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Abstract.We examine the asymptotic behavior of the equilibrium ratios (Ki) near the convergence locus in the
pressure-temperature plane. When the Equation of State (EoS) is analytical, which is the case of most EoS of
engineering purpose, Ki tends towards unity or, equivalently, its logarithm lnKi tends to zero, according to a
power ½ of the distance to this locus. As a consequence, if lnKi is expressed as a linear combination of pure
component parameters with coefficients only depending on mixture phase properties (i.e., reduction parame-
ters), these coefficients obey a similar power law. Deviations from the ½ power law are thus fairly limited
for lnKi and for the reduction parameters (at least in the negative flash window between the convergence locus
and the phase boundaries), which can be exploited to speed up flash calculations and for quickly determining
approximate saturation points and convergence pressures and temperatures. The chosen examples are represen-
tative synthetic and natural hydrocarbon mixtures, as well as various injection gas-hydrocarbon systems.

List of symbols

A EoS parameter
Ai Component parameter in the EoS
a EoS parameter
B EoS parameter
Bi Component parameter in the EoS
b EoS parameter
Ck Coefficients in lnKi expression
fi Fugacity of component i in the mixture
Ki Equilibrium ratio (= yi/xi)
kij Binary Interaction Parameter (BIP) between

components i and j
L liquid mole fraction
m Number of nonzero BIPs
mk Critical amplitudes
M Number of reduction parameters
n Number of components
ni Number of moles
P Pressure
qai Elements of the reduction matrix
R Universal gas constant
T Temperature

V Vapor mole fraction
xi Liquid mole fraction, component i
yi Vapor mole fraction, component i
zi Feed mole fraction, component i
Z Compressibility factor

Greek letters

a Reduction parameter
b Critical exponent
c Reduction parameter
ui Fugacity coefficient of component i in a mix-

ture
n = (1 � P/Pconv)

0.5

h Reduction parameter

Subscripts

c Critical
conv Convergence
i,j Component index
L Liquid phase
V Vapor phase
sat Saturation* Corresponding author: dnichita@univ-pau.fr
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Superscripts

T Transposed
* Reference conditions

1 Introduction

Flash calculations represent a large fraction of the computer
time in the simulation of many industrial processes. This is
for instance the case of compositional reservoir simulations,
which consist in the simulation of phase and flow behavior
of oil and gas through heterogeneous porous media for reser-
voir engineering purposes (Ben Gharbia and Flauraud,
2019, He et al., 2019, Luo et al., 2019, Montel, 1998). In
these simulations, a huge number (up to billions) of flash
calculations (one for each grid block representing a homoge-
neous region of the reservoir) are carried out for multi-
component fluids with a dozen or more components or
pseudo-components, and these flash calculations must be
repeated for every time step. A flash calculation is an iter-
ative computational process for finding the equilibrium
ratios Ki = yi/xi (xi and yi are the equilibrium compositions
of component i in the liquid and vapor phases), starting
from “initial” values of the composition ratios Ki0. The pro-
cess is more rapid if the initial guess Ki0 are closer to the
equilibrium ratios Ki; high-quality initial estimates are
important especially for “difficult” regions of the phase
envelope (critical points and convergence points, where
the equilibrium ratios Ki tend to unity, see next section,
as well as the immediate vicinity of phase boundaries).
Some compositional reservoir simulators (Wang et al.,
1997) take advantage of the so-called “negative flash”, as
an alternative to phase stability testing.

Two-phase vapor-liquid phase equilibrium calculations
can be initialized using the results of phase stability testing
(Michelsen, 1982a) or from ideal equilibrium constants;
The latter initial estimates are very poor, except at low
pressures, while the former require the resolution of a non-
linear system of equations (twice if the trial phase is not
known a priori to be vapor or liquid).

One route to obtain “good” values ofKi0 is to extrapolate
the equilibrium ratios obtained at the previous time step
(Mehra et al., 1982; Nghiem and Li, 1990; Nichita et al.,
2007a; Wang and Stenby, 1994) at close pressure, tempera-
ture and composition. Another possible route, which is
pursued in this paper, consists in exploiting a regularity
related to the analyticity of the Equation of State (EoS)
and thermodynamic potentials: upon approaching a conver-
gence point, these ratios tend to unity according to a simple
scaling law – characterized by an exponent ½ – of the
temperature or pressure. The EoS of concern here are
analytical, which is the case of most EoS used for engineer-
ing applications.

It appears that there is an increasing interest to imple-
ment simplified rapid phase behavior calculations proce-
dures in compositional reservoir modeling, to achieve
significant performance improvement without losing
prediction accuracy. Gaganis and Varotsis (2014) proposed
an integrated approach using automatically generated

classification and regression models (fully replacing conven-
tional routines in the simulator) to provide direct answers to
both the phase stability and phase split problems; the
dimensionality of the model can be lowered by using the
reduced variables framework.

Gaganis (2018) presented a new phase stability method
applicable when repeated phase behavior calculations are
required, based on simple off line generated discriminating
functions. The K-values based methods (interpolating
equilibrium constants as functions of pressure and composi-
tion) are widely used in thermal compositional simulation
(Zaydullin et al., 2014, 2016). Rannou et al. (2013) used a
tie-line-based equilibrium constants method that captures
the compositional dependence of the phase behavior.

