
HAL Id: hal-02333582
https://hal.science/hal-02333582

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Closer: A New Design Principle for the Privileged
Virtual Machine OS

Djob Mvondo, Boris Teabe, Alain Tchana, Daniel Hagimont, Noel de Palma

To cite this version:
Djob Mvondo, Boris Teabe, Alain Tchana, Daniel Hagimont, Noel de Palma. Closer: A New Design
Principle for the Privileged Virtual Machine OS. IEEE 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2019), Oct 2019,
Rennes, France. pp.49-60, �10.1109/MASCOTS.2019.00016�. �hal-02333582�

https://hal.science/hal-02333582
https://hal.archives-ouvertes.fr

Closer: A new design principle for the privileged
virtual machine OS

Djob Mvondo
LIG

Grenoble Alpes University
Grenoble, France

barbe-thystere.mvondo-djob@univ-grenoble-alpes.fr

Boris Teabe
IRIT

University of Toulouse
Toulouse, France

boris.teabedjomgwe@enseeiht.fr

Alain Tchana
I3S

University of Nice
Nice, France

alain.tchana@univ-cotedazur.fr

Daniel Hagimont
IRIT

University of Toulouse
Toulouse, France

Daniel.Hagimont@enseeiht.fr

Noel De Palma
LIG

Grenoble Alpes University
Grenoble, France

noel.depalma@univ-grenoble-alpes.fr

Abstract—In most of today’s virtualized systems (e.g.,
Xen), the hypervisor relies on a privileged virtual machine
(pVM). The pVM accomplishes work both for the hypervisor
(e.g., VM life cycle management) and for client VMs (I/O
management). Usually, the pVM is based on a standard OS
(Linux). This is source of performance unpredictability, low
performance, resource waste, and vulnerabilities. This paper
presents Closer, a principle for designing a suitable OS for the
pVM. Closer consists in respectively scheduling and allocating
pVM’s tasks and memory as close to the involved client VM as
possible. By revisiting Linux and Xen hypervisor, we present
a functioning implementation of Closer. The evaluation results
of our implementation show that Closer outperforms standard
implementations.

Index Terms—Virtualization, Privileged VM, NUMA, Para-
Virtualization

I. INTRODUCTION

The last decade has seen the widespread of virtualized
environments, especially for the management of cloud com-
puting infrastructures which implement the Infrastructure as
a Service (IaaS) model. In a virtualized system, a low level
kernel called the hypervisor runs directly atop the hardware.
The hypervior’s main goal is to provide the illusion of several
virtual hardware to guest OSes (called virtual machines -
VMs). In order to keep its trusted computing base as smaller as
possible, some of its functionalities (such as VM monitoring
and life-cycle management tools) are provided by a privileged
virtual machine (hereafter pVM), see Fig. 1.

Para-Virtualization (PV), introduced by Disco [1] and Xen
[2], is a very popular virtualization approach which consists
in making the guest OS aware of the fact that it runs in
a virtualized environment. This approach has been proven
to reduce virtualization overhead [3] and also mitigate the
limitation of some virtualization hardware features (e.g. the
inability to live migrate a VM with SR-IOV [4]–[6]). In this
approach, the pVM plays a critical role because it hosts some

device drivers (e.g. I/O) used by unprivileged VMs (uVMs),
making the pVM performing a lot of work on behalf of uVMs.
In this paper, we are interested in virtualization systems which
rely on such a pVM.

Fig. 1. Overall architecture of a virtualized system

The main issue with current pVMs is that they rely on
standard OSes (e.g., Linux) whose resource manager does
not consider pVM’s particularities. The most important
characteristic of the pVM is the correlation between pVM’s
tasks and uVM’s activities. A significant part of pVM tasks
are correlated with uVM’s activities: (1) in terms of quantity,
as the amount of resources required by the pVM depends
on uVM’s activities (especially I/O operations), and (2) in
terms of location in a NUMA architecture, as resources (e.g.
memory) allocated for one pVM’s task are likely to be used
by correlated uVM’s activities.

