
HAL Id: hal-02334153
https://hal.science/hal-02334153

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linearized min-max robust model predictive control:
Application to the control of a bioprocess

Seif Eddine Benattia, Sihem Tebbani, Didier Dumur

To cite this version:
Seif Eddine Benattia, Sihem Tebbani, Didier Dumur. Linearized min-max robust model predictive
control: Application to the control of a bioprocess. International Journal of Robust and Nonlinear
Control, 2019, �10.1002/rnc.4754�. �hal-02334153�

https://hal.science/hal-02334153
https://hal.archives-ouvertes.fr


Linearized min-max robust model predictive control: application
to the control of a bioprocess

S. E. Benattia and S. Tebbani∗,† and D. Dumur

Laboratory of Signals and Systems (L2S, UMR CNRS 8506), CentraleSupélec-CNRS-Univ. Paris-Sud, Université
Paris-Saclay, France

SUMMARY

This work deals with the problem of trajectory tracking for a nonlinear system with unknown but bounded
model parameter uncertainties. First, this work focuses on the design of a robust nonlinear model predictive
control (RNMPC) law subject to model parameter uncertainties implying solving a min-max optimization
problem. Secondly, a new approach is proposed, consisting in relating the min-max problem to a more
tractable optimization problem based on the use of linearization techniques, to ensure a good trade-
off between tracking accuracy and computation time. The developed strategy is applied in simulation
to a simplified macroscopic continuous photobioreactor model and is compared to the RNMPC and
nonlinear model predictive controllers. Its efficiency and its robustness against parameter uncertainties
and/or perturbations are illustrated through numerical results. Copyright c© 2016 John Wiley & Sons, Ltd.

KEY WORDS: robust model predictive control; min-max problem; uncertain systems; stability;
bioreactor

1. INTRODUCTION

The control of nonlinear uncertain systems subject to physical constraints on both input and state is
undoubtedly a challenging and important issue, involving either stabilization or tracking problems.
To cope with this challenge, well-known systematic nonlinear control methods such as feedback
linearization and constructive Lyapunov-based methods [1, 2, 3] lead to very elegant solutions,
but they often rely on a complicated design procedure that does not scale well to large systems,
and they cannot handle constraints easily or in a systematic manner. Based on this, the concept
of optimal control and in particular the Receding Horizon Control (RHC) approach appears to
be an attractive alternative since the complexity of the control design only increases moderately
with the size and complexity of the system. Among RHC strategies, Model Predictive Control
(MPC) is a powerful approach [4, 5], which allows the current control input to be determined,
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while taking account of the future system behavior and constraints on the system. This approach is
based on the receding horizon principle, where a finite horizon open-loop optimal control problem
is solved at each sampling instant, using a model of the system to forecast future process behavior
over a given prediction horizon, and the optimized control trajectory is implemented until a new
optimized control trajectory is available at the next sampling instant. For strongly nonlinear or
uncertain systems, linear MPC may not be effective enough. In this case a nonlinear version can
be implemented, the so-called Nonlinear Model Predictive Control (NMPC) [6, 7]. Nevertheless,
including a nonlinear model within the MPC structure changes the problem from an online convex
quadratic problem to a repeated online possibly non-convex nonlinear problem, which may become
more difficult to solve [8]. In particular, special attention has to be given to the initial guess provided
to the algorithm as an important parameter to ensure the convergence and the success of a given
optimization problem.

Regardless of the linear or nonlinear formulation, the (N)MPC strategy is put forward because
of its ability to deal with uncertainties and constraints. It has proven itself in several applications
for many classes of systems and has had a significant impact on the world of industrial control
engineering. Indeed, MPC is cited as one of the most popular advanced techniques for industrial
process applications and has been widely adopted in the field of process control, due to the
simplicity of the algorithm. As a consequence, there are many applications of predictive control
strategies in very various domains, e.g. robot manipulators [9], clinical anesthesia [10], the cement
industry and pulp factories [11], drying towers and robot arms [12], distillation columns [13, 14],
Polyvinyl chloride (PVC) plants, steam generators and oil refining [15], solar power plants [6],
thermomechanical pulping [16, 17], biochemical systems [18, 19, 20], motor control and food
extruder processes [21], the petrochemical sector [22], aerospace [23, 24, 25], automotive [26],
mining metallurgy [27, 28], etc.

However, even if NMPC strategies have proved to be efficient in many industrial applications
thanks to their ability to operate the process safely under physical constraints, the monitoring of
complex, highly nonlinear, uncertain systems becomes an increasingly delicate task. This is the case
for example of bioprocesses, which will be the application field considered in this work. Indeed, in
such cases, the size of the model parameters vector is usually important and model parameters are
generally only known with a confidence interval (for example determined from an identification
procedure). In this case, the performances of the NMPC law usually decrease when the true plant
evolution deviates significantly from the one predicted by the model or when only a limited amount
of data is available.

In this case, one solution is to move to an adequate robust control strategy in order to guarantee
that the process will yield the reference trajectory under model parameter uncertainties. Therefore,
NMPC strategies have to be extended to provide robustness features, developing robust control
strategies, which can compensate for the lack of parameter information and/or accuracy, dealing
at the same time with constraints and disturbances acting on the system. There are two popular
alternatives for making decisions with incomplete knowledge: the stochastic solution (probabilistic
theory) [29] and the min-max solution (game theory) [30, 31, 32, 33], which appear to be expensive
approaches. Regarding the second solution, robust variants of NMPC (RNMPC) [34, 35] exist
capable of taking account of set bounded disturbance, as they are formulated as a nonlinear min-max
optimization problem. The effect of the uncertainties are taken into account in the design procedure,
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for which the objective function is minimized for the worst possible uncertainty realization.
However, this approach tends to become too complex to be solved numerically online in the case
of large scale systems. Consequently, the total calculation time is an important factor that must be
reduced as much as possible.

The aim of this paper is thus to propose a new robust control law formulation that is
computationally more tractable in calculating the optimal control compared to a min-max robust
approach, which makes it suitable for online implementation, while ensuring a stable real time
operation of the plant, close to a certain state or desired profile under model parameter uncertainties.
Therefore, the proposed solution, referred to as Linearized Robust MPC (LRMPC), transforms the
min-max RNMPC into a more tractable optimization problem, approaching the criterion through a
model linearization technique (first order Taylor series expansion) at each sampling time along the
nominal trajectory.