The outline of the paper is as follows. After reminding of
the properties of convergence points and the concept of
negative flash, we present the general expressions for the
asymptotic behavior of the natural logarithms of equilib-
rium constants when a convergence point is approached.
Several examples are then considered, including synthetic
and natural hydrocarbon fluids and their mixtures with
injection gases, which are examined by using a general form
of two-parameter cubic EoS (given in an Appendix together
with the associated reduction parameters).

2 A reminder on convergence points

The concept of convergence pressure dates back to the early
1950’s when it was used in conjunction with charts of
equilibrium ratios for the determination of equilibrium
phase compositions (Kaliappan and Rowe, 1971; Kazemi
et al., 1978; Rowe, 1967) until the development in the
1970’s of equations of state of engineering purpose and
computer-assisted flash calculations. In these calculations,
the “initial”Ki values required for starting the iterative com-
putational process are an essential input, which is in many
cases were obtained by using approximate methods based
on the concept of convergence.

For a given multi-component mixture, the convergence
pressure (or temperature) is the pressure (or temperature)
where the equilibrium ratios of all mixture components
converge toward unity when pressure (or temperature) is
increased, the other parameter (i.e., temperature or pres-
sure) being fixed. The critical pressure Pc or temperature
Tc are one particular convergence pressure and tempera-
ture: at T = Tc the equilibrium ratios converge to unity
when pressure P is increased and approaches Pc. For other
temperatures T 6¼ Tc, the equilibrium ratios converge to
unity for a pressure that exceeds the bubble- or dew-point
pressure: the convergence pressure Pconv falls in a region
in the T–P plane where the fluid is in the single phase state.
The interval between the bubble- or dew-point pressure and
Pconv corresponds to “negative flashes” (Whitson and
Michelsen, 1990): the flash calculation gives a non-trivial
solution (the Ki’s are different from unity) but the liquid
and gas mole fractions lie outside the interval of physical
solutions [0,1] (the limits of this interval correspond to the
bubble- and dew-points). Likewise, for fixed P the conver-
gence temperature Tconv is defined as the temperature
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where the Ki’s converge to unity; Tconv lies outside the two-
phase domain except when P = Pc (and then Tconv = Tc).
The locus in the T–P plane of convergence pressures and
temperatures is termed the Convergence Locus (CL).

The “negative flash” domain is comprised between the
CL and the phase boundaries. The mathematical domain
of the vapor mole fraction V, comprised between two
adjacent asymptotes of the Rachford-Rice function
1= 1�maxðKiÞ½ � and 1= 1�minðKiÞ½ �, is wider (and in
many cases much wider) than the physical interval
V 2 [0, 1]. In a negative flash calculation, the vapor (or
liquid) mole fraction is allowed to go out of this interval.
When a convergence point that is not a critical point is
approached, V ? ±1, where the sign depends on which
of the two asymptotes is approached (whereas V ? 1/2
when a “true” critical point is approached). The main advan-
tage of the negative flash is that all phase properties are
continuously derivable at phase boundaries; this property
is useful to safely treat phase appearance and disappearance
at the crossing of phase boundaries.

On the CL, K-values are all equal to unity but compo-
nent mole fractions zci are different from feed compositions
zi, except indeed when the convergence point is a “true”
critical point. However, those mole fractions zci are those
of a mixture which has its “true” critical point equal to
the convergence point. Moreover, the results of isothermal
flashes for P < Pconv, or of isobaric flashes for T < Tconv,
are very close (identical for binary mixtures) for the feed
composition zi and for the “critical composition” zci (Rowe,
1967) except for the vapor and liquid mole fractions
V and L = 1 � V. In the latter case, these fractions remain
in the physical domain [0,1] and tend to ½ on approach to
Pconv or Tconv, which are “true” critical pressure or temper-
ature. This feature is exploited in the next section, which
goes along with a very peculiar asymptotic behavior of
Ki’s on approach to a convergence point and several exam-
ples will be given in Section 4.

3 Asymptotic behavior of equilibrium ratios
and their logarithm near convergence points

The near-critical behavior in the two-phase liquid-vapor
region was studied by Dalton and Barieau (1968) and
Dalton (1970) for the equilibrium constants of binary
mixtures and by Fleming and Vinatieri (1979) in ternary
mixtures. It relies on an EoS or a thermodynamic potential
that is analytical near the critical point, which allows it to
be Taylor-expanded in powers of DT = T � Tc or
DP = P � Pc, or of their dimensionless counterparts
DT = (T � Tc)/Tc and DP = (P � Pc)/Pc, depending on
whether pressure or temperature is varied in the process
of interest. The departure from unity of the equilibrium
constants turns out to vary according to a “classical” (or
mean-field) scaling law as a function of the distance to
the critical point, namely |DT| or |DP|, with an exponent
equal to ½. This feature is directly related to the Taylor-
expansion (or Landau expansion, Landau and Lifshitz,
1959) of the appropriate thermodynamic potential (in this
case the Gibbs free energy) around the critical point

(of coordinates Tc and Pc), and on vanishing at the critical
point of the second- and third-order derivatives of the
thermodynamic potential with respect to composition.
A similar behavior was proved by Michelsen (1984) for mul-
ticomponent mixtures.

