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Abstract

Photorhabdus luminescens is an entomopathogenic bacterium found in symbiosis with the

nematode Heterorhabditis. Dam DNA methylation is involved in the pathogenicity of many

bacteria, including P. luminescens, whereas studies about the role of bacterial DNA methyl-

ation during symbiosis are scarce. The aim of this study was to determine the role of Dam

DNA methylation in P. luminescens during the whole bacterial life cycle including during

symbiosis with H. bacteriophora. We constructed a strain overexpressing dam by inserting

an additional copy of the dam gene under the control of a constitutive promoter in the chro-

mosome of P. luminescens and then achieved association between this recombinant strain

and nematodes. The dam overexpressing strain was able to feed the nematode in vitro and

in vivo similarly as a control strain, and to re-associate with Infective Juvenile (IJ) stages in

the insect. No difference in the amount of emerging IJs from the cadaver was observed

between the two strains. Compared to the nematode in symbiosis with the control strain, a

significant increase in LT50 was observed during insect infestation with the nematode asso-

ciated with the dam overexpressing strain. These results suggest that during the life cycle of

P. luminescens, Dam is not involved the bacterial symbiosis with the nematode H. bacterio-

phora, but it contributes to the pathogenicity of the nemato-bacterial complex.

Introduction

Studies aiming to understand bacteria-host interactions often show that molecular mecha-

nisms involved in mutualism or pathogenesis are shared [1]. This raises the interest to study

models that have a life-cycle including both mutualism and pathogenicity stages. Photorhabdus
luminescens (Enterobacteriaceae) is symbiotically associated with a soil nematode, Heterorhab-
ditis bacteriophora [2]. The nemato-bacterial complexes are highly pathogenic for insects and

used as biocontrol agents against insect pest crops [3]. Mutualistic interaction between both
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partners is required as Photorhabdus is not viable alone in the soils and Heterorhabditis cannot

infect and reproduce without its symbiont [4]. Photorhabdus is carried inside the nematode

gut during the infective juvenile stage (IJ), a stage that is similar to the well characterized

dauer-stage of Caenorhabditis elegans [5]. After their entrance by natural orifices such as stig-

mata, or by cuticle disruption, nematodes release Photorhabdus in the hemocœl of the insect

[6, 7]. The bacteria then grow and produce a broad-range of virulence factors to kill the insect

by septicemia within 48 to 72 hours [8, 9]. Regurgitation and multiplication of the symbiont

induce a phenomenon called “IJ recovery” resulting in the formation of a self-fertile adult her-

maphrodite from every IJ [7]. Nematodes feed specifically on their symbiotic bacteria [10, 11].

Once nutrients are lacking in the insect cadaver and nematodes have done several develop-

ment cycles, some bacterial cells adhere to hermaphrodite gut at INT9 cells [12]. Bacteria

which can adhere to these cells express the Mad pilus [12, 13]. Hermaphrodites lay about 100

to 300 eggs giving rise to IJs feeding on and re-associating with Photorhabdus. Some eggs are

not released and develop inside the hermaphrodite by a mechanism called endotokia matricida
[14]. Nematodes coming from endotokia matricida will become IJs only and will re-associate

with Photorhabdus inside the hermaphrodite [14, 15]. After re-association of both partners,

the complexes exit from the cadaver to reach the soil in order to infect other insects [16]. The

pathogenic cycle implies a strong interaction between the bacterium and the nematode and

requires a bacterial switch from mutualism to pathogenic state. It is therefore a good model to

study differences between both states [17].

In enterobacteria, Dam (for DNA Adenine Methyltransferase) adds an m6A methylation

mark to the adenine of 5’-GATC-3’ sites. It can be involved in epigenetic mechanisms because

of a binding competition between a transcriptional regulator and Dam for some promoter

regions, leading to differential gene transcription [18]. Dam DNA methylation plays a role in

the pathogenicity of several pathogens such as S. Typhimurium [19, 20], Y. pestis and Y.

pseudotuberculosis [21, 22]. Other DNA methylation marks (m4C and m5C) involved in path-

ogenicity such as in H. pylori [23, 24] have also been described. However, the involvement of

DNA methylation in mutualistic associations are focused on host modifications, whereas bac-

terial DNA methylation data are scarce and limited to bacterial-plant interactions [25–27].