A standard OS (running in a VM) manages resources for its
applications and itself, but is not aware of resources managed
in other VMs running on the same host. Therefore, the previ-
ous correlation between pVM and uVMs is not considered in a
standard OS, thus leading to resource waste, low performance
on NUMA architectures, performance unpredictability, and
vulnerability to DoS attacks [7]–[9]. To take into account this
correlation, the pVM should respect three rules:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Xen VMWare Hyper-V KVM

N
or

m
al

iz
ed

th
ro

ug
hp

ut
Alone Co-localised

Fig. 2. In all existing hypervisors, the correlation of pVM’s tasks with
uVM’s activities is not taken into account. This leads to several issues
such as performance unpredictability, illustrated in this figure. Normalized
performance of a website benchmark (wordpress) executed in two situations:
alone and colocated with several other I/O intensive uVMs (normalized over
the co-located situation). A predictable pVM management would have led to
the same performance level regardless the colocated uVMs. The hypervisors
versions are respectively Xen 4.9.1, VMWare ESXi 6.5, Hyper-V 2016 and
Qemu-KVM 2.10.1

• on-demand. Resource allocation to the pVM should
not be static. Resources should be allocated on demand
according to uVMs activities. Without this rule, resources
would be wasted if over-provisioned or they would be
lacking, leading to performance unpredictability.

• pay-per-use. The resources allocated to a pVM task
which is correlated with a uVM activity should be
charged to the concerned uVM. Without this rule, the
pVM would be vulnerable to DoS attacks from a VM
executing on the same host, which could use most of the
resources from the pVM.

• locality. The resources allocated to a pVM task which
is correlated with a uVM activity should be located as
close as possible (i.e. on the same NUMA node) to the
uVM activity. This rule allows reducing remote memory
accesses in the NUMA architecture, improving the uVM
performance.

These rules are not currently respected by the pVM of the
most popular virtualization systems.

In order to assess the significance of this issue, we evaluated
the performance of a website (provided with wordpress [10])
executed within a VM in two situations. First, the VM runs
alone on the machine. Second, the VM shares the machine
with other VMs which perform intensive I/0 operations. We
performed these experiments using popular hypervisors. In
Fig. 2, we can observe that for all hypervisors, the performance
of wordpress is unpredictable. We suspect (and we later
demonstrate it with Xen) that this is caused by the saturation of
the pVM, which size is fixed, thus not correlated with uVM’s
activities. In fact, by over-estimating the number od CPUs
assigned to the pVM, we observed no performance variation.

In this paper, we propose Closer, a principle for implement-

ing a suitable OS for the pVM, Closer promotes the proximity
(to uVMs) and the utilization of uVM’s resources. Following
Closer, we propose a general architecture for the pVM. We
revisit Linux thanks to this architecture, thus providing a
ready to use OS dedicated to the pVM. We demonstrate the
effectiveness using Xen, a popular open source virtualization
system (used by Amazon). The final contribution of this paper
is the instensive evaluation of our implementation usign both
micro- and macro-benchamrks. The evaluation results show :
• No resource waste from the pVM, as the resources are

allocated on-demand.
• Improvement of both VM life-cycle management tasks

(creation, destruction, migration, etc.) and user’s appli-
cation performance in comparison with vanilla Linux
(as the pVM OS) and Xen (as the hypervisor). We
improve both VM destruction and migration time (by up
to 33%). Regarding user’s application performance, we
improve I/O intensive workloads (up to 36.50% for packet
reception latency, 42.33% for packet emission latency,
and 22% for disk operations).

• Pay-per-use and performance predictability enforcement,
as pVM used resources are charged to the uVMs it works
for.

The rest of the paper is organized as follows. Section II
introduces key characteristics of virtualization systems where
our works take place. Section III presents the motivations
and an assessment of the problem. Section IV presents our
contributions while Section V presents evaluation results. A
review of the related work is presented in Section VI. The
conclusion is drawn in Section VII.

