H. Katori, T. Ido, Y. Isoya, and M. Kuwata-gonokami, Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature, Phys. Rev. Lett, vol.82, p.1116, 1999.

E. A. Curtis, C. W. Oates, and L. Hollberg, Quenched narrow-line laser cooling of 40 Ca to near the photon recoil limit, Phys. Rev. A, vol.64, p.31403, 2001.

P. M. Duarte, R. A. Hart, J. M. Hitchcock, T. A. Corcovilos, T. Yang et al., All-optical production of a lithium quantum gas using narrow-line laser cooling, Phys. Rev. A, vol.84, p.61406, 2011.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, Laser cooling to quantum degeneracy, Phys. Rev. Lett, vol.110, p.263003, 2013.

A. Dareau, M. Scholl, Q. Beaufils, D. Döring, J. Beugnon et al., Doppler spectroscopy of an ytterbium bose-einstein condensate on the clock transition, Phys. Rev. A, vol.91, p.23626, 2015.

W. C. Stwalley and H. Wang, Photoassociation of ultracold atoms: a new spectroscopic technique, J. Mol. Spectrosc, vol.195, p.194, 1999.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Longrange molecules and atomic scattering, Rev. Mod. Phys, vol.78, p.483, 2006.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof et al., An optical lattice clock with accuracy and stability at the 10 ?18 level, Nature, vol.506, p.71, 2014.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys, vol.87, p.637, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01329728

L. Hollberg, C. W. Oates, G. Wilpers, C. W. Hoyt, Z. W. Barber et al., Optical frequency/wavelength references, J. Phys. B: At. Mol. Opt. Phys, vol.38, p.469, 2005.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic et al., Cold atom clocks and applications, J. Phys. B: At. Mol. Opt. Phys, vol.38, p.449, 2005.

J. Friebe, A. Pape, M. Riedmann, K. Moldenhauer, T. Mehlstäubler et al., Absolute frequency measurement of the magnesium intercombination transition 1 S0 ? 3 P1, Phys. Rev. A, vol.78, p.33830, 2008.

Y. Li, T. Ido, T. Eichler, and H. Katori, Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition, Appl. Phys. B, vol.78, p.315, 2004.

H. G. Dehmelt, Monoion oscillator as potential ultimate laser frequency standard, IEEE Transactions on Instrumentation and Measurement IM, vol.31, 1982.

J. Wrachtrup, C. Von, J. Borczyskowski, M. Bernard, R. Orrit et al., Optical detection of magnetic resonance in a single molecule, Nature, vol.363, p.244, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01549730

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, A transportable optical calcium frequency standard, Appl. Phys. B, vol.68, p.27, 1999.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, A diode-laser optical frequency standard based on lasercooled ca atoms: Sub-kilohertz spectroscopy by optical shelving detection, Eur. Phys. J. D, vol.7, p.449, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01082153

H. Kai-kai, Z. Jian-wei, Y. De-shui, C. Zhen-hui, Z. Wei et al., Application of electronshelving detection via 423 nm transition in calcium-beam optical frequency standard, Chinese Phys. Lett, vol.23, p.3198, 2006.

J. J. Mcferran, J. G. Hartnett, and A. N. Luiten, An optical beam frequency reference with 10 ?14 range frequency instability, Appl. Phys. Lett, vol.95, p.31103, 2009.

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen et al., Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10 ?15 instability, Optics Express, vol.25, p.30459, 2017.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli et al., Precision frequency measurement of visible intercombination lines of strontium, Phys. Rev. Lett, vol.91, p.243002, 2003.

I. Courtillot, A. Quessada-vial, A. Brusch, D. Kolker, G. D. Rovera et al., Accurate spectroscopy of sr atoms, Eur. Phys. J. D, vol.33, p.161, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00016398

L. Hui, G. Feng, Y. Wang, X. Tian, J. Ren et al.,

Q. Lu, Y. Xu, H. Xie, and . Chang, Precision frequency measurement of 1 S0-3 P1 intercombination lines of sr isotopes, Chinese Phys. B, vol.24, p.13201, 2015.