The paper is organized as follows. In Section 2, some notations used throughout the paper are
introduced. Section 3 presents the class of nonlinear systems that will be considered. The RNMPC
strategy, based on the min-max problem formulation, is firstly presented in section 4. The robust
predictive control strategy LRMPC, based on linearization techniques, is detailed section 5. An
application to the control of biomass concentration in a continuous photobioreactor is presented in
Section 6. Numerical results are provided in order to assess the effectiveness of the proposed strategy
in the case of model mismatch. Finally, a conclusion and perspectives are presented in Section 7.

2. NOTATIONS

Let N,R,R≥0 and Z denote natural, real, non-negative real and integer number sets, respectively.
0n×m ∈Rn×m is the zero matrix of dimension n×m and In ∈Rn×n is the identity matrix of dimension
n×n. The notation A∗ denotes the conjugate transpose of the matrix A. The notation A† denotes the
pseudo inverse of the matrix A such that A† , limδ→0 (A∗A+δ I)−1 A∗. Given n ∈ Z≥0, an arbitrary
norm of a vector x ∈ Rn is denoted as |x|. ||z||2P = z>Pz is the Euclidean norm weighted by the
matrix P. Matrix norm ||A|| is given by ||A|| =

√
σ̄(A∗A) with σ̄(A) the maximum eigenvalue of

A. A symmetric n× n real matrix A is said to be positive semidefinite if the scalar z>Az is non-
negative for every non-zero column vector z of n real numbers. It is denoted A � 0. A symmetric
n× n real matrix A is said to be positive definite if the scalar z>Az is positive for every non-zero
column vector z of n real numbers. It is denoted A � 0. A matrix A ∈ Rm×n is full column rank
if and only if A>A is invertible. Given an affine space A, a set B ⊆ A is said to be convex if
∀x,y ∈ B,∀t ∈ [0,1] : (1− t)x+ ty ∈ B. Let A be a convex set and let f : A −→ R. f is said to
be convex if ∀a,b ∈ A,∀t ∈ [0,1] : f (ta+(1− t)b)≤ t f (a)+(1− t) f (b). A function f : R−→ R is
said to be C n function with n ∈ N, if the first n derivatives f

′
(.), f

′′
(.), . . . , f (n)(.) all exist and are

continuous with respect to their argument.
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3. MODEL FORMULATION AND CONTROL OBJECTIVE

3.1. Model formulation

The first step to implement the predictive control strategy is achieved with the use of a prediction
model. In this context, it is important to obtain a mathematical representation reproducing the
behavior of the system to be controlled as accurately as possible. In our case, we will use a discrete
formulation: discrete models for prediction and control.

Consider a system described by an uncertain continuous-time nonlinear model:{
ẋ(t) = F(x(t),u(t),θ), x0 = x̄
y(t) = Hx(t)

(1)

where x ∈ X⊆ Rnx is the state vector with X the compact set of admissible states. x̄ is the initial state
vector. y∈ Y⊆Rny is the measured output with Y the compact set of admissible outputs. u∈U⊆Rnu

represents the control input with U the compact set of admissible controls. θ ∈ Rnθ is the vector of
uncertain parameters that are assumed to lie in the compact set Θ = [θ−,θ+] defined as follows:

θ = θnom +δθ (2)

where θnom is the nominal parameters vector defined as the average value (centroid) of the compact
set:

θnom =
θ++θ−

2
(3)

and δθ the parameter uncertainties vector. The mapping F : Rnx × Rnu × Rnθ −→ Rnx , of class
C 2 with respect to all its arguments, represents the nonlinear process dynamics. The measurement
matrix is given by H ∈ Rny×nx .

Remark 1
The sets X and U are generally polyhedral convex sets, taking account, for example, of physical
constraints acting on the system.

Remark 2
The measurement could also be nonlinear with respect to the state. It is assumed here linear to
simplifiy mathematical developments.

Exogenous inputs can act on system (1). They are omitted to simplify the notation (but are applied
to the system). Most models of real-life processes are given as continuous-time models, usually in
the form of differential equations (1). A discrete formulation is used to convert these models for the
purpose of controller design.

The discrete-time outputs are obtained at each constant sampling time Ts by the integration of
the continuous-time state space model (1) using, for example, the Runge-Kutta method with an
integration time step Td (lower than the sampling time Ts). The control input u(t) is parametrized
using a piecewise-constant approximation over a time interval [tk, tk+1], [kTs,(k+1)Ts)]:
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Let us define the discrete state trajectory g as the solution, at time tk+1, of system (1):{
xk+1 = g(t0, tk+1, x̄,u

tk
t0 ,θ)

yk = Hxk
(5)

with initial state x̄ = x0, and utk
t0 the control sequence from the initial time instant t0 to the time

instant tk.
Thus, the prediction model could be defined by the following recursive equations:{

xk+1 = f (xk,uk,θ),k ≥ 0, x0 = x̄
yk = Hxk

(6)

where xk+1 is the state at time tk+1, k is the time index, xk and yk are the discrete state vector and the
sampled output at time tk, respectively.
It can easily be shown that:

f (xk,uk,θ)≡ g(tk, tk+1,xk,uk,θ) (7)

In the sequel, model (5) will be used as the prediction model in the NMPC strategy (i.e. to predict
the future behavior of the system).

3.2. Control objectives

In this study, the main objective is to force the output signal y to follow a given reference trajectory
yr, while the control input u is constrained to track a reference ur. In addition, saturations on the
state vector and control input signal with minimum and maximum thresholds xmin, xmax, umin and
umax respectively can be included (defining the sets X and U as the constraints sets on the state
and control signals respectively). These inequality constraints may result from both physical and
operational constraints on the controlled system.

In this paper, the reference output yr is assumed to be determined from the application of the
reference input ur to the system, using prediction model (5). More generally, the tracking problem
is assumed to be feasible.