The natural logarithms of the equilibrium constants can
be approximated as

lnKi � AiP
Pc � P
Pc

� �1=2

ð1Þ

in the vicinity of the critical point along the critical iso-
therm, T = Tc, in the two-phase region, and

lnKi � AiT
Tc � T

Tc

� �1=2

ð2Þ

on the critical isobar, P = Pc, in the two-phase region,
where AiP ¼ f DP ; zi; uið Þ and AiT ¼ f DT ; zi; uið Þ depend
on mixture composition, on the eigenvector corresponding
to the minimum eigenvalue of the Hessian at the critical
point and on third and fourth order partial derivatives of
the thermodynamic potential with respect to composition
and pressure or temperature. While the calculation of
these derivatives is a difficult task and it requires the prior
calculation of the critical point it is interesting to note that
the critical amplitudes need not be directly calculated;
they can be approximated using the information available
from a previously performed flash calculation by assuming
the ½ power law from equations (1) and (2). Note that the
equilibrium constants follow the same asymptotic behav-
ior as lnKi near a critical point (where Ki � 1 are small),
but on smaller pressure intervals, since

lnKi ¼ ln 1þ Ki � 1ð Þ½ � ¼ Ki � 1� 1=2ðKi � 1Þ2 þ . . .

At this point it is important to remind that the above
mean-field or Landau-type approach provides only an
approximation of the near-critical behavior of fluids,
which is characterized by scaling exponents that differ from
the mean-field (or Landau) values: for instance, the
exponent ½ in equations (1) and (2) should be replaced
by b � 0.33 (for a review see Levelt Sengers et al., 1983).
The latter behavior is not considered further in this paper,
which is focused on EoS and thermodynamic potentials of
engineering purpose, all of which are analytical functions
of thermodynamic and composition variables.

Until now, no hypothesis has been made as to the
specific analytical EoS or thermodynamic potential used
for describing the phase properties of the multi-component
mixture. A widely occurring circumstance is when the EoS
is a two-parameter cubic EoS, such as the Peng-Robinson
(PR) EoS (Peng and Robinson, 1976; Robinson and Peng,
1978), used in next section. In the simplest case where all
Binary Interaction Parameters (BIPs) are equal to zero,
the equilibrium ratios can be written as (Michelsen, 1986):

lnKi ¼ C 0 þ C 1

ffiffiffiffiffi
Ai

p
þ C 2Bi; ð3Þ

where C0, C1 and C2 depend only on bulk quantities (EoS
parameters and compressibility factors of both phases at
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given T, P and composition conditions, cf. Appendix) and
the coefficients

ffiffiffiffiffi
Ai

p
and Bi are related to pure component

parameters (see Appendix) and therefore are non singular
near the critical point. One may assume that the coeffi-
cients C0, C1 and C2 are exhibiting a similar asymptotical
behavior as equilibrium ratios and they are obeying the
same scaling law, i.e.,

Ck ¼ mkðPc � PÞ1=2; k ¼ 0; 1; 2; ð4Þ
where the prefactors (critical amplitudes) mk depend on
the fluid system and the EoS used. As will be seen later,
the above assumption was confirmed by all examples
examined in this paper (as well as in many others not
reported here). This feature can be extended to two-
parameter cubic EoS with non-zero BIPs (hereafter
denoted kij) provided lnKi is properly decomposed
(i.e., the mixing rules must be linear forms or decom-
posable into linear forms). One example (Nichita and
Minescu, 2004) is given by the reduction parameters

cki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AiðkkiÞ

p
(k = 1, . . ., m; i = k + 1, . . ., n: the first

m components have nonzero BIPs with the remaining
ones) such that:

lnKi ¼ C 0 þ C 1

ffiffiffiffiffi
Ai

p
þ C 2Bi þ

Xmþ2

k¼3

Ckcki; ð5Þ

where the term under summation is for the first m
components having nonzero BIPs with the remaining
ones. In this case there are m additional coefficients Ck,
and equation (5) can be rewritten in the more compact
form,

lnKi ¼
Xmþ2

k¼0

Ckqki; i ¼ 1; :::; n; ð6Þ

where qki (q0i ¼ 1; q1i ¼
ffiffiffiffiffi
Ai

p
, q2i ¼ Bi, and

qki ¼
ffiffiffiffiffi
Ai

p ð1� kkiÞ; k ¼ 3; :::;m þ 2, for i = 1,. . ., n) are
the elements of the reduction matrix (Hendriks, 1988),
and the coefficients Ck depend only on the reduction
parameters (directly and via the compressibility factors).
Expressions for the coefficients Ck are given in the
Appendix. Equation (6) remains valid for any reduction
procedure (Hendriks and van Bergen, 1992; Nichita,
2006; Nichita and Minescu, 2004), provided appropriate
elements of the reduction matrix are used. It is worth
noting that equation (6) is a key equation for flash
calculations using reduction methods (Nichita and
Graciaa, 2011; Petitfrere and Nichita, 2015) and for
pseudo-component delumping (Nichita and Leibovici,
2006). Expressions for the coefficients Ck (k > 2) are given
in the Appendix.