II. BACKGROUND

Fig. 1 illustrates the general architecture of a virtualized
environment. The hypervisor is the system layer which en-
forces resource sharing between virtual machines. For sim-
plicity, maintainability and security purposes, a particular
VM is used as an extension of the hypervisor. This VM
is called the privileged VM (pVM) while other VMs are
called unpriviledged VMs (uVMs). The pVM embeds uVM
life-cycle administration tools (e.g., libxl in Xen, parent
partition in Hyper-V) and data center administration
applications (e.g novaCompute in OpenStack). In addition to
these tasks, the pVM is also used in most deployments as a
proxy for sharing and accessing I/O devices, see Fig. 3. In
this case, the pVM embeds the driver enabling access to the
hardware device, and a proxy (called backend) which relays
incoming (from the driver to a uVM) or outgoing (from a
uVM to the driver) requests. Each uVM includes a fake driver
(called frontend) allowing to send/receive requests to/from the
uVM’s backend. Therefore, each I/O operation performed by
a uVM involves significant computations in the pVM. This
architecture for I/O management is known as the split-driver
model. It is widely used in datacenters for its very good
performance and its high flexibility compared to hardware-
supported (HVM) solutions based on Single Root I/O Vir-
tualization (SR-IOV) [11]. Indeed, SR-IOV allows a single

device to be shared by multiple VMs while bypassing both
the hypervisor and the pVM (the VM sends/receives packets
directly to/from the device). However, SR-IOV is not widely
adopted in datacenters as it comes with a strong limitation:
VM migration should be disable [4]–[6], thus forbidding VM
consolidation in the datacenter (which is critical for energy
saving).

Fig. 3. Both open source (Xen) and commercial (Hyper-V) hypervisors
implement the split-driver model. In the latter, the pVM provides access to
I/O devices on behalf of uVMs.

III. MOTIVATIONS

Almost all previous research works have focused on re-
source allocation to uVMs since they host user applications.
This paper shows that resource management for the pVM
is a tricky task, and that it can have a significant impact
on both administrative tasks and user applications. We are
investigating this issue especially in NUMA architectures
which are commonly used in today’s datacenters.

A pVM resource management strategy must consider the
three fundamental questions:
• Q1: how much resources (number of CPUs, amount of

memory) should be allocated to the pVM?
• Q2: how to organize such an allocation (in terms of

location) in a NUMA architecture?
• Q3: who (provider or user) these resources should be

charged to?
The next sections discuss the current answers to those ques-
tions, and the related consequences.

A. (Q1) pVM sizing

Building on our experience (several collaboration with
several datacenter operators1), we observed that static con-
figuration is the commonly used strategy for pVM sizing,
which means that the pVM is allocated a fixed amount of
resources at startup. Moreover, virtualization system providers
do not provide any recommendation regarding this issue.
The only recommendation we found comes from Oracle [12]
which proposes only a memory sizing strategy for the pVM
based on the following formula: pVM mem = 502 +
int(physical mem×0.0205). More generally, there isn’t any

1One of our datacenter operator partner is in charge of up to 308 virtualized
clusters around the world

0

20

40

60

80

100

0 2 4 6 8 10 12

C
P

U
lo

ad
(%

)

uVMs

0

100

200

300

400

500

0 2 4 6 8 10 12

T
hr

ou
gh

pu
t

(r
eq

/s
ec

)

uVMs

0

20

40

60

80

100

0 2 4 6 8 10 12

C
P

U
lo

ad
(%

)

uVMs

0

100

200

300

400

500

0 2 4 6 8 10 12

T
hr

ou
gh

pu
t

(r
eq

/s
ec

)

uVMs

Fig. 4. A static resource allocation to the pVM can lead to its saturation, thus
to performance unpredictability for user applications: (left) pVM’s CPU load,
(right) performance of the uVM which executes a (Wordpress) workload. The
pVM has 2 CPUs for the top results and 12 CPUs for the bottom.

1200

1300

1400

1500

1600

1700

1800

0 20 40 60 80 100

E
xe

c.
ti

m
e

(m
se

c)

pVM CPU load

0

50

100

150

200

0 20 40 60 80 100

E
xe

c.
ti

m
e

(s
ec

)

pVM CPU load

Fig. 5. A static resource allocation to the pVM may lead to its saturation,
thus to variable uVM (left) creation and (right) migration time.

defined method to estimate the amount of resources required
by the pVM to perform correctly.