4. RNMPC STRATEGY AS A MIN-MAX OPTIMIZATION PROBLEM

As mentioned in section 1, the NMPC problem is mainly formulated for trajectory tracking
purposes. The predictive controller predicts the future evolution of the plant over a finite time
receding horizon, using a nonlinear dynamic model. At each time instant, the optimal control
sequence over the prediction horizon is computed by minimizing a quadratic criterion expressed
as the weighted sum of future output and tracking errors and future control tracking errors, while
ensuring that all constraints are respected. The first control in the optimal sequence is applied to
the system until the next time step, when the measurement becomes available. The optimization
problem is solved again at the next sampling time according to the well-known receding horizon
principle [6, 7].
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Since the predictive controller is model-based, it is very sensitive to model uncertainties and,
more specifically, to the model parameter values. In this context, it will be assumed hereafter
that the parameter vector θ is uncertain and belongs to a known set Θ as stated in section 3.1.
Thus, robustification in the presence of model uncertainties naturally leads to the formulation of a
nonlinear min-max optimization problem [43, 44, 33]. The min-max RNMPC strategy is recalled in
this section.

Considering the RNMPC formulation, the control sequence that minimizes a worst case cost
function is derived from the following optimization problem (at time index k):

?
u

k+Np−1
k = arg min

u
k+Np−1
k

max
δθ

ΠRNMPC(xk,u
k+Np−1
k ,δθ) (8)

subject to the constraints in a matrix form:

x̂k+ j = g(tk, tk+ j,xk,u
k+ j−1
k ,θ = θnom +δθ), j = 1,Np

θ ∈Θ
Inx 0nu

−Inx 0nu

0nx Inu

0nx −Inu


[

x̂k+ j

uk+ j−1

]
≤


xmax

−xmin

umax

−umin

 , ∀ j = 1,Np

(9)

where θ and θnom are given in (2) and (3), Np is the length of the prediction horizon.
The cost function that will be minimized is expressed as the sum of two quadratic functions based
on tracking errors over the receding horizon and defined as (at time tk):

ΠRNMPC(xk,u
k+Np−1
k ,δθ), ||uk+Np−1

k −ur,k+Np−1
k ||2V + ||ŷk+Np

k+1 − yr,k+Np
k+1 ||2W (10)

with xk the state vector at time tk,

uk+Np−1
k =


uk
...

uk+Np−1

 the optimization vector, ur,k+Np−1
k =


ur

k
...

ur
k+Np−1

 the reference control

sequence, the predicted outputs ŷk+Np
k+1 are defined as:

ŷk+Np
k+1 =


Hg(tk, tk+1,xk,uk,θ)

Hg(tk, tk+2,xk,uk+1
k ,θ)

...

Hg(tk, tk+Np ,xk,u
k+Np−1
k ,θ)

 (11)

and yr,k+Np
k+1 =


yr

k+1
...

yr
k+Np

 represents the setpoint values.

where the subscript is related to the time instant.
V � 0 and W � 0 are tuning weighting matrices.
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The optimal control sequence
?
u

k+Np−1
k is determined to minimize the output and control tracking

errors by considering all trajectories over all possible data scenarii [45, 46].
It is assumed that the tracking problem remains feasible for all realizations of the parameter

values. In other words, it is assumed that there exists a feasible control input sequence for every set
of parameter values within the known set Θ.

Remark 3
For the min-max problem (8), at sampling time (k + 1)Ts the optimization variables uk+Np

k+1 and

δθ are initialized by the optimal control sequence
?
u

k+Np−1
k+1 and the optimal parameter vector δ

?
θ

obtained from the optimization (8) at time instant k as follows:(
uk+Np

k+1

)
ini

= [
?
u

k+Np−1
k ,

?
uk+Np−1], ∀k ≥ 0

δθini = δ
?
θ = arg max

δθ

ΠRNMPC(xk,
?
u

k+Np−1
k ,δθ)

It clearly appears that the computation load grows with the size of the parameter vector,
the number of control inputs and the prediction horizon, while the control strategy has to be
implemented online. The challenge is thus to reduce the computation burden while maintaining good
performance in term of accuracy. This motivates the elaboration of a new control robust predictive
strategy with a limited time computation.

5. LINEARIZED ROBUST MPC

Since the min-max optimization problem (8)-(11) is time consuming, it will subsequently be
replaced by a more tractable optimization problem, reducing the computational burden of the initial
problem. The key idea is to approach the predicted outputs based on the nonlinear model through a
linearization technique, around the reference control inputs and the nominal model parameters.

As a direct result of the linearization, the non-convex problem will be transformed into a convex
one, for which more flexible tools will be accessible to handle the optimization problem more
effectively.

5.1. LRMPC formulation

In the following approach, the outputs in the moving time frame are predicted by Taylor series
expansion. A similar dual problem for robust state estimation, consisting in the design of a receding-
horizon observer, was presented in [47]. In this section, we propose to adapt this approach to the
case of NMPC law design.

Based on a first order Taylor series expansion of (7), the prediction model g for time tk+1, starting
from state xk, is linearized around the reference control ur

k and for the nominal parameters θnom:

x̂k+1 ≈ x̂nom,k+1 +∇θ g(tk+1)δθ +∇ug(tk+1)(uk−ur
k), fp(xk,uk,θnom +δθ) (12)
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with 

δθ = θ −θnom (13)

x̂nom,k+1 = g(tk, tk+1,xk,ur
k,θnom) (14)

∇θ g(tk+1) =
∂g(tk, tk+1,xk,uk,θ)

∂θ

∣∣∣∣∣∣∣∣∣∣∣ uk = ur
k

θ = θnom

(15)

∇ug(tk+1) =
∂g(tk, tk+1,xk,uk,θ)

∂uk

∣∣∣∣∣∣∣∣∣∣∣ uk = ur
k

θ = θnom

(16)

The model is still nonlinear with respect to the state vector (given by (14)). Only the effects of
control input and variations in parameter values are considered for the linearization approach.