As emphasized in the previous section, the results of an
isothermal flash (i.e., the equilibrium constants) per-
formed for the fluid composition zi and for the critical
composition zic (corresponding to the current tempera-
ture) are very close, therefore equation (1) holds when
Pc is replaced by Pconv and zi is replaced zic. More gener-
ally, any fluid system that is described by an analytical

EoS or thermodynamic potential behaves similarly when
approaching a critical (or convergence) point from the
two-phase (i.e., liquid – vapor) region: the equilibrium
ratios Ki tend asymptotically to unity (or, equivalently,
lnKi tend to 0) according to the “universal” scaling law
ðT conv � TÞ1=2 or ðPconv � PÞ1=2, depending on whether
the critical (or convergence) point is approached by vary-
ing the temperature (at constant pressure) or pressure (at
constant temperature).

It must be noted that the conditions near the conver-
gence locus are extremely difficult ones for flash calcula-
tions. From a computational point of view, a negative
flash near the convergence locus is even more difficult than
a regular flash near critical points, since the negative flash
solution corresponds to a saddle point of the Gibbs free
energy hypersurface, while at two-phase conditions the
solution is at the global minimum of the Gibbs free energy
G. The Successive Substitution Iterations (SSIs) scheme
only guarantees the convergence to a local minimum of G
(Michelsen, 1982b), and at certain conditions in the nega-
tive flash domain the SSI method converges to the trivial
minimum of the G surface (a more detailed explanation
can be found in Whitson and Michelsen, 1990). Thousands
of successive substitution iterations may in fact be needed
to ensure convergence, and more efficient methods are
needed to estimate the convergence pressure without
repeatedly performing flash calculations under very difficult
conditions.

In the following examples, the negative flash routine
and the algorithm for convergence pressure calculation
presented by Nichita et al. (2007b) are used in the “exact”
flash calculations. A general form of two-parameter cubic
EoS is used (see Appendix), and numerical results are
obtained by using the Peng–Robinson EoS. Using the
reduction parameters limits the scope of the paper to cubic
EoS (the most widely used in petroleum engineering).
However, a similar methodology can be used for any EoS
by exploiting the quasi-linearity of lnKi (on narrower inter-
vals than in the case of reduction parameters, as will be
shown in the next section).

4 Numerical procedure

Surprisingly, as will be seen below from numerical exam-
ples, little deviations from the asymptotic behavior,
equations (1) and (4), are generally observed in the entire
negative flash region (between the CL and the saturation
curve), and also inside the two-phase region near phase
boundaries where flash calculations are usually more diffi-
cult (as compared to flashes well inside the two-phase
region). These equations can be exploited in various
manners that are illustrated in the next section with partic-
ular fluid examples. First, it can be exploited to set up a fast
algorithm (as compared to the existing ones, Jensen and
Michelsen, 1990; Nichita et al., 2007b) for approximate
calculations of convergence pressure. Second, this property
can be used to extrapolate the results of previously
performed flash calculations and provide a good initializa-
tion for a negative flash or a two-phase flash near a phase
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boundary. Third, it can be used to inter- and extra-polate
K-values from known values. Fourth, it allows a rapid
approximate determination of saturation pressures.

Another advantage of this formulation is that pre-
calculated tables of K-values are not required, because by
using equations (4) and (5) only very limited storage
is required (essentially only the slopes mk in equation (4)
must be stored for given temperature and composition
conditions).

Introducing the notation

n pð Þ ¼ Pconv � P
Pconv

� �0:5

; ð7Þ

the equation of a straight line between a certain reference
pressure, P* (where the results of a negative or two-phase
flash calculation are available), and Pconv is

Ck ¼ CkðP�Þ þ oCk

on

� �
T

����
P�

nðPÞ � nðP�Þ½ �; ð8Þ

with

oCk

on
¼ oCk

oP
dP
dn

k ¼ 0 ; . . . ; m þ 2; ð9Þ

where dP=dn ¼ �2nPconv, since P ¼ Pconvð1� n2Þ.
At P = Pconv, equation (8) reads

0 ¼ Ck P�ð Þ � oCk

on

� �
T

����
P�
n P�ð Þ: ð10Þ

The partial derivatives (oCk/oP)T have rather simple
expressions, and are easily calculated analytically (as
described by Nichita, 2008); in fact, in practice it suffices
to calculate only one of these partial derivatives, say that
of C0 (note that its expression does not depend on the num-
ber of non-zero BIPs).

The convergence pressure (its approximation consider-
ing a linear variation) is obtained from equations (9) and
(11) written for k = 0:

Pconv ¼ P� � 1
2

C 0ðP�Þ
oC0
oP

� �
T

��
P�

: ð11Þ

A similar equation written in terms of temperature can
be used for an approximate convergence temperature calcu-
lation at given pressure.

Once Pconv is calculated, the amplitudes mk (slopes) are
obtained from

mk ¼ CkðP�Þ=nðP�Þ; ð12Þ
then the coefficients Ck can be calculated as functions of
pressure from

Ck Pð Þ ¼ mkn Pð Þ; k ¼ 0; :::;m þ 2; ð13Þ
and finally the dependences Ki(P) are obtained from
equation (6) for i = 1 ,. . ., n.