The resources required by the pVM are not constant as
they depend on uVM activities, therefore a static allocation
cannot be the solution. In fact, the tasks executed by the
pVM can be organized in two categories: tasks related to
the management of the datacenter and tasks related to uVM
I/O operations. The amount of resources required by tasks
from the second category is fickle as it depends on uVM
activities. A static allocation can lead to two situations, either
the pVM’s resources are insufficient or overbooked. These two
situations can be harmful for both the cloud provider and user
applications. We focus on the consequences of an insufficient
resource provisioning to the pVM because it is obvious that
over-provisioning causes resource waste as shown by many
researchers [7]. The experimental environment used in this
section is detailed in Section V-A.

A lack of resource in the pVM can make both applications
executed in uVMs and administrative services executed in the

pVM inefficient and unpredictable. The latter is known as one
of the main issues in the cloud [8], [13], [14].
Impact on user’s applications
Fig. 4 top right shows the performance of a uVM which hosts
a web application (wordpress) on a physical machine where
we vary the number of colocated uVMs which execute I/O
intensive workloads. In this experiment, the pVM is allocated
two CPUs while each uVM is allocated one CPU. To prevent
any contention (e.g. QPI link contention), all CPUs (from the
pVM or uVMs) are allocated on the same NUMA socket.
Fig. 4 top left presents the pVM CPU load during each
experiment. The first observation is that the pVM load varies
according to uVMs activities. This is due to the fact that the
pVM embeds both the backends and the drivers responsible
for accessing I/O devices (see Fig. 3). The second obser-
vation is that the web application’s performance decreases
when the pVM lacks CPU resources. Therefore, performance
predictability is compromised.

One may wonder whether this unpredictability is effectively
caused by lack of computation power for the pVM. Since
all uVMs execute I/O intensive workloads, the I/O hardware
could be the bottleneck. To clarify this point, we ran the same
experiment with 12 CPUs for the pVM. The results on Fig. 4
bottom show that with enough resources, the performance of
the tested application remains almost constant, which proves
that resources allocated to the pVM are the bottleneck.

Impact on management tasks
The pVM hosts VM management operations, the most
important ones being: VM creation, destruction and migration.
The saturation of the pVM can lead to execution time variation
for these operations since they require a significant amount
of resources. Fig. 5 left and right respectively show VM
creation and migration times according to the pVM load. We
observe that the pVM load has a significant impact on these
execution times. This situation may dramatically influence
cloud services such as auto-scaling [8].

B. (Q2) pVM location

On a NUMA machine, the location of the resources
allocated to the pVM may significantly influence uVMs
performance. The commonly used strategy is to locate all
pVM resources on a dedicated NUMA socket, not used by
any uVM. This section shows that running the pVM close to
uVMs may improve the performance of the latter.
I/O intensive applications’ improvement
We executed a web application in a uVM whose entire CPU
and memory resources were located on the same NUMA
socket as the pVM. Then, we varied the location of the pVM
resources. We observed that the best performance is obtained
when the pVM and the uVM share the same NUMA socket
(521 req/sec and 8.621 ms latency if colocated vs 491 req/sec
and 13.431 ms latency if not). This is because colocation on
the same socket prevents remote memory accesses (to fetch
I/O packets) from both pVM and uVM tasks.

VM migration and destruction improvement
We also observed that running the pVM close to uVMs may
improve some management tasks such as live migration. For
instance, we observed in our testbed that the migration of
a 2GB RAM uVM can be improved by about 34.15% if
the migration process running in the pVM is scheduled on
the same NUMA socket which hosts the migrated uVM’s
memory. We made a similar observation for uVM destruction
tasks: the scrubbing step (memory zeroing) is much faster
when the migration process runs close to the NUMA socket
which hosts the uVM’s memory.

C. (Q3) pVM resource charging

The commonly used strategy is to leave the provider support
the entire pVM resources, which includes the resources used
on behalf of uVMs for performing I/O operations. [9] showed
that this is a vulnerability, which could lead to deny of service
attacks.

IV. CONTRIBUTIONS

A. Design principle

We introduce Closer (promotes proximity to uVMs), a
design principle for implementing a pVM which solves the
previously identified issues.

The issues presented in Section III can be summarized by
one word : correlation. If the pVM relies on a standard OS,
its resource management does not consider the correlation be-
tween pVM tasks and uVMs activities. However, a significant
part of pVM tasks are correlated with uVMs activities : (1) in
terms of quantity, as the amount of resources required by the
pVM depends on uVMs activities (especially I/O operations),
and (2) in terms of location in a NUMA architecture, as
resources allocated for one pVM task (e.g. memory) are likely
to be used by correlated uVM activities.