Recently we showed that the overexpression of dam using a medium-copy-number plasmid in

P. luminescens impairs virulence after artificial infection (i.e. direct injection of the bacteria in

the insect hemocoel) [28].

The aim of the present study was to investigate the role of Dam during the whole P. lumi-
nescens life-cycle, including its symbiotic stages with H. bacteriophora. A strain overexpressing

Dam MTase with a chromosomal insertion was therefore constructed. We then achieved a

symbiosis between this strain and the nematode and after a natural insect infestation by the

nemato-bacterial complex, we quantified the insect mortality rate over time, the IJs emergence

from the cadaver and the number of bacteria associated with these IJs.

Material and methods

Strains, plasmids and growth conditions

The bacterial strains, nematode strains and plasmids used are listed in Table 1. The P. lumines-
cens TT01 strain used in this study is the original strain [29] and not a recently described

rifampicin resistant strain [30]. Bacteria were grown in Luria broth (LB) medium with shaking

at 28˚C for Photorhabdus and 37˚C for E. coli, unless stated otherwise. When required, IPTG

was added at 0.2 mM, pyruvate at 0.1% and sucrose at 3%, antibiotics were used: gentamycin

(Gm) at 20 μg/mL-1 and chloramphenicol (Cm) at 8 μg/mL-1. Phenotypic characterization of

the strains was determined as previously described [28]. Two different insect models were
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used in this study: (i) the greater wax moth Galleria mellonella, a broadly used laboratory

model and (ii) the common cutworm Spodoptera littoralis, an insect pest causing crop dam-

ages, more relevant for our nemato-bacterial complex.

Chromosomal integration of dam
To avoid studying the effect of Dam overexpression on the bacterial nematode association

using an instable plasmid-borne dam construction, we inserted the dam gene under the con-

trol of the promoter Plac at the rpmE/glmS intergenic region of the chromosome [36] as fol-

lows. The dam gene was extracted from MCS5_dam plasmid [28], digested with SalI and XbaI
enzymes (NEB) and the resulting 889 bp fragment was cloned in the pBB-MCS1 vector using

T4 DNA Ligase (Promega). This plasmid MCS1_dam was then digested with AatII and SacI
enzymes to obtain a DNA fragment of 2194 bp containing a chloramphenicol resistance gene

and the dam gene controlled by the Plac promoter. In parallel, a 643 bp fragment overlapping

glmS gene and a 752 bp fragment overlapping rpmE gene from Photorhabdus were amplified

using R_GlmS_SalI, F_GlmS_AatII and R_RpmE_SacI, F_RpmE_SpeI respectively (S1 Table)

and digested with the appropriate enzymes. Finally, the pJQ200 plasmid (Table 1) was digested

Table 1. Strains and plasmids used in this study.

Strain or plasmid Relevant genotype or characteristics References or source

Strains

Photorhabdus luminescens
TT01

Wild type [29]

P. luminescens MCS5_dam Plasmidic dam overexpressing strain (Plac-dam on the pBBR1MCS-5 plasmid) [28]

P. luminescens Chr_dam Chromosomal dam overexpressing strain (Plac-dam inserted at glmS/rpmE locus of the

chromosome)

This study

P. luminescens Chr_gfp Control for Chr_dam strain (Plac- gfp inserted at glmS/rpmE locus of the chromosome) This study

Escherichia coli XL1 blue

MRF’

Δ(mcrA)183 Δ(mcrCB-hsdSMRmrr) Agilent technologies

173 endA1 supE44 thi-1 recA1

gyrA96 relA1 lac [F0 proAB

lacIqZΔM15 Tn10 (Tetr)]

E. coli WM3064 thrB1004 pro thi rpsl hsdS lacZΔM15 [31]

RP4-1360Δ(araBAD)567

ΔdapA1341::[erm pir (wt)]

Micrococcus luteus Wild type Pasteur Institute Culture collection, Paris,

France

Heterorhabditis
bacteriophora

Nematode wild type David Clarke, UCC, Cork, Ireland

Hb Chr_dam H. bacteriophora in symbiosis with P. luminescens Chr_dam strain This study