If the results of a flash calculation at a certain pressure
(which can be in the two-phase region or in the negative

flash region) are available, one can rapidly estimate the
phase boundary location. Using K-values estimated from
equation (6), saturation pressure can be rapidly approxi-
mated. Few iterations are required until the dewpoint locus

equation
Pn
i¼1

zi=Ki ¼ 1
� �

is satisfied (on the bubble point

side, the equation is
Pn
i¼1

ziKi ¼ 1). A numerical application

will be presented in the next section.
The new regularity can also be used to efficiently

generate K-values tables (some compositional simulators
have an option for using K-values tables for flash calcula-
tions). For domains where the coefficients Ck are non-linear,
a procedure similar to that presented by Chien and Lee
(1983) for K-values can be set up. Note that Ck generally
have a “smoother” variation with pressure than K-values,
and less storage is required.

5 Results

The linear dependence of the K-values and of Ck with
ðPc � PÞ1=2, which we call hereafter quasi-linearity, is
tested for a model gas-condensate system (Y8) taken from
the literature (Yarborough, 1972), and for mixtures of this
gas-condensate with nitrogen (Y8/N2): our purpose is to
study the influence of an injection gas on convergence
pressures and K-values in the negative flash region. Then,
a reservoir fluid and its mixtures with different amounts
of carbon dioxide are studied. The PR EoS is used in all
calculations.

5.1 Y8 synthetic mixture

Test calculations have been performed first on a synthetic
mixture of six normal-alkanes, known in the literature as
the Y8 mixture (Yarborough, 1972). Mixture composition
and component properties are given in Table 1. All BIPs
are set to zero in the PR EoS. Figure 1 depicts the phase
envelope and the convergence locus (calculated with the
procedure described in Nichita et al., 2007b) of this mixture.

The calculated critical point is Tc = 293.78 K and
Pc = 210.66 bar. Plots of equilibrium ratios Ki and of their
logarithms lnKi vs. (1 – P/Pc)

0.5 on the critical isotherm
(indeed at T = Tc the critical pressure is a convergence
pressure) are presented in Figures 2a and 2b, respectively.
As expected from a general argument (see Sect. 3,
Eq. (1)), Ki tends to unity and lnKi tends to zero quasi-
linearly when pressure approaches the critical pressure.
Interestingly, lnKi obeys this quasi-linear behavior and it
appears to be closer to linearity in a much larger pressure
interval than does Ki (it can be observed in Fig. 2b for
the two heaviest components that lnKi behave almost lin-
early, while an important curvature can be clearly observed
in Fig. 2a for these Ki on the same interval). The same
trends are observed along the critical isobar for the
equilibrium ratios Ki (Fig. 3a) and for the logarithms
lnKi (Fig. 3b) vs. (1 – T/Tc)

0.5. The coefficients Ck
(k = 0, 1, 2) also vary linearly with (1 � P/Pc)

0.5 at
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T = Tc (Fig. 4a) and with ð1� T=TcÞ0:5 at P = Pc
(Fig. 4b) over a large pressure or temperature interval
(comparable to that of quasi-linear behavior for lnKi): the
coefficients of determination for the three coefficients are
in both cases R2 > 0.999 over the intervals represented in
Figures 4a and 4b, about 10 bar and 10 K, respectively.

Let us now analyze the same behavior for a temperature
T 6¼ Tc. On the isotherm of T = 335 K (in the region where
retrograde condensation occurs), the K-values (Fig. 5) and
coefficients Ck (Fig. 6) are plotted vs. pressure up to the
convergence pressure. Note again the quasi-linear behavior
for a pressure range of about 10 bar. At T = 335 K, the
saturation (dew point) pressure is Psat = 224.39 bar, and
the convergence pressure is Pconv = 229.09 bar. At Psat,
the value of the first coefficient is C0 = 0.23876, and its
derivative with respect to pressure is oC 0=oPð ÞsatT ¼
�0:025. From equation (11), taking P* = Psat, an excellent
approximation of the convergence pressure is obtained:
Pconv = 229.16 bar (0.07 bar absolute error; the relative
error is about 0.03%). Note that similar results are obtained
using oC 0=oPð ÞT at any pressure between Psat and Pconv,
and for a certain pressure interval inside the two-phase
domain. Convergence pressures have been calculated using
this approximation scheme for the entire temperature range
up to the cricondentherm (where the difference between
convergence and saturation pressure is of the order of
100 bar); the results turn out to be very close to the exact
ones (at the scale of Fig. 1, the approximated CL turns out
to be undistinguishable from the exact CL).

Suppose a flash calculation is needed at T = 335 K and
P = 215 bar. One can use as initial guess the K-values from
a phase stability calculation, or those obtained by an
extrapolation technique based on previous flash calculations
at some reference conditions. Table 2 lists the exact
K-values (flash results), those obtained in this work, and
those obtained using two extrapolation techniques: the
Approximate Flash Calculations (AFC) proposed by
Nghiem and Li (1990) and Direct Flash Calculations
(DFC) of Wang and Stenby (1994) (earlier suggested by
Mehra et al., 1982; it appears to be the most widely used),
for a reference pressure P* = Psat. The K-values obtained
by phase stability testing are also listed, as well as those
at the dew point (which give a reasonable initialization
for these conditions) and those calculated from the
widely-used Wilson (1969) ideal K-values relationship
(which are poor initial estimates for these conditions).
It should be noted that AFC is an iterative method

Table 1. Composition and component properties of the
Y8 mixture.