To take into account this correlation, our Closer principle
influences the design of the pVM with the three following
rules:
• on-demand. Resource allocation to the pVM should

not be static. Resources should be allocated on demand
according to uVMs activities. Without this rule, resources
would be wasted if over-provisioned or they would be
lacking, leading to performance unpredictability.

• pay-per-use. The resources allocated to a pVM’s task
which is correlated with a uVM activity should be
charged to the concerned uVM. Without this rule, the
pVM would be vulnerable to DoS attacks from a VM
executing on the same host, which could use most of the
resources from the pVM.

• locality. The resources allocated to a pVM’s task which
is correlated with a uVM activity should be located as
close as possible (i.e. on the same NUMA socket) to the
uVM activity. This rule allows reducing remote memory
accesses in the NUMA architecture.

To enforce the Closer principle, we introduce an architecture
where the pVM is organized in two containers (see Fig. 6): a
Main Container (MC) and a Secondary Container (SC). Each

Fig. 6. The new pVM architecture.

container is associated with a specific resource management
policy, which controls pVM’s resource mapping on physical
resources. We implemented this architecture by revisiting
Linux instead of building a new pVM from scratch. By this
way, we propose a ready to use pVM.

The MC is intended to host tasks (i.e. processes) whose
resource consumption is constant (i.e. do not depend on uVM
activities). Other tasks which depend on the activity of a uVM
are hosted in the SC. More precisely, pVM tasks are organized
into four groups: (T1) OS basic tasks (Linux in our case), (T2)
tasks belonging to the datacenter administration framework
(e.g. novaCompute in OpenStack), (T3) VM management tasks
(create, destroy, migrate, etc.) and (T4) I/O management tasks
(drivers and backends, see Fig. 3). Tasks from T1 and T2, and
almost all tasks from T3 (except VM destruction and migration
tasks) have a constant resource consumption and are executed
in the MC. All other tasks use resources according to uVMs
activities and they are executed in the SC.

B. Resource management

Description (see Fig. 6)
At physical machine startup, the pVM is configured with as
many vCPUs as available physical processors (called cores).
Each vCPU is pinned on a core (one per core). A subset of
vCPUs (therefore of cores) of the pVM is associated with
the MC (i.e. used for MC tasks). The rest of vCPUs are
linked to the SC and their associated cores are shared with
uVMs. Therefore, when a core is reserved for a uVM (the
core is the allocation unit), two vCPUs are pinned on that
core: the uVM’s vCPU and the SC’s vCPU associated with
that core. This allows the SC to execute the tasks correlated
with the uVM on its reserved core (therefore to charge the
used resources to the uVM), following the pay-per-use and
locality rules. Regarding the on-demand rule, the MC is
allocated a fixed amount of resources (vCPU and memory)
according to its constant load and the SC is granted a variable
amount of resources according to tasks scheduled on its
vCPUs.
Resource management for the main container
The resources allocated to the MC must be on provider
fee, as they are used for executing datacenter administrative

tasks (e.g. monitoring). These resources are constant and
can be estimated as they only depend on the datacenter
administration system (OpenStack, OpenNebula, CloudStack,
etc.). Neither the number of VMs nor VMs’ activities have
an impact on MC resource consumption. Therefore, we use a
static allocation for MC resources at physical machine startup
and these resources are located on a reduced number of
processor sockets. Through calibration, we can estimate the
resource to be allocated to the MC. The evaluation section
(Section V) provides such estimations for the most popular
cloud administration systems.

Resource management for the secondary container
The SC includes as many vCPUs as available cores on the
physical machine, excluding cores allocated to the MC. At
physical machine startup, the SC hosts I/O tasks from the
split-driver model (see Fig. 3) for uVMs. Even if the I/O
tasks are not active at this stage, they require memory for
initialization. This initial memory (noted SCInitialMem2)
is very small and assumed by the provider. It will be also
used for uVM destruction and migration tasks. Algorithm 1
synthesizes the task scheduling policy in the SC. When a
uVM is at the origin of a task (e.g. for an I/O operation),
one of its vCPU is scheduled-out and its associated core
is allocated to the SC’s vCPU mapped to that core, in
order to execute this task. The following sections detail the
implementation of this algorithm for I/O, destruction and
migration tasks.