Hb Chr_gfp H. bacteriophora in symbiosis with P. luminescens Chr_gfp strain This study

Plasmids

pBB1MCS5 Cloning vector, GmR [32]

MCS5-dam MCS5 with dam gene from P. luminescens under Plac control [28]

pBBMCS-1 Cloning vector, CamR [33]

MCS1-dam MCS1 with dam gene from P. luminescens under Plac control This study

pBB-KGFP pBB broad host range gfp[mut3] KanR [34]

pJQ200 Mobilizable vector, GmR [35]

pJQ_gfp pJQ200 plasmid with gfp coding gene This study

pJQ_dam pJQ200 plasmid with Plac-dam sequence from MCS1_dam surrounded by glmS and rpmE
partial sequences

This study

https://doi.org/10.1371/journal.pone.0212655.t001
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by SalI and SpeI and ligated together with the three fragments. E. coli XL1 Blue MRF’ was

transformed with the pJQ_Cam_Plac-dam ligation mixture and clones with the appropriate

antibiotic resistance (i.e., CmR and GmR) were selected. Similarly, the pJQ_Cam_Plac-gfp plas-

mid was constructed using gfp-mut3 gene (KpnI-PstI fragment) from pBB-KGFP (Table 1)

instead of dam. The plasmid constructions were controlled by sequencing of the inserts.

The recombinant plasmids pJQ_Cam_Plac-dam or pJQ_Cam_Plac-gfp were then transferred

in P. luminescens by conjugation as previously described [28]. The transconjugants were

selected with both Cm and Gm. The allelic exchanges were performed on at least 20 indepen-

dent transconjugants as previously described [37]. Finally, Sac resistant, Cm resistant and Gm

sensitive clones were grown overnight in LB + Cm. Genomic DNA was extracted using

QIAamp DNA Mini kit (Qiagen) and correct insertion was verified by sequencing the PCR

fragment overlapping the insertion site (using primers L_verif_GlmS and R_verif_RpmJ).

Clones with the correct insertion (Chr_dam and Chr_gfp) were then tested for their pheno-

types as previously described [28] and conserved in glycerol (S2 Table).

RT-qPCR analysis

To quantify the level of dam overexpression in the Chr_dam strain, quantitative reverse tran-

scription-PCR (RT-qPCR) were performed as previously described [28, 38]. Briefly, RNA sam-

ples from 3 independent cultures for each strain (Chr_dam and Chr_gfp) were extracted with

RNeasy miniprep kit (Qiagen). Primers used are listed in S1 Table. Results are presented as a

ratio with respect to the housekeeping gene gyrB, as previously described [39].

Methylation-sensitive restriction enzyme (MSRE) PCR analysis

Changes in DNA-methylation pattern by dam overexpression in the Chr_dam strain was

tested by digestion of a locus (chromosomal position 10531) using a methylation-sensitive

restriction enzyme followed by PCR amplification. First, 1 μg of genomic DNA from P. lumi-
nescens WT and Chr_dam strains was diluted to 20 ng/μl and digested by EcoRI for 2 h at

37˚C in order to generate numerous linear fragments, followed by an enzyme inactivation step

(20 min at 65˚C). DNA was then diluted to 1 ng/μl and digested by 5U of MboI, a restriction

enzyme that digests only unmethylated GATC sites. Positive and negative control reactions

were performed similarly using either 5U of Bsp143I (which digests GATC sites, whatever

their methylation state) or water, respectively. A PCR amplification was then performed on 1

ng DNA (25 sec, 94˚C; 25 sec, 53˚C; 20 sec, 72˚C for 28 cycles) using MSRE-10531-F and

MSRE-10531-R primers (S1 Table). Detection of an amplicon revealed that no digestion

occurred (i.e., for MboI treatment, the GATC site of this region was methylated), while no

amplification revealed that the region was digested (i.e., for MboI treatment, the GATC site of

this region was unmethylated).

Insect virulence assay

P. luminescens Chr_dam and Chr_gfp strains virulence were tested for their virulence proper-

ties on Spodoptera littoralis in three independent experiments, as previously described [37].