Component zi Tci, K Pci, bar xi

C1 0.8097 190.56 45.99 0.011
C2 0.0566 305.32 48.72 0.099
C3 0.0306 369.83 42.48 0.152
nC5 0.0457 469.70 33.70 0.252
nC7 0.0330 540.20 27.40 0.350
nC10 0.0244 617.70 21.10 0.490
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Fig. 1. Phase envelope and convergence locus of the Y8
mixture.
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(it solves a non-linear system with the Jacobian matrix
available from the reference conditions; for this specific
calculation it requires six iterations) and DFC requires
the resolution of a linear system of equations (also using
the Jacobian matrix at the reference conditions); phase sta-
bility testing requires six Newton iterations using reduced
variables (Nichita and Petitfrere, 2013). The third column
in Table 1 gives the K-values calculated from equations
(11), (12) and (6), using the approximate value of the con-
vergence pressure calculated above. Obviously, the method
proposed here provides the best initial guess for K-values;
the relative errors in K-values for each component are given
for comparison in Figure 7. In fact, excellent approxima-
tions of K-values can be obtained for a wide pressure
interval.

In practice the difference between current and reference
pressure are smaller (in compositional reservoir simulators,
the pressure step is bounded via the time step restriction
imposed by the stability requirements of the iterative proce-
dure for solving the non-linear system of flow equations);
the above example was chosen to enlighten the capabilities
of the proposed method.

Suppose now we have the results of a flash calculation
at a certain pressure (which can be in the two-phase region

or in the negative flash region) and we want a rapid
estimate of the phase boundary location. For example,
using P* = 215 bar (two-phase flash), we obtain Psat =
224.36 bar, which is very close to the exact one.

Let us now look at what’s happening at isobaric condi-
tions. The plot of K-values (Fig. 8) and coefficients Ck
(Fig. 9) vs. ð1� T=T convÞ0:5 at P = 100 bar shows a similar
behavior (with Tconv = 554.32 K and Tsat = 435 K). Note
that in this case the linearity holds for hundreds of K. A
similar method can be readily set up to approximate the
convergence temperature at given pressure.

5.2. Y8/Nitrogen mixtures

In order to investigate the case of non-zero BIPs, different
amounts of nitrogen are combined with the Y8 mixture.
The BIPs between N2 and hydrocarbon components are
taken equal to 0.1 (m = 1). For a mixture made up of the
Y8 fluid + 25% moles N2, the phase envelope and the
convergence locus are plotted in Figure 10. The coefficients
Ck (Fig. 11) are plotted vs. pressure at T = 300 K. Note
that in this case we have four coefficients Ck, and their
linearity holds over the entire negative flash domain. This
observation is important because in the description of

Table 2. Exact flash results and different initial guess for K-values for Y8 mixture at T = 335 K and P = 215 bar (the
reference pressure is P* = Psat = 224.39 bar).

Component K-values

Exact This work AFC DFC Stability Dewpoint Wilson

C1 1.190141 1.179989 1.183721 1.169796 1.198741 1.094757 2.232659
C2 0.920869 0.919780 0.922241 0.921095 0.942890 0.955593 0.383059
C3 0.771288 0.773384 0.776352 0.769698 0.801475 0.870171 0.103682
nC5 0.551315 0.556511 0.560370 0.521701 0.590329 0.728871 0.010530
nC7 0.406911 0.412669 0.417393 0.334943 0.449404 0.621142 0.001488
nC10 0.270341 0.275270 0.280892 0.129642 0.313284 0.501099 0.000116
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reservoir fluids by cubic EoS non-zero BIPs are usually
required. The results of CL calculations with the exact
(Nichita et al., 2007b) and approximate (this work)
methods are very close. For a mixture made up of the Y8
fluid + 50% moles N2, the phase envelope and the conver-
gence locus are plotted in Figure 12 and the coefficients
Ck are plotted vs. pressure at T = 300 K in Figure 13. Note
that this mixture has no critical points.

5.3. Reservoir fluid

The reservoir fluid composition is described by 29 compo-
nents; eight components have non-zero BIPs with the
remaining ones (m = 8). Mixture composition and compo-
nent properties are given in Table 3 and the non-zero BIPs
are listed in Table 4 (only elements in the lower triangular
part of the symmetric BIPs matrix are given). The PR EoS

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6
(1-T/Tconv)0.5

C
0,C

1,C
2

C0

C1

C2

Dewpoint

Fig. 9. Coefficients Ck vs. (1 � T/Tconv)
0.5 for the Y8 mixture

at P = 100 bar.

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600
Temperature, K

Pr
es

su
re

, b
ar

Phase boundary
Convergence locus
Critical point

Fig. 10. Phase envelope and convergence locus of Y8 + 25% N2

mixture.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4 0.5

(1-P/Pconv)0.5

C
k

C0

C3

C1

C2

Dewpoint

Fig. 11. Coefficients Ck vs. (1 � P/Pconv)
0.5 for the Y8 + 25%

N2 mixture at T = 300 K.