Input : T : an I/O task or VM administration task that
should run within pVM

1 targetuVM=Identification of the target uVM
2 targetCPU=Pick a CPU which runs targetuVM
3 Schedule T on the pVM’s vCPU which is pinned on

targetCPU
Algorithm 1: Task scheduling in the SC.

C. I/O scheduling in the SC

pVM’s tasks which are executing I/O operations on the
account of uVMs are twofold: backends and drivers. The
challenge is to identify from the pVM the uVM responsible
for each task, in order to use one of its allocated processors
for scheduling this task, and to allocate I/O memory buffers as
close to that processor as possible. Given that the split-driver
structure is both used for network and disk I/O, we describe
in the following our solution for networking tasks which are
of two types: packet reception and emission from a uVM.

Packet reception
For illustration, let us consider the Xen implementation (see
Fig. 7), although the description below could be applied to
other hypervisors which rely on the split-driver model. When

2The amount of SCInitialMem depends on the number of backend
tasks which is bound by the number of vCPU in the SC. We estimated that
SCInitialMem accounts for about 10MB per backend instance in Xen as
an example.

Fig. 7. Packet reception workflow.

the network adapter receives a packet, (r0) it places the packet
in a queue which was initially allocated in main memory and
then triggers an interrupt. (r1) This interrupt is transmitted to
one of the processors of the physical machine by the IOAPIC.
(r2) The interrupt handler which lies in the hypervisor notifies
to the pVM the presence of a packet as follows. A vCPU
from the pVM (generally vCPU 0) is notified (thanks to the
event channel mechanism) and is responsible for reacting to
this event. The hypervisor then boosts (prioritizes) this vCPU
in its scheduler. When the vCPU is scheduled, it detects the
presence of an event and executes the event handler (r3). This
handler generates a softIRQ on one of the vCPU from the
pVM. The handler of this softIRQ (r4) triggers the treatment of
the packet which will flow up in the network protocols. There
are actually two ways of treatment: the traditional treatment
which works on a per packet basis (we call it OAPI for old
API) and a new one (that we call NAPI for new API) which
groups message handling in order to reduce the number of
interrupts. (r5) In both cases, the packet has to be copied
from the queue to a skbuff structure (via the copybreak
primitive) and the network adapter can then be notified that
the packet was well received. The packet is then forwarded to
the protocol stack according to the protocol identified in the
packet header. In a virtualized system, the destination of the
packet is the bridge. (r6) The bridge identifies from the packet
header (which includes a target MAC address) the destination
backend. The packet then flows down in the protocol stack
to the backend. (r7) On reception, the backend shares with
the destination uVM the memory pages which include the
packet (this is called page flipping) and sends a signal to that
uVM. The intervention of the pVM stops here and the packet
continues its path in the uVM (starting from the frontend).

In order to implement our Closer principle, the general
orientation is to force the execution of all ri steps on one
of the processors of the target uVM and to allocate the buffer
for the packet on the same socket as that processor.

After step r0, the incoming packet has been inserted in
a queue in main memory and an interrupt triggered on one
processor (generally processor 0). The main issue is then to
execute the other steps on a processor of the target uVM,
while the target uVM is known only at the level of the bridge
(step r6). Regarding step r1, we rely on IRQbalance [15] to
balance interrupts between SC’s processors (associated with
uVMs vCPUs). It does not guarantee that interrupts will be
handled by a processor from the target uVM, but it ensures
that the MC is not charged for these interrupt handlings,
which will be uniformly executed by uVMs processors. This
is unfair for uVMs which execute less I/O operations, but the
unfairness is limited to step r1 and mitigated as follows. In
the hypervisor, we monitor the I/O activity of each uVM3 and
the notification of a vCPU from the SC (step r2) is done in
proportion to the I/O activity of each uVM (the uVM with
the highest I/O activity will receive more notifications on its
processors, i.e. SC’s vCPUs pinned on these processors will
be more solicited). This solution (called hyperLB4) is fair, but
not precise and inadequate regarding memory management, as
the memory hosting the skbuff buffer will be allocated on
the local socket (of the selected processor from the most I/O
loaded uVM) which could be different from the socket of the
final target processor. To prevent such a situation, we perform
the identification of the target backend (and therefore of the
target uVM) in step r4 (it was previously performed in step r6
in the bridge) and force the execution of the following steps
on one of the processors of that uVM. This solution performs
well in the OAPI case where each packet reception generates
an interrupt and the execution of all the steps for each packet.
In the NAPI case, a single interrupt can be generated for the
reception of a group of packets (with different target uVMs),
whose treatment relies on a poll mechanism. We modified the
poll function within the driver (we did it for e1000, this is the
only non generic code) in order to identify the target uVM
for each polled packet. In the rest of the document, we call
NAPI-1 the per group implementation while NAPI-n refers to
the per packet implementation.