Briefly, 20 μL of exponentially growing bacteria (DO540nm = 0.3) diluted in LB, corresponding

to about 104 CFU for each strain were injected into the hemolymph of 30 sixth-instar larvae of

S. littoralis reared on an artificial diet [40] with a photoperiod of L16:D8. Each larva was then

individually incubated at 23˚C and mortality times were checked. Survival rate for each bacte-

rial strain infestation were then analyzed using the nonparametric Gehan’s generalized Wil-

coxon test as previously described [37, 41] using SPSS V18.0 (SPSS, Inc., Chicago, IL) to

Various contribution of Dam during the Photorhabdus life-cycle

PLOS ONE | https://doi.org/10.1371/journal.pone.0212655 October 9, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0212655


compare the time needed to kill 50% of the infested larvae. LT50 was used to compare virulence

of Photorhabdus strains, given their high levels of insect pathogenicity [42].

Nemato-bacterial monoxenic symbiosis

A nemato-bacterial complex between H. bacteriophora and P. luminescens Chr_dam or

Chr_gfp strains was generated as follows. Photorhabdus WT strain was grown overnight at

27˚C with shaking in LB + pyruvate, plated on lipid agar plates [43] and then incubated at

27˚C during 48 h. 5000 IJs (infective juvenile stages) were added to Photorhabdus lipid agar

plates and incubated during 4 days at 27˚C. Hermaphrodites were collected from lipid agar

plates in 50 mL conical tubes by adding PBS to the plate, swirling and dumping into the tube.

After hermaphrodites have settled, PBS was removed. This step was repeated until a clear solu-

tion was obtained. Egg isolation from hermaphrodites was then performed as follows. 200 μL

of washed hermaphrodites were put into 3.5 mL of PBS. 0.5 mL of 5M NaOH mixed with 1mL

of 5.6% sodium hypochlorite was added and the tube was incubated for 10 minutes at room

temperature with short vortex steps every 2 minutes. The tube was centrifuged (30 s, 1300 g)

and most of the supernatant was removed leaving 100 μL in the tube. PBS was then added to a

final volume of 5 mL. After vortexing and centrifugation, eggs were washed again with 5 mL

PBS and collected after another centrifugation step. P. luminescens Chr_dam and the control

strain were grown in 5 mL of LB overnight at 27˚C with shaking. 30 μL of the culture were

spread on split lipid agar plates and incubated at 27˚C for two days prior to harvesting eggs.

Equal amounts of eggs (~1000) were added to each plate. PBS was added to the empty part of

the plate and plates were incubated for two weeks at 27˚C. IJs were collected in the PBS side of

the plate and stored at 4˚C.

Insects’ infestation and IJs emergence

G. mellonella infestations were performed in 1.5 mL Eppendorf tube to inhibit their weave

ability that occurs in plates and which would hinder direct contact with nemato-bacterial com-

plex. In each tube, 100 μL of PBS containing 50 IJs were added on a filter paper and one G. mel-
lonella larva was added. Tubes were incubated at 23˚C. S. littoralis infestations were performed

in 12 well plates using filter papers containing 50 IJs as described above. One S. littoralis larva

was added in each well with artificial diet. For both insects infestation, mortality was checked

regularly over time during 72 hours. The survival rates for each nemato-bacterial complex

were analyzed with Wilcoxon test performed as previously described [37, 41] using SPSS

V18.0 (SPSS, Inc., Chicago, IL) to compare LT50 of the infested larvae. Violin plots were used

to present the amount of IJs exiting from larvae cadaver in order to show the full distribution

of the data.

Bacterial CFUs in nemato-bacterial complex

CFUs for each nemato-bacterial complex were quantified as follows. IJs were filtered using a

20 μm pore-size filter to remove bacteria present in the solution. After resuspension in 5 mL of

PBS, two additional PBS washing steps were performed. Then, 10 IJs were counted under bin-

ocular magnifier and placed in 10–50 μL volume in 1.5 mL tube. Manual crushing was per-

formed using plastic putter and efficiency of nematodes disruption was verified by microscope

observation. After addition of 1 mL LB, 100 μL of the suspension was plated on LB Petri dish,

pure or at 10−1 dilution, with 3 replicates for each dilution. Photorhabdus CFUs were deter-

mined using a Li-Cor Odyssey imager and Image Studio version 1.1.7 version to discriminate

luminescent colonies (corresponding to P. luminescens) from others. Violin plots were used to

present the full distribution of the data. For each strain, three independent cultures were used

Various contribution of Dam during the Photorhabdus life-cycle
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to infest 3 insects, for a total of nine infestations. To test for differences in bacterial retention

of IJs obtained from these infestations, we performed a generalized linear mixed model

(glmm) including the identity of the strain culture as a random effect, using the spaMM pack-

age [44].