B. T. Christensen, M. R. Henriksen, S. A. Schäffer, P. G. Westergaard, D. Tieri et al., Nonlinear spectroscopy of sr atoms in an optical cavity for laser stabilization, Phys. Rev. A, vol.92, p.53820, 2015.

J. J. Mcferran and A. N. Luiten, Fractional frequency instability in the 10 ?14 range with a thermal beam optical frequency reference, J. Opt. Soc. Am. B, vol.27, p.277, 2010.

J. Olson, R. W. Fox, T. M. Fortier, T. F. Sheerin, R. C. Brown et al., Ramsey-bordé matter-wave interferometry for laser frequency stabilization at 10 ?16 frequency instability and below, Phys. Rev. Lett, vol.123, p.73202, 2019.

J. Huckans, W. Dubosclard, E. Maréchal, O. Gorceix, B. Laburthe-tolra et al., Note on the reflectance of mirrors exposed to a strontium beam, 2018.

G. Camy, C. J. Bordé, and M. Ducloy, Heterodyne saturation spectroscopy through frequency modulation of the saturating beam, Optics Communications, vol.41, p.325, 1982.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford et al., Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B, vol.31, p.97, 1983.

, We use the FSK function and define the frequency modulation as follows: a quarter of the period is a linear chirp increasing the frequency, a quarter period at constant frequency, a quarter period linear chirp to low frequency, a quarter period at constant frequency. The discretization in instantaneous frequency of the RF synthesis is kept below 0.6 kHz, The radio-frequency driver for this AOM is an AD9852 digital synthesizer

J. Rumble and R. , CRC Handbook of Chemistry and Physics, 2018.

, At 10 kHz, one quadrature displays a dispersive-like signal, suited for the spectroscopy, while the other quadrature has a Lorentzian shape that resembles a time-averaged, low-noise shelved population measurement. However, these signals are extremely sensitive to the demodulation phase, which can cause drifting offsets and asymmetric line shapes

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. , Hummer, Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach, Phys. Rev. A, vol.14, p.236, 1976.

A. Wallard, Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour, J. Phys. E: Sci. Instrum, vol.5, p.926, 1972.

, For the data with I ? 100Isat, the fit uncertainties are only 15 % larger than what would result from true Lorentzian signals with same widths, amplitudes, and noise standard deviation

J. K. Crane, M. J. Shaw, and R. W. Presta, Measurement of the cross sections for collisional broadening of the intercombination transitions in calcium and strontium, Phys. Rev. A, vol.49, p.1666, 1994.

, It should be noted that the finite transit time broadening, induced by the finite waist of the spectroscopy beams, can also be interpreted in terms of Doppler shifts from the various plane wave components of the Gaussian spectroscopy beams, vol.33

C. J. Bordé, G. Camy, and B. Decomps, Measurement of the recoil shift of saturation resonances of 127 I2 at 5145 a: A test of accuracy for high-resolution saturation spectroscopy, Phys. Rev. A, vol.20, p.254, 1979.

A. , The second order doppler shift in cesium beam atomic frequency standards, Metrologia, vol.7, p.49, 1971.

I. Manek, Y. Ovchinnikov, and R. Grimm, Generation of a hollow laser beam for atom trapping using an axicon, Optics Communications, vol.147, p.67, 1998.

Z. Liu, H. Zhao, J. Liu, J. Lin, M. A. Ahmad et al., Generation of hollow gaussian beams by spatial filtering, Opt. Lett, vol.32, p.2076, 2007.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, and A. D. Shiner, A narrow linewidth and frequency-stable probe laser source for the 88 Sr + single ion optical frequency standard, Appl. Phys. B, vol.95, p.43, 2009.