-MB-231 tumor xenografts at the end of treatment, and CD206 expression analyzed by RT-qPCR and shown relative to F4/80 (n=9 for CTRL

, for F1 versus CTRL; P=0.04 for F1Fc versus CTRL (Student's t-test)

. Mdsc, The percentage of Gr1 + CD11b + MDSCs was quantified by FACS analysis and expressed relative to all CD45 + cells (n=9 for CTRL; n=9 for F1

P. **, 008 for F1 versus CTRL; P=0.079 for F1Fc versus CTRL (Student's t-test)

, Linear regression analysis of MDSC and tumor volumes

, Total RNA was extracted from MDA-MB-231 tumor cell xenografts at the end of treatment and TGF? expression analyzed by RT-qPCR. Data are relative to RPS9 expression (n=9 for CTRL

P. **, 009 for F1 versus CTRL; P=0.1 for F1Fc versus CTRL (Student's t-test)

. Nk, The percentage of CD49b + CD11b + NK cells was quantified by FACS and expressed relative to all CD45 + cells (mean ± SEM; n=9 for rituximab (CTRL); n=9 for F1

, 7 for F1 versus CTRL

, for F1Fc versus CTRL, vol.8

, 8 for F1 versus F1Fc (Student's t-test)

, Total RNA was extracted from MDA-MB-231 tumor cell xenografts at the end of treatment and IL-15 analyzed by RT-qPCR. Data are the mean ± SEM expression level relative to RPS9 expression (n=9 for rituximab (CTRL); n=9 for F1; n=8 for F1Fc. **, P=0.0013 for F1 versus CTRL

*. and P. , 0127 for F1 versus F1Fc (Student's t-test)

, Linear regression analysis of IL-15 mRNA level and tumor volumes. R 2 =0.3693

P. **, , p.26

, Quantification of granzyme B mRNA expression as in (B)

*. and P. , 0002 for F1 versus CTRL

P. **, 0011 for F1Fc versus CTRL

P. **, 0076 for F1 versus F1Fc (Student's t-test)

, Quantification of perforin mRNA expression as in (B). *, P=0.033 for F1 versus CTRL; *, P=0.0294 for F1Fc versus CTRL; P=0.386 for F1 versus F1Fc

P. Philibert, A. Stoessel, W. Wang, A. P. Sibler, N. Bec et al., A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm, BMC Biotechnol, vol.7, p.81, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00192411

G. Robin and P. Martineau, Synthetic customized scFv libraries, Methods Mol Biol, vol.907, pp.109-131, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00773528