Ethics statement

According to the EU directive 2010/63, this study reporting animal research is exempt from

ethical approval because experiments were performed on invertebrates animals (insects).

Results

Effect of dam overexpression by chromosomal insertion in P. luminescens
dam expression was quantified in the Chr_dam strain harboring an additional copy of the

dam gene under the control of a strong promoter by a chromosomal insertion. An increase of

14-fold changes in dam expression in the Chr_dam strain was observed (p-value = 0.001) com-

pared to the control strain Chr_gfp (harboring a gfp gene inserted on the chromosome) (S1

Fig).

In order to determine if the DNA-methylation pattern in P. luminescens was increased in

the Chr_dam strain, a MSRE approach was used on a locus harboring a GATC site which was

previously found unmethylated over the course of the growth kinetics [45]. Results presented

in Fig 1 show that the undigested control but not the digested control (Bsp143I) led to a PCR

amplification detection. For DNA treated with MboI (which digests only unmethylated DNA),

a PCR amplification was detected for the Chr_dam strain indicating that the DNA was not

digested, and therefore was methylated. In contrast, no PCR amplification was detected for the

control strain, confirming that the DNA was unmethylated at this locus. This result confirmed

that the dam-overexpression modifies the methylation of the P. luminescens DNA.

To determine if the dam overexpression modified some P. luminescens phenotypes in the

Chr_dam strain, similarly as a strain overexpressing dam using a plasmid did [28], we charac-

terized its motility and insect pathogenicity compared to that of the control strain (Chr_gfp). A

significant decrease in motility was observed for the Chr_dam strain (p-value< 10−3, Wil-

coxon test) at 36h hours post inoculation (S2 Fig). LT50 in Spodoptera littoralis was signifi-

cantly reduced (p-value< 10−3, Wilcoxon test) in the dam overexpressing strain compared to

the control strain, with a delay of 2 hours (32.8 hours for the control and 34.9 for Chr_dam
strain; S2 Fig). These data confirmed that the dam overexpression in P. luminescens impairs

the bacterial virulence in insect. No other tested phenotype was impacted by chromosomal

dam overexpression in P. luminescens (S2 Table).

Symbiosis establishment

To study Dam involvement in the symbiosis stage of P. luminescens life-cycle, the formation of

a complex between P. luminescens Chr_dam or Chr_gfp strains and Heterhorhabditis was

achieved. No difference in the number of emerging IJs in vitro could be detected for the three

biological replicates (S3 Fig). This suggests that the nematode can feed and establish a symbi-

otic relationship with the Chr_dam strain in in vitro conditions.

Pathogenicity of the nemato-bacterial complex in Galleria mellonella and

Spodoptera littoralis
In order to study the role of the P. luminescens Dam MTase in the virulent stage of the

nemato-bacterial complex, G. mellonella or S. littoralis were infested and insect larvae

Various contribution of Dam during the Photorhabdus life-cycle

PLOS ONE | https://doi.org/10.1371/journal.pone.0212655 October 9, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0212655


Fig 1. Methylation-sensitive restriction enzyme (MSRE) PCR analysis. (A), MboI restriction of a DNA region with a methylated (grey box with black circles)

or unmethylated (grey box) GATC site, followed by PCR amplification. (B), PCR amplification of a locus harboring a previously found unmethylated GATC

site (chromosomal position 10531) was performed on P. luminescens WT or Chr_dam strains DNA digested by MboI or Bsp143I (which digests GATC sites,

whatever the methylation state). Detection of a 114 bp amplicon revealed that no digestion occurred.