Packet emission
The out-going path is the reverse of the receive path presented
in Fig. 7. Applying our Closer principle is in this case
straightforward since the uVM responsible for the I/O activity
is known from the beginning step. We simply enforce the
hypervisor to notify the vCPU of the SC associated with a
processor of the uVM. Then, we modified the pVM’s scheduler
for the following steps to be executed on the same processor.
The same implementation is used for disk operations.

D. uVM destruction and migration scheduling in the SC

uVM destruction and migration are administration tasks
which are also executed in the SC. Logically, resources
consumed by these tasks should be charged to the provider.

3The monitoring is implemented at the level of the interface between the
pVM backend and the uVM frontend.

4LB stands for load balancing.

In our solution, this is effectively the case for memory (with
the allocation of SCInitialMem described above), but not
for CPU which is charged to the concerned uVM. This is
not a problem as the goal is here to remove the uVM from
the host, and it has a main advantage: the proximity with the
memory of the uVM.

uVM destruction
The most expensive step in the destruction process of a
uVM is memory scrubbing [8]. This step can be accelerated
if the scrubbing process executes close to the uVM
memory (following the locality rule). However, the current
implementation consists of a unique process which performs
that task from any free vCPU from the pVM. Our solution
is as follows. Let Si, i ≤ n be the sockets where the uVM
has at least one vCPU. Let S′j , j ≤ m be the sockets which
host memory from the uVM. For each Si, a scrubbing task
is started on a vCPU from the SC, the processor associated
with this vCPU being local to Si and shared with a vCPU
of the uVM. This task scrubs memory locally. The uVM
memory hosted in a S′j which is not in Si is scrubbed by
tasks executing on other sockets (this remote scrubbing is
balanced between these tasks).

uVM live migration
uVM live migration mainly consists in transferring memory
to the destination machine. The current implementation
consists of a unique process which performs the task from
any free vCPU from the pVM. The transfer begins with
cold pages. For hot pages, the process progressively transfers
pages which were not modified between the previous transfer
and the current one. An already transferred page which
was modified is transferred again. When the number of
modified pages becomes low or the number of iterations
equals five, the uVM is stopped and the remaining pages are
transferred. Then, the uVM can resume its execution on the
distant machine. We implemented a distributed version of this
algorithm which runs one transfer process per socket hosting
the uVM’s memory (similarly to the destruction solution),
thus enhancing locality. These processes are scheduled on
SC’s vCPUs associated with free processors if available.
Otherwise, the processors allocated to the uVM are used.

V. EVALUATIONS

This section presents the evaluation results of our revisited
Linux and Xen prototype.

A. Experimental setup and methodology

Servers. We used two Dell servers having the following
characteristics: two sockets, each linked to a 65GB memory
node; each socket includes 26CPUs (1.70GHz); the network
card is Broadcom Corporation NetXtreme BCM5720, equidis-
tant to the sockets; the SATA disk is also equidistant to the
sockets. We used Xen 4.7 and both the pVM and uVMs
run Ubuntu Server 16.04 with Linux kernel 4.10.3. Unless
otherwise specified, each uVM is configured with four vCPUs,

TABLE I
THE BENCHMARKS WE USED FOR EVALUATIONS.

Type Name Description

Micro

Memory a memory intensive application - live migration
evaluation. It builds a linked list and performs
random memory access as in [16]. It has been
written for the purpose of this article.