Generalizing, the predicted state for time tk+ j, starting from the state at tk, is linearized around
the control sequence ur,k+ j−1

k and for θnom. Using the same approach as in (12) for j = 1,Np, we
obtain the following:

x̂k+ j ≈ x̂nom,k+ j +∇θ g(tk+ j)δθ +∇ug(tk+ j)
(

uk+ j−1
k −ur,k+ j−1

k

)
(17)

with 

x̂nom,k+ j = g(tk, tk+ j,xk,u
r,k+ j−1
k ,θnom) (18)

∇θ g(tk+ j) =
∂g(tk, tk+ j,xk,u

k+ j−1
k ,θ)

∂θ

∣∣∣∣∣∣∣∣∣∣∣ uk+ j−1
k = ur,k+ j−1

k
θ = θnom

(19)

∇ug(tk+ j) =
∂g(tk, tk+ j,xk,u

k+ j−1
k ,θ)

∂uk+ j−1
k

∣∣∣∣∣∣∣∣∣∣∣ uk+ j−1
k = ur,k+ j−1

k
θ = θnom

(20)

Different approaches are possible for determining the sensitivity functions defined in (19) and
(20) with respect to the parameter vector and the control sequence respectively.

The dynamics of the sensitivity function with respect to θ can be computed for time t ∈ [tk, tk+Np ]

by solving numerically the following differential equation (from (1)):

d
dt

(∇θ g(t)) =
∂F(x(t),u(t),θnom)

∂x
∇θ g(t)+

∂F(x(t),u(t),θ)
∂θ

|θ=θnom (21)
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with as an initial condition:
∇θ g(tk) = 0nx×nθ

(22)

An alternative procedure is to use the finite differences in order to approximate numerically
the derivatives ∇θ g for each parameter θl , l ∈ [1,nθ ] and ∇ug(tk+ j) for each control u j, j ∈
[k,k+Np−1].

The finite difference method approximates the (i, j)-th element of the Jacobian of a vector
function g(z) as

∇g(z)≈ gi(z j +δ )−gi(z j)

δ
(23)

for some small δ > 0. A too large δ will induce inaccuracies due to the nonlinearity of gi, since the
method computes the average slope between two points.

Remark 4
The most accurate result and computationally most efficient approach is to calculate gradients
analytically (by symbolic differentiation). Doing this by hand, or even using symbolic computations,
may quickly become intractable for MPC problems that may contain a large number of variables
and parameters.

In order to simplify the calculation of the gradients ∇θ g and ∇ug, finite differences are used below
to approximate numerically the derivatives ∇θ g(tk+ j) and ∇ug(tk+i).
From (11) and (17), the predicted ouputs over the moving horizon are expressed as follows:

ŷk+Np
k+1 = Gk+Np

nom,k+1 +Gk+Np
θ ,k+1δθ +Gk+Np−1

u,k (uk+Np−1
k −ur,k+Np−1

k ) (24)

where

Gk+Np
nom,k+1 =



Hx̂nom,k+1
...

Hx̂nom,k+ j
...

Hx̂nom,k+Np


, is the column vector containing the predicted output for the nominal

case.

Gk+Np
θ ,k+1 =



H∇θ g(tk+1)
...

H∇θ g(tk+ j)
...

H∇θ g(tk+Np)


, regroups the Jacobian matrices related to the parameters.

Gk+Np−1
u,k =



H∇ug(tk+1)
...

H∇ug(tk+ j)
...

H∇ug(tk+N p)


, regroups the Jacobian matrices related to the control sequence.

Assuming that the uncertain parameters are uncorrelated and recalling that

θ
− ≤ θ ≤ θ

+ (25)
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and

θnom =
θ++θ−

2
(26)

Thus,
θ−−θ+

2
≤ θ −θnom ≤

θ+−θ−

2
(27)

Then, the bounded parametric error δθ can be expressed by:

δθ = γδθmax (28)

with
δθmax = (θ+−θ

−)/2 (29)

and
||γ|| ≤ 1 (30)

The initial objective function ΠRNMPC (10) is substituted by a cost function using the equation (24).
The result is given by the following expression:

ΠRNMPC(xk,u
k+Np−1
k ,δθ)≈ ||uk+Np−1

k −ur,k+Np−1
k ||2V+

||Gk+Np
nom,k+1− yr,k+Np

k+1 +Gk+Np
θ ,k+1δθ +Gk+Np−1

u,k (uk+Np−1
k −ur,k+Np−1

k )||2W
, Π(xk,u

k+Np−1
k ,δθ)

(31)

The new optimization problem is given by:

?
u

k+Np−1
k = arg min

u
k+Np−1
k

max
δθ

Π(xk,u
k+Np−1
k ,δθ) (32)

subject to {
θ ∈Θ, x ∈ X, u ∈ U

δθ = γδθmax, ||γ|| ≤ 1
(33)

Stability properties of the robust model predictive control strategy taking account of bounded
uncertainties have been analyzed in [36, 37, 38, 39, 40, 41, 42]. The robust stability of the closed-
loop system (6) with (32)-(33) can be analyzed by exploiting the results obtained in [41, 38, 35]. An
ongoing study is considering the stability analysis of the proposed control strategy.

5.2. Calculation of the control sequence

The optimization problem (32)-(33) is solved by means of a robust regularized least squares strategy
in the presence of uncertain data, following an approach developed by Sayed et al. [48]. This
approach is thus dedicated to the case of bounded constraints on the control inputs and there are
no constraints on the state vector.

Let us consider the following robust regularized least squares (RRLS) problem:

min
z≤z≤z

max
δA,δb

[
||z||2V + ||(A+δA)z− (b+δb)||2W

]
(34)



11

where

• A is a known m×n matrix,
• z is an unknown n-dimensional column vector,
• b is a known m×1 vector,
• W � 0 and V � 0 are positive-definite weighting matrices.