0

100

200

300

400

500

600

700

800

900

1000

150 250 350 450 550 650
Temperature, K

Pr
es

su
re

, b
ar

Dewpoint
Convergence locus

Fig. 12. Phase envelope and convergence locus of Y8 + 50% N2

mixture.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6

(1-P/Pconv)0.5

C k

C1

C3

C0

C2

Dewpoint

Fig. 13. Coefficients Ck vs. (1 � P/Pconv)
0.5 for the Y8 + 50%

N2 mixture at T = 300 K.

D.V. Nichita et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 77 (2019) 9



is used. The phase envelope, the spinodal, and the conver-
gence locus of the reservoir fluid are plotted in Figure 14.

There are 18 (2m + 2) reduction parameters, and
11 coefficients Ck in equation (6). Figure 15 depicts the
coefficients Ck vs. ð1� P=PconvÞ0:5 at T = 500 K; at this
temperature, there is a wide negative flash region (the
dew point pressure is 352 bar, and the convergence pressure
is 379 bar). As expected, quasi-linearity holds for all coeffi-
cients Ck over a large pressure interval.

5.4. CO2/reservoir fluid mixture

In order to study the influence of an injection gas on the
new regularity, CO2 is added in various amounts to the
above reservoir fluid. The phase envelope and the conver-
gence locus for the reservoir fluid + 50% moles CO2 mixture
are presented in Figure 16. Figure 17 plots the coefficients
Ck vs. ð1� P=PconvÞ0:5 for the reservoir fluid + 50% moles
CO2 mixture at T = 500 K; some of the C ’s (i.e., C0,

Table 3. Reservoir fluid composition and component
properties.

Comp. Mole
number

MW Tci, K Pci, bar xi

N2 1.150 28.01 126.2 33.90 0.0400
CO2 4.120 44.01 304.2 73.80 0.2250
H2S 14.690 34.08 373.2 89.369 0.1000
CH3S 0.012 48.11 469.95 72.30 0.1530
C2H6S 0.016 62.13 499 54.90 0.1910
COS 0.002 60.07 378.8 63.50 0.1050
C1 48.210 16.04 190.6 46.00 0.0115
C2 7.320 30.07 305.4 48.80 0.0908
C3 4.430 44.10 369.8 42.50 0.1454
iC4 0.860 58.12 408.1 36.50 0.1760
nC4 1.930 58.12 425.2 38.00 0.1928
iC5 0.890 71.76 468.77 35.58 0.2202
nC5 0.880 72.15 469.6 33.70 0.2273
C6 1.270 85.36 511.9895 33.19 0.2606
BZN 0.049 78.11 562.2 48.90 0.2120
C7 1.591 99.08 549.7539 30.63 0.2807
TOL 0.178 92.14 591.8 41.00 0.2630
C8 1.702 113.24 574.715 28.30 0.3270
XYL 0.343 106.16 621.1333 36.00 0.3230
EB 0.057 106.16 617.1 36.10 0.3011
C9 1.250 125.19 618.15 27.58 0.3440
C10 1.330 137.83 638.15 25.85 0.3780
C11 1.050 149.00 658.15 24.57 0.3960
C12 0.840 163.00 676.15 23.20 0.4140
C13 0.780 176.00 690.15 21.96 0.4320
C14 0.620 191.00 708.15 20.78 0.4590
CN1 2.388 230.85 741.781 18.19 0.5129
CN2 1.762 325.39 906.15 16.80 0.6950
CN3 0.310 500.00 1113.15 14.35 0.8300

Table 4. Non-zero BIPS for the reservoir fluid.

Comp. N2 CO2 H2S C2H6S COS C1 C2 C3

N2

CO2 �0.02
H2S 0.18 0.1
CH3S
C2H6S
COS
C1 0.04 0.1 0.15
C2 0.05 0.13 0.15
C3 0.08 0.13 0.09
iC4 0.1 0.13 0.075
nC4 0.09 0.13 0.05
iC5 0.1 0.12 0.06
nC5 0.1 0.12 0.06
C6 0.1 0.1 0.06 0.1
BZN 0.1 0.1 0.06 0.1 0.07 0.03
C7 0.1 0.1 0.06 0.1
TOL 0.1 0.1 0.06 0.1 0.07 0.03
C8 0.1 0.1 0.06 0.1
XYL 0.1 0.1 0.06 0.1 0.07 0.03
EB 0.1 0.1 0.06 0.1 0.07 0.03
C9 0.1 0.1 0.06 0.1
C10 0.1 0.1 0.06 0.1
C11 0.1 0.1 0.06 0.1
C12 0.1 0.1 0.06 0.1
C13 0.1 0.1 0.06 0.1
C14 0.1 0.1 0.06 0.1
CN1 0.1 0.1 0.06 0.1 0.02
CN2 0.1 0.1 0.06 0.15 0.08 0.04 0.03
CN3 0.1 0.1 0.06 0.15 0.08 0.04 0.03

0

50

100

150

200

250

300

350

400

450

200 300 400 500 600 700 800 900 1000 1100
Temperature, K

Pr
es

su
re

, b
ar

Phase boundary
Convergence locus
Spinodal
CP

Fig. 14. Phase envelope and convergence locus of the reservoir
fluid.
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C1, C2) are somewhat deviating from linearity, while for the
C-parameters corresponding to small BIPs deviate from lin-
earity negligibly over a wide pressure range (here to the
order of hundreds bar, as the dew point pressure is
398 bar, and the convergence pressure is 628 bar). This
example indicates that it is preferable to assume linearity
for the latter C-parameters.