https://doi.org/10.1371/journal.pone.0212655.g001

Fig 2. Nemato-bacterial complex pathogenicity by infestation. (A) Survival of G. mellonella larvae after infestation by 10 nematodes associated

with Chr_gfp bacterial strain (green) or Chr_dam strain (blue). A significant difference of 2 hours was observed for the time needed to kill 50% of the

larvae between the two strains (Wilcoxon, p-value<0.05). (B) Survival of S. littoralis larvae after infestation as described above. A significant

difference was observed with an almost 6 hours delay for the Chr_dam strain (Wilcoxon, p-value<0.001).

https://doi.org/10.1371/journal.pone.0212655.g002
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mortality was monitored over time. Both nemato-bacterial complexes (i.e., nematodes in sym-

biosis with either Chr_dam or Chr_gfp strains, respectively Hb Chr_dam and Hb Chr_gfp)

were pathogenic as they caused insect death in less than 72 hours. For G. mellonella, the LT50

were 48 and 50.6 hours for Hb Chr_gfp and Hb Chr_dam, respectively. The difference between

the two strains was significant (p-value<0.05, Wilcoxon test) (Fig 2A). In S. littoralis the LT50

was delayed by almost 6 hours (48.4h and 54.2h for Hb Chr_gfp and Hb Chr_dam, respec-

tively) (Fig 2B). This difference was highly significant (p-value <0.001, Wilcoxon test).

Emerging IJs from cadavers

To investigate Dam role in the in vivo association between the nematode and P. luminescens,
we quantified IJs emerging from each insect larvae. The amount of emerging IJs exiting from

the cadavers of G. mellonella and S. littoralis were not different between both nemato-bacterial

complexes used (p-value = 0.991 and p-value = 0.31, respectively, Wilcoxon test) (Fig 3A and

3B).

Bacterial symbionts numeration in emerging IJs

For each strain, numeration of CFU in emerging IJs was performed after nematode crushing.

This experiment revealed that after a cycle in the insect, several bacterial colonies displaying

no luminescence appeared, indicating that they did not belong to the Photorhabdus genus.

Therefore, only luminescent colonies were numerated. Results presented in Fig 4 show that

there was slightly more Photorhabdus CFU numerated from nematode in symbiosis with the

control strain (460+/-126 CFU) than with the dam overexpressing strain (270+/-100 CFU, p-

value<0.01, glmm, see material and methods section for details) (Fig 4). However, this experi-

ment showed that each strain was able to colonize H. bacteriophora.

Discussion

We previously described that Dam MTase allows the methylation of most (>99%) of the ade-

nines in 5’-GATC-3’ motifs in the P. luminescens TT01 genome and that DNA methylation

profile was stable during in vitro growth [45]. The dam overexpression in P. luminescens, using

a medium-copy-number plasmid, was shown to increase the DNA methylation rate [45], as

confirmed here using a chromosomal insertion.

While the P. luminescens dam overexpression was also showed to cause a decrease in patho-

genicity after direct injection of the bacteria in the insect hemocoel [28], the role of Dam dur-

ing the whole P. luminescens life-cycle, including its symbiotic stages with H. bacteriophora
was investigated here, using a strain harboring an additional copy of the dam gene under the

control of a constitutive promoter by a chromosomal insertion. We first confirmed that dam
overexpression decreases motility and virulence in insect when compared to a control strain,

indicating that dam overexpression causes the same changes in phenotypes compared to the

parental strain, independently of the construction used.

The in vitro symbiosis between H. bacteriophora nematode and either the P. luminescens
dam-overexpressing strain or the control strain showed similar amount of emerging IJs for

each nemato-bacterial complex, revealing that the nematodes can feed and multiply on both

strains in vitro. The symbiosis efficiency of both strains was then assessed in vivo after a cycle

on insects by analyzing three parameters: (i) The pathogenicity of the nemato-bacterial com-

plex was assessed by recording the LT50, (ii) the nematode reproduction was assessed by

numeration of IJs emerging from each cadaver, (iii) the bacterial ability to recolonize the nem-

atodes gut inside the insect cadaver was assessed by numerating bacteria in IJs. The first two

parameters (i.e. pathogenicity and emerging IJs) were done using two insect models in order
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to compare our results between a broadly used insect model (G. mellonella) and a more rele-

vant insect for our nemato-bacterial complex (S. littoralis). Results showed that the P. lumines-
cens Dam contributes to the pathogenicity of the nemato-bacterial complex in both insect

models. However, differences between the two insect models were observed. In G. mellonella,

a significant difference of 2 hours in LT50 between both nemato-bacterial complexes strains

could be detected. In S. littoralis, a higher difference in LT50 was noted compared to that in G.