The uncertainties δA ∈ Rm×n and δb ∈ Rm can be structured under the following factored form:{
δA =C∆Ea (35)

δb =C∆Eb (36)

where ∆ denotes an arbitrary contraction term with ||∆|| ≤ 1, with a known matrix C ∈ Rm×nξ not
identically null and where Ea and Eb are known quantities of appropriate dimensions.
In the sequel, the uncertainties δA and δb are replaced by a perturbation vector ξ ∈ Rnξ which is
assumed to satisfy the following factored form:

Cξ = δAz−δb =C∆(Eaz−Eb) (37)

Since ||∆|| ≤ 1, ξ is therefore constrained as follows:

||ξ || ≤ ||Eaz−Eb||, Γ(z) (38)

The non-negative function Γ(z) is assumed to be a known bound on the perturbation ξ and is only a
function of z.
With (37) and (38), the optimization problem (34) can be expressed as follows:

min
z≤z≤z

max
||ξ ||≤Γ(z)

[
||z||2V + ||Az−b+Cξ ||2W

]
(39)

The maximization subproblem is transformed into a standard form, which will further make it
possible to define the corresponding Lagrange dual problem:

min
z≤z≤z

min
||ξ ||≤Γ(z)

[
−||z||2V −||Az−b+Cξ ||2W

]
(40)

The constrained subproblem on ξ is solved by considering the Lagrangian duality [49]. We define
the Lagrangian L : Rn×Rnξ ×R+ −→ R associated with the optimization problem (40) as

L(z,ξ ,λ ),−||z||2V −||Az−b+Cξ ||2W +λ (||ξ ||2−Γ(z)2) (41)

where λ is the Lagrange multiplier associated with the inequality constraint (38) on ξ .
Consequently, the problem (40) becomes equivalent to

min
z≤z≤z

max
λ≥0

min
ξ

L(z,ξ ,λ ) (42)

Since L(z,ξ ,λ ) is a convex quadratic function of ξ , we can find an explicit solution of ξ which
depends on the two variables z and λ by cancelling the gradient of the Lagrangian with respect to
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ξ , leading to:
ξ
?(z,λ ) = (λ I−C>WC)†C>W (Az−b) (43)

where I is the identity matrix with an appropriate dimension.
Due to the fact that the Hessian of the Lagrangian function (41) with respect to ξ must be non-
negative at the optimum:

∂ 2L
∂ξ 2 =−C>WC+λ I� 0 (44)

It turns out that the dual variable λ must satisfy the following inequality constraint

λ ≥ ||C>WC|| (45)

Thanks to (43) and (45), problem (42) becomes

min
z≤z≤z

max
λ≥||C>WC||

L(z,λ ) (46)

with

L(z,λ ) =−||z||2V −||Az−b||2W (λ )−λΓ(z)2 (47)

in which the modified weighting matrix W (λ ) is derived from W via:

W (λ ) =W +WC(λ I−C>WC)†C>W (48)

The optimization problem (46) is further replaced by:

min
z≤z≤z

min
λ≥||C>WC||

J(z,λ )⇐⇒ min
λ≥||C>WC||

min
z≤z≤z

J(z,λ ) (49)

where the cost function J(z,λ ) is defined as follows

J(z,λ ), ||z||2V + ||Az−b||2W (λ )+λΓ(z)2 (50)

From (38), the optimization problem (49) is rewritten as:

min
λ≥||C>WC||

min
z≤z≤z

[
||z||2V +λ ||Eaz−Eb||2 + ||Az−b||2W (λ )

]
(51)

The corresponding formulation of the optimization problem (51) into a bilevel optimization problem
can be written as follows:

λ ? = arg min
λ≥||C>WC||

J(z(λ ),λ )

s.t. z(λ ) = arg min
z≤z≤z̄

J(z,λ )
(52)

The problem (52) is therefore structured as a two-level optimization problem:
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• Lower-level
The minimum z(λ ) is the solution of the following quadratic programming problem:

min
z

1
2

z>H z+F>z

subject to

[
I 0

0 −I

]
z≤

[
z
−z

] (53)

with {
H = 2

(
V (λ )+A>W (λ )A

)
F =−2

(
A>W (λ )b+λE>a Eb

) (54)

where W (λ ) is given by (48) and the modified weighting matrix V (λ ) is obtained from V via:

V (λ ) =V +λE>a Ea (55)

• Upper-level
The non-negative scalar parameter λ ? ∈ R+ is computed from the following unidimensional
minimization problem:

λ
? = arg min

λ≥||C>WC||

[
||z(λ )||2V +λ ||Eaz(λ )−Eb||2 + ||Az(λ )−b||2W (λ )

]
(56)

Finally, the bilevel problem (52) has a unique global minimum
?
z given by (53) for λ = λ ? (i.e.

?
z = z(λ ?)).

Based on this formalism, the min-max optimization problem defined by problem (32)-(33) with
criterion (31), is reformulated under the form (34)-(38) with:

min
z≤z≤z

max
||ξ ||≤||Eaz−Eb||

[
||z||2V + ||Az−b+Cξ ||2W

]
(57)

and 

z = uk+Np−1
k −ur,k+Np−1

k

A = Gk+Np−1
u,k

b = yr,k+Np
k+1 −Gk+Np

nom,k+1

C = Gk+Np
θ ,k+1

∆ = γ,Ea = 0,Eb =−δθmax

(58)

The application of (53)-(56) provides the solution of (32)-(33) with criterion (31) and inequality
constraints on uk+Np−1

k as follows:

Step 1. The scalar λ ? is computed from the following minimization problem:

λ ? = arg min
λ≥||Gk+N>p

θ ,k+1 WG
k+Np
θ ,k+1||

J(z(λ ),λ )
(59)
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where the function J(z(λ ),λ ) is defined by:

J(z(λ ),λ ) = ||z(λ )||2V +λ ||δθmax||2 + ||Gk+Np−1
u,k z(λ )− yr,k+Np

k+1 +Gk+Np
nom,k+1||2W (λ ) (60)

and z(λ ) is given by
z(λ ) = arg min

z≤z≤z

[
z>E(λ )z−2B(λ )>z

]
(61)

where 

E(λ ) =V +Gk+Np−1>

u,k W (λ )Gk+Np−1
u,k (62)

B(λ ) = Gk+Np−1>

u,k W (λ )
(

yr,k+Np
k+1 −Gk+Np

nom,k+1

)
(63)

z = uminInu −ur,k+Np−1
k (64)

z = umaxInu −ur,k+Np−1
k (65)

with W (λ ) given by:

W (λ ) =W +WGk+Np
θ ,k+1(λ I−G

k+N>p
θ ,k+1WGk+Np

θ ,k+1)
†G

k+N>p
θ ,k+1W (66)

Step 2. The control sequence
?
u

k+Np−1
k is derived from (61) for λ = λ ?:

?
u

k+Np−1
k = ur,k+Np−1

k + z(λ ?) (67)

To summarize, the predictive controller consists in solving online a bilevel optimization problem
(52) instead of solving a min-max problem (8-10): a quadratic programming problem (53) in the
lower level, and a unidimensional optimization problem (56) in the upper level. Since there are very
efficient algorithms for this kind of optimization problems and that the two problems are convex,
the obtained optimization problem remains more tractable than the min-max problem. In the sequel,
this predictive control law will be referred to as Linearized Robust Model Predictive Controller
(LRMPC). The LRMPC algorithm is summarized hereafter.