6 Conclusion

The asymptotic behavior of the equilibrium ratios and their
logarithm is examined near critical points and convergence
points. For any analytical EoS, the K-values tend towards
unity or, equivalently, their logarithms tend to 0, according
to a power ½ of the distance to the critical point or
convergence point.

Since the elements of the reduction matrix are never
singular at critical points, the coefficients Ck for the multi-
linear expression of the logarithms of K-values also behave
according to the same power law, which turn out to holds
in a larger interval, as observed in a series of fluid examples
using the conventional PR EoS. The coefficients Ck are
frequently observed to behave according to this power law
over the entire negative flash region, and a region inside
the two-phase pressure/temperature domain (except for
systems containing a hydrocarbon mixture and a high
concentration of a non-hydrocarbon component, such as
carbon dioxide or nitrogen).

This new regularity can be exploited in several ways; it
is shown how to rapidly calculate approximate convergence
pressures (avoiding costly flash calculations in the vicinity
of the convergence locus), extrapolate the results of previ-
ously performed flashes to obtain a high quality initial guess
for flash calculations, interpolate in rapidly generated
K-values tables, rapidly approximate phase boundary loca-
tion. Several numerical examples are given using a cubic
EoS and fluid systems (synthetic and naturally occurring)
taken from the literature, showing the extrapolating
capabilities of the proposed method.
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Appendix

Cubic Equation of State and expressions
of the coefficients Ck

The general form of two-parameter cubic EoS is

p T ; vð Þ ¼ RT
v � b

� a Tð Þ
v þ d1bð Þ v þ d2bð Þ : ðA1Þ

Equation (A1) includes the SRK EoS (Soave, 1972, for
d1 = 1 and d2 = 0) and the PR EoS (Peng and Robinson,
1976, for d1;2 ¼ 1� ffiffiffi

2
p

). With Z = pv/RT, A = ap/
(RT)2, and B = bp/RT, the implicit form (in the compress-
ibility factor Z) of the EoS is obtained.

The van der Waals one-fluid mixing rules are used for
the energy, A and for the volume, B parameters of the EoS

A ¼
Xn
i¼1

Xn
j¼1

xixj
ffiffiffiffiffi
Ai

p ffiffiffiffiffi
Aj

p
ð1� kijÞ; ðA2Þ

B ¼
Xn
i¼1

xiBi; ðA3Þ

where Ai ¼ Xaipri=T
2
ri 1þmiðxiÞ 1� T 0:5

ri

� �� 	2
and Bi ¼

Xbipri=Tri. Xa, Xb and m(x) are specific to each EoS.
The logarithm of equilibrium constants is

lnKi ¼ C 0 þ C 1

ffiffiffiffiffi
Ai

p
þ C 2Bi þ

Xmþ2

k¼3

Ckck�2;i;

i ¼ 1; n;

ðA4Þ

where

C 0 ¼ � ln ZL � BLð Þ þ ln ZV � BVð Þ; ðA5aÞ

C 1p ¼ 2
ðd1 � d2Þ

kðiÞp
Bp

� ln Zp þ d1Bp

Zp þ d2Bp

� �
; p ¼ L;V ; ðA5bÞ

C 1 ¼ C 1V � C 1L; ðA5cÞ

C 2 ¼ ZL � 1
BL

� ZV � 1
BV

� 1
2

C 1L

k ið Þ
L

AL

BL
� C 1V

k ið Þ
V

AV

BV

 !
ðA5dÞ

and

Ck ¼ vðiÞ
k

C 1L

kðiÞL
hkL � C 1V

kðiÞV
hkV

 !
; k ¼ 3;m þ 2; ðA5eÞ

where

Ap ¼ a2p þ 2
Xm
k¼1

hkpckp þ
Xm
k¼1

h2kp; p ¼ L;V ; ðA6Þ

a ¼
Xnc

j¼mþ1

yj
ffiffiffiffiffi
Aj

p
; ðA7Þ

hk ¼ yk
ffiffiffiffiffiffi
Ak

p
; k ¼ 1;m; ðA8Þ

ck ¼
Xn
i¼kþ1

yicki; k ¼ 1;m; ðA9Þ

cki ¼
ffiffiffiffiffi
Ai

p
1� kkið Þ; k ¼ 1;m; i ¼ k þ 1; n; ðA10Þ

kðiÞ ¼ hi þ ci
a



; i ¼ 1;m

; i ¼ m þ 1; n
ðA11Þ

and vðiÞ
j ¼ 0; i � j; vðiÞ

j ¼ 1; i > j.

Finally, the elements of the reduction matrix in
equation (6) are: q0i ¼ 1; q1i ¼

ffiffiffiffiffi
Ai

p
, q2i ¼ Bi, and

qki ¼ cki; k ¼ 3;m þ 2, for i = 1, . . ., n.
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