mellonella, as a 6 hour-delay was required to kill half of the larval cohort for Hb Chr_dam
strain compared to the control. Because in both insects the control strain took the same time

Fig 3. Number of emerging IJs from each cadaver. (A) Emerging IJs from each G. mellonella cadaver for each strain.

The amount of IJs exiting from larvae cadaver were not significantly different between the two strains (Wilcoxon, p-

value = 0.991). (B) Emerging IJs from S. littoralis larvae cadaver for each strain. The amount of IJs exiting from larvae

cadaver were not significantly different (Wilcoxon, p-value = 0.31).

https://doi.org/10.1371/journal.pone.0212655.g003

Fig 4. CFU in IJs nematodes for each strain. After crushing of 10 IJs and plating of the resulting suspension, CFU

were numerated. A significant difference was observed between the two strains (glmm, p-value<0.01).

https://doi.org/10.1371/journal.pone.0212655.g004
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to reach LT50 (48h) the observed difference between insect models is related to dam overex-

pression. One hypothesis is the involvement of Dam in genes regulation that are more impor-

tant for the pathogenicity in S. littoralis model. Altogether these results show a decrease in

pathogenicity of the nemato-bacterial complex overexpressing dam that can be caused, at least

in part, by the decrease in pathogenicity of the bacteria alone, as previously described [28] and

confirmed here. While Dam DNA methylation is involved in various bacterial phenotypes

including pathogenicity, as previously described in S. Typhimurium [19, 20], Y. pestis [22] or

A. hydrophila [46], the only studies about DNA methylation involvement in symbiosis are lim-

ited to bacterial-plant interactions: in Bradyrhizobium, differences observed in DNA-methyla-

tion pattern between the free-living state and the symbiotic state suggest a role in cell

differentiation [25] and in Mesorhizobium loti overexpression of a methyltransferase delayed

nodulation [26, 27]. Here, no difference was observed in the number of emerging IJs between

both nemato-bacterial complexes after infestation of both insect models showing the lack of

involvement of Dam DNA methylation during P. luminescens symbiosis with an animal host.

The observed differences in LT50 between injection and infestation with the two nemato-

bacterial complexes in S. littoralis (2 hours delayed LT50 for Chr_dam strain by injection and 6

hours delayed LT50 for Hb Chr_dam by infestation) suggest a role of Dam not only in the bac-

terial pathogenicity, but also and to a greater extent, in the pathogenicity of the nemato-bacte-

rial complexes. However, because a longer time is required for the nemato-bacterial complexes

to kill insects than for the bacteria alone (48h vs 36h, respectively for the control strain), we

cannot rule out that these differences are only an indirect effect.

Here, we show that both the P. luminescens dam-overexpressing strain and its control strain

allow nematode multiplication in vitro and in vivo, nematode virulence in insects, nematode

emergence from the cadavers, and nematode’s gut colonization, revealing that symbiosis estab-

lishment is not impaired by the bacterial dam overexpression. However, we cannot rule out

that the observed slight reduction in the amount and CFU per IJ can play a role in life history

trait of the nemato-bacterial complex. This could be investigated in further studies by monitor-

ing the evolution of the three parameters analyzed here (pathogenicity, emerging IJ, amount

and CFU per IJ) after several successive cycles of infestation.

Conclusion

This study showed that the P. luminescens Dam displays various contribution in the P. lumi-
nescens life-cycle, depending on the stages investigated. While during its symbiotic stages with

H. bacteriophora Dam did not significantly contribute to the nematode feeding on bacteria

(both in vitro and in vivo), nor to the IJs emergence from the insect cadaver, the P. luminescens
Dam contributes to the virulence stage in S. littoralis after infestation by the nemato-bacterial

complex.
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