LRMPC Algorithm

Inputs:
Ts: sampling time,
Td : integration time step,
yr, ur: reference outputs and control inputs, respectively,
x0: initial state vector,
θnom: nominal parameters,
δθmax: maximum parameter uncertainties,
Np: length of the prediction horizon,
W , V : weighting matrices on the outputs and the control inputs, respectively.
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Outputs:
1. Initialization: k=1
2. Update xk, yr,k+Np

k+1 ,
?
u

k+Np−2
k−1

3. Compute Gk+Np−1
nom,k , Gk+Np−1

θ ,k , Gk+Np−1
u,k according to equations (18-20)

4. Solve the bilevel optimization problem (52)
4.1. Optimize λ ? by solving the unidimensional problem (59), by solving QP problem (61) for
each λ

4.2. Optimize
?
u

k+Np−1
k by solving the QP problem (61) for λ = λ ?

5. Apply
?
uk to the system

6. Save xk+1

7. k←− k+1
8. return to 2

It should be mentioned that the LRMPC approach can be used in the case of more complex
constraints on the control input (not only bounds). In this case, problem (61) becomes an NLP
problem with a quadratic cost function and nonlinear constraints. It can be solved with an SQP
algorithm for example.

In addition, this algorithm and formulation do not explicitly take account of the state constraints
(here bounds on the state vector). The assumption that the solution of the tracking problem exists
for all parameter realizations will make it possible to respect this assumption in general and the
proposed algorithm could be used. The state constraints could also be taken into account by adding
nonlinear constraints to the problem (61) (using model prediction). The problem to be solved then
becomes an NLP problem with a quadratic cost function and nonlinear constraints.

6. APPLICATION TO A BIOPROCESS

In this section, the proposed approaches developed in the previous section are applied to the control
of microalgae culture in a photobioreactor through a specific case study: the cultivation of I. galbana
in a continuous photobioreactor [50]. A Droop model is used to describe the internal nutrient
quantity per unit of biomass evolution. The aim here is to control biomass concentration in the
photobioreactor through the dilution rate. The performance of the proposed control strategy will
be compared to a nonlinear predictive controller and a min-max robust predictive controller. The
idea is to highlight the performance of the LRNMPC strategy in comparison with similar control
strategies.

6.1. Model description

The specificity of microalgae is that inorganic substrate uptake and growth are decoupled thanks to
an intracellular storage of nutrients [51]. In order to take into account this phenomenon, the growth
of microalgae is represented by a Droop model [52, 51] which decouples growth from substrate
uptake, leading to the definition of an internal cell quota (i.e., the internal nutrient quantity per
unit of biomass), and describes the growth rate as a function of the internal quota only. The mass
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balance model involves three state variables: the biomass concentration (denoted X, in µm3 L−1),
the internal quota (denoted Q, in µmol µm−3), and the substrate concentration (denoted S, in
µmol L−1). The considered dynamic model assumes that the photobioreactor is in continuous mode
(medium withdrawal flow rate equals its supply rate, leading to a constant effective volume), without
any additional biomass in the feed and neglecting the effect of gas exchanges. The time varying
equations resulting from mass balances are given by [50]:

Ẋ(t) = µ(Q(t), I(t))X(t)−DX(t)
Q̇(t) = ρ(S(t))−µ(Q(t), I(t))Q(t)
Ṡ(t) = (Sin−S(t))D−ρ(S(t))X(t)

(68)

where

• D represents the dilution rate (d−1, d: day) which is the ratio of the inlet flow rate to the
volume of the culture.
• Sin the input substrate concentration (µmol L−1).

The specific uptake rate ρ(S) is given by Monod kinetics:

ρ(S) = ρm
S

S+Ks
(69)

The parameters Ks and ρm represent respectively the substrate half saturation constant and the
maximal specific uptake rate.
The specific growth rate µ(Q, I), on the other hand, can be defined as a function of the internal quota
Q as follows (Droop model):

µ(Q, I) = µ̄

(
1− KQ

Q

)
µI(I) (70)

The theoretical maximal specific growth rate is denoted µ̄ and KQ represents the minimal cell quota,
for which no algal growth can take place.

The light intensity has a direct effect on growth (photosynthesis), while uptake can continue in the
dark. The modeling of the light effect consists in including the term µI in (70) which is represented
by a Haldane type kinetics to model the photoinhibition [53]:

µI(I) =
I

I +KsI +
I2

KiI

(71)

where I is the light intensity (µE m−2 s−1) and KsI and KiI are light saturation and inhibition
constants respectively. The optimal light intensity that maximizes the function µI is given by
Iopt =

√
KsIKiI . In the sequel, the light intensity is either set at this optimal value Iopt or is time

varying.
The parameters of the model used in this study are given in Table I [47],[54].
The nonlinear model (68) is represented thereafter in the state-space formalism (1) as follows:{

ẋ(t) = F(x,u,w,θ), x(t0) = x0

y = X
(72)
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Table I. Droop model parameters.

Parameter Value Unit
µ̄ 2 d−1

ρm 9.3 µmol µm−3 d−1

KQ 1.8 µmol µm−3

Ks 0.105 µmol L−1

KsI 150 µE m−2 s−1

KiI 2000 µE m−2 s−1

with 

x =

X
Q
S

 , w =

[
Sin

I

]
, u = D

F =

 µ(Q, I)X−DX
ρ(S)−µ(Q, I)Q

(Sin−S)D−ρ(S)X


θ =

[
ρm Ks µ̄ KQ KsI KiI

]T

(73)

where the state variables are assembled in a vector denoted x with x0 its initial value. The nonlinear
process dynamics are denoted F . The measurements are related to vector y whereas the inputs are
represented by vector u. The other exogenous inputs are denoted w. Finally, the parameters refer to
vector θ .

The steady states of the system are derived from three nonlinear equations, given in order to
cancel out the model’s dynamic equations, i.e.

F(xe,ue,w,θ) = 0 (74)

where w is assumed constant and known. For a given value of X , the goal here is to characterize the
corresponding values for Q, S and D for a constant light intensity I. Then, the equilibrium points are
defined as follows (from (68)): 

µ(Qe, I)−De = 0
ρ(Se)−µ(Qe, I)Qe = 0
(Sin−Se)De−ρ(Se)Xe = 0

(75)

Then, rearranging (75), the following system of equations has to be solved algebraically:

De = µ̄

(
1− KQ

Qe

)
µI

Se =
µ(Qe, I)QeKs

ρm−µ(Qe, I)Qe(
µ(Qe, I)QeKs

ρm−µ(Qe, I)Qe

)
−QeXe = 0

(76)

Sin − 
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Taking Qe as an unknown variable, the following quadratic equation must be solved:

[µ̄µIXe]Q2
e− [(Sin +Ks)µ̄µI +(ρm + µ̄µIKQ)Xe]Qe

+[(ρm + µ̄µIKQ)Sin + µ̄µIKQKs] = 0
(77)

Leading to:

Q∗e1,2 =
Sin +Ks

2Xe
+

1
2

Ql

(
1∓
√

1+α
1
Xe

+β
1

X2
e

)
(78)

For each value Xe, there are two possible real solutions Q∗e1,2 given by (78). It can be shown that
only one is feasible for the operating conditions considered in the sequel.

6.2. Control law objectives

The main objective of the controller is to regulate the biomass concentration X to a reference value
X r in the presence of parameter uncertainties and noise measurement, while the dilution rate D is
constrained to track the reference Dr where 0≤ D≤ Dmax (Dmax is the maximal dilution rate).

The NMPC problem is then formulated as:

min
0≤D

k+Np−1
k ≤Dmax

||Dk+Np−1
k −Dr,k+Np−1

k ||2V + ||Xk+Np
k+1 −X r,k+Np

k+1 ||2W (79)

and the RNMPC by:

min
0≤D

k+Np−1
k ≤Dmax

max
θ∈[θ−,θ+]

||Dk+Np−1
k −Dr,k+Np−1

k ||2V + ||Xk+Np
k+1 −X r,k+Np

k+1 ||2W (80)

where the uncertain parameter subspace [θ−,θ+] is given by [0.7θnom,1.3θnom] with θnom given in
Table I. This 30% mismatch has been chosen as a rather classic percentage in the literature. A more
rigourous approach could be to proceed with an identification procedure as in [55] to determine the
confidence intervals for all parameters.

The performance of the controllers in the case of disturbances (here the light intensity
fluctuations) will be also studied and evaluated.

The efficiency of the proposed control strategies is validated in simulation. The initial biomass
concentration value is set close to the setpoint in order to cancel the transient effect and focus
only on the behavior during setpoint changes (rising and falling edge respectively). The light
intensity is assumed to be non-measured, non-corrupted with noise. First, it is constant, equal
to Iopt that maximizes µ(Q, I) defined in (70). Secondly, it is time-varying. The performance
of the predictive algorithms is compared in a worst uncertain parameters case. Thanks to the
monotonocity properties of the Droop model as discussed in [47], the worst-case prediction can
be generated using parameter bounds {θ−,θ+} only, rather than by exploring the full parameter
space [θ−,θ+]. The parameter values of the system are chosen on the parameter subspace border
(θreal = [ρ+

m ,K−s , µ̄+,K−Q ,K−sI ,K
+
iI ]). All the simulation conditions are summarized in Table II.

Two configurations may be considered for the determination of the pair (Dr,X r) of reference
signals:
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Table II. Simulation conditions for the Droop model.

Variable Value Unit
sampling time Ts 10 min
integration time step Td 12 sec
simulation time Tf 1 d
inlet substrate concentration Sin 100 µmol L−1

optimal light intensity Iopt 547 µE m−2 s−1

maximal cell quota Ql 9 µmol µm−3

maximal admissible dilution rate Dmax 1.6 d−1

prediction horizon Np 5 -
weighting matrix on control V INp -
weighting matrix on state W INp -
initial biomass concentration X(0) 24.95 µm3 L−1

initial internal quota Q(0) 4 µmol µm−3

initial substrate concentration S(0) 0.05 µmol L−1

• Case 1: Dr −→ X r

The biomass reference trajectory X r is obtained by applying the dilution rate reference
trajectory Dr to the model.

• Case 2: X r −→ Dr

In case of constant X r (with an assumed constant light intensity), the dilution rate reference
trajectory Dr is computed from the knowledge of the target setpoint X r using relations at
equilibrium (76):

Dr = µ̄

(
1− KQ

Qr

)
µI (81)

with Qr the reference internal quota given by (78).
In case of time-varying X r or X r constant with a time-varying light intensity, the dilution rate
reference trajectory Dr could be determined by solving the following constrained open-loop
optimization problem:

Dr(t) = arg min
0≤D(t)≤Dmax

|X(t)−X r(t)|2 (82)

6.3. Numerical results

6.3.1. Constant light intensity The performance of setpoint tracking is first studied. The goal is
to track the biomass concentration setpoint (rising and falling step changes as illustrated in Figure
1), corresponding to case 1. Three predictive control laws are tested (Figures 1 and 2): a classic
Nonlinear Model Predictive Control (denoted as NMPC), a robust NMPC (denoted as RNMPC)
and the linearized one (LRMPC). Biomass concentration measurements, yk, are assumed to be
corrupted by centred Gaussian white noise with 0.1 standard deviation.

The anticipation behavior to a setpoint change (Figure 1) for all controllers can be noted thanks
to the prediction of the future evolution of the setpoint trajectory over the moving horizon. The
dilution rate decrease leads to an increase in the cell concentration (for example between 0.2 d and
0.3 d in Figure 2) and vice versa (for example between 0.7 d and 0.8 d), which agrees with the
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Figure 1. Biomass concentration evolution over time for NMPC, RNMPC and LRMPC strategies.
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Figure 2. Dilution rate evolution over time for NMPC, RNMPC and LRMPC strategies.

biological aspect. The obtained results, as expected, show that both RNMPC and LRMPC perform
better than the classic NMPC under parameter uncertainties and measurement noise. In the NMPC
law, the biomass concentration is not able to track the specified setpoint in the presence of parameter
uncertainties, due to the fact that the mismatch between the system and the model is not considered
during the prediction step inside the minimization procedure. Furthermore, the RNMPC performs
better than the LRMPC controller under parameter uncertainties in terms of tracking accuracy but
the computational burden of the former is much higher. The LRMPC algorithm performs well and
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offers a very significant computational load reduction compared with RNMPC as shown in Table
III. In fact, this can be explained by the fact that RNMPC is an optimization problem of dimension
Np× nu× nθ while LRMPC is a bilevel optimization problem. Consequently, when considering a
more complex model with a greater number of state variables and parameters, the computation time
increases quickly in the RNMPC strategy, becoming much higher than the sampling rate.

Table III. Comparison of the predictive algorithms in terms of computation time at each sampling time.

Computation time (s)
hhhhhhhhhhhhhhhhAlgorithm

Performance indices
min mean max

NMPC < 10−5 0.014 0.29
RNMPC 0.55 1.85 19.31
LRMPC < 10−5 0.01 0.09

The performance of the LRMPC law can even be improved when reducing sampling time Ts in
order to guarantee that the first order Taylor series expansion is as accurate as possible, leading to a
reduced steady state error [56].

A statistical analysis of the robustness is considered in order to highlight the advantage of
the proposed approach. To emphasize this aspect, simulation for a large number of independent
tests is performed with parameter variations for the same conditions as previously. Based on the
Monte-Carlo procedure, 100 tests have been conducted with a simultaneous random non-correlated
variation of 30% at the maximum in all the parameters θ . Figure 3 compares NMPC and LRMPC
performance. It clearly appears that using the LRMPC algorithm (solid line in blue) makes it
possible to reduce the standard deviation of the tracking error in comparison with a classic NMPC
(dotted line in red).
Figure 4 shows the resulting histogram of the distribution of the tracking error, and Table IV gives
the mean and standard deviation of the tracking error for the whole simulation.

Table IV. Comparison of the proposed algorithms in terms of tracking error distribution features.

hhhhhhhhhhhhhhhhAlgorithm
Performance indices

mean standard deviation

NMPC -0.07 0.219
LRMPC -0.05 0.014

These results confirm those obtained in the case depicted in Figure 1. Furthermore, Figure 4 shows
that the LRMPC has better results than the NMPC in terms of accuracy.

6.3.2. Variation of the light intensity The light intensity was set constant in the previous simulations
(equal to Iopt). In this section, the behavior of the controller in case the of time-varying light intensity
is discussed. Hereafter, a day/night-like variation is considered [57]:

Ireal(t) = Ī (max{0,sin(2πt)})2 + Iopt (83)
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Figure 4. Histogram of the average tracking error for simultaneous random non-correlated variations in all
the parameters (Monte-Carlo).

where the time t is in days and Ī is set to 280 µE m−2 s−1. Inominal = Iopt represents the light energy
provided by panels to the bioreactor and Ireal the perturbation modelled as a day/night cycle (i.e.
non-perfectly isolated culture) as shown in Figure 5.
The biomass concentration setpoint is constant (X r = 25µm3/L). The goal is thus to maintain the
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Figure 5. Light intensity evolution over time.

biomass concentration as close as possible to this value, despite the light intensity fluctuations.
Figures 6-7 compare the NMPC, RNMPC and LRMPC controller performance. The light intensity
considered in the model for prediction is Inominal .
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Figure 6. Biomass concentration evolution over time for NMPC, RNMPC and LRMPC strategies.
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A steady tracking error can be observed for all the controllers. The NMPC law leads to the highest
error (about 0.8 µm3 L−1), whereas the RNMPC strategy leads to the best result. The developed
LRMPC leads to a tracking error about 0.3 µm3 L−1. Indeed, since the LRMPC approaches the
RMPC problem, it leads to a slight loss in performance, but with a reduction in computation time.
It can be noticed that for all controllers, the impact of light variations on the biomass concentration
is well reduced by decreasing the dilution rate according to growth rate fluctuations (due to light
intensity variations), so that the biomass concentration is maintained constant at its reference value.
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7. CONCLUSIONS AND FUTURE WORK

In this paper, the robustification of a nonlinear model predictive controller in the case of model
uncertainties was studied. Considering a process model with parameters that are within given
confidence intervals, the min-max robust MPC can be designed in order to take account of these
parameter uncertainties. The optimal control sequence is then determined so that the maximum
deviation for all trajectories over all possible data scenarii is minimized. In this paper, a new
linearized robust NMPC strategy is presented. The goal is to turn the min-max optimization
problem involved in the RNMPC algorithm into a more tractable one. The proposed strategy is
based on the linearization of the predicted trajectory over the reference control sequence and the
nominal parameter values. The obtained optimization problem is a bilevel one: a unidimensional
optimization problem in the upper level, and a QP problem in the lower one. Several simulations
were performed in order to compare the proposed LRMPC strategy to the min-max RNMPC in
the case of model parameter uncertainties and disturbances in the case of a microalgae cultivation
system. The LRMPC ensures a good trade-off between computational load and tracking trajectory
accuracy.

Future research will focus on the impact of the convergence and feasability of the optimization
algorithm on the stability and performance of the control law.

One interesting perspective in order to cancel any residual tracking error may be to consider a
hierarchical control scheme that combines a robust model predictive control law with a proportional
Integral (PI) law.

Handling unstructured uncertainties by the controller should also be investigated. Moreover, the
biological variables are sometimes not accessible for measurement online and are usually measured
offline using expensive sensors. In this context, it is important to design an estimation algorithm or
so-called soft sensors to rebuild the time evolution of the state and develop a constructive procedure
for designing controllers robust in the face of additional estimation errors. Contributions in this area
are particularly important.
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