Netperf [17] Sends UDP messages - network evaluation.
The performance metric is the average request
latency.

dd formatting a disk file - disk evaluation. It is
configured in write-through mode. The perfor-
mance metric is the execution time.

Macro
Wordpress [10] website builder - network evaluation. We used

the 4.8.2 version. The performance metric is
the average request latency.

Kernbench [18] runs a kernel compilation process - disk evalu-
ation. We compiled Linux kernel 4.13.3. Data
caching is disabled. The performance metric is
the execution time.

Magento [19] eCommerce platform builder - both network
and disk evaluation. We used the 2.2.0 version.
The performance metric is the average request
latency.

4GB memory and 20GB disk.
Benchmarks. We used both micro- and macro-benchmarks,
respectively for analyzing the internal functioning of our
solutions and for evaluating how real-life applications are
impacted. Table I presents these benchmarks.
Methodology. Recall that the ultimate goal of our proposed
pVM architecture is to respect the three rules of Closer,
presented in Section IV-A: on-demand resource allocation
(to avoid resource waste and enforce predictability), local-
ity (to improve performance), and pay-per-use (to prevent
DoS attacks). As a first step, we separately demonstrate the
effectiveness of our architecture for each principle. Notice
that the evaluation of a given principle may not include all
contributions. Therefore, a final experiment is realized with all
the contributions enabled. For each experiment, we compare
our solution with the common pVM’s resource allocation
strategy (referred to as Vanilla pVM, Vanilla for short). In the
latter, a set of resources, which are located at the same place,
are dedicated to the pVM. Otherwise specified, we dedicate
a NUMA socket and its entire memory node to the pVM,
corresponding to an oversized allocation.

B. Resource allocation to the MC

In our solution, MC’s resources are statically estimated by
the provider. We estimated MC’s resources for the majority of
cloud management systems namely: OpenStack Ocatax [20],
OpenNebula 5.2.1 [21] and Eucalyptus 4.4.1 [22]. For each
system, we relied on the default configuration and measured
its resource consumption. The results, based on our testbed,
are presented in Table II. We can see that very few resources
are needed for performing all MC’s tasks. Our experiments
also confirmed that MC’s needs do not depend on the IaaS
size.

C. Locality benefits

We evaluated the benefits of locality on both administrative
(uVM destroy and uVM migration) and I/O tasks. Recall that

TABLE II
MC’S NEEDS FOR THREE CLOUD MANAGEMENT SYSTEMS.

OpenStack OpenNebula Eucalyptus
vCPUs 2 2 1
RAM (GB) 2 1.85 1.5

0

50

100

150

200

250

300

350

5 10 15 20

M
ig

ra
ti

on
ti

m
e

(s
ec

)

uVM’s memory size (GB)

Vanilla C1 C2

Fig. 8. Multi-threaded migration process (lower is better). The uVM runs a
memory intensive application.

we provide locality by enforcing the execution of SC’s vCPUs
on the same socket as the concerned uVM. In order to only
evaluate locality benefits, SC’s vCPUs do not use uVM’s CPUs
(unless otherwise specified).

1) Administrative task improvement: The effectiveness of
our uVM destruction solution is obvious and has been well
demonstrated in [8] (Subsequently, we do not claim this inno-
vation and we recommend the reader to refer to [8]). We focus
on the novel multi-threaded migration solution we propose,
whose effectiveness is not obvious due to the management
of dirty pages. To this end, we evaluated our solution when
the migrated uVM runs an intensive Memory benchmark. We
experimented with different uVM memory sizes (4GB-20GB).
For every experiment, the uVM’s memory is equally spread
over the two NUMA nodes of the server. We considered two
situations (noted C1 and C2): in C1, migration threads do
not share the uVM’s CPUs (assuming there are free CPUs
available on the socket for migration) while they do in C2

(assuming there aren’t any available free CPU, the socket
which runs the uVM being fully occupied). Fig. 8 presents
the evaluation results (lower is better). We can see that our
solution outperforms Vanilla in all experimented situations.
The improvement is most important with large uVMs (up to
33% in C1, see Fig. 8). Intuitively, the reader can imagine
that the improvement will also increase when the number
of sockets hosting the uVM’s memory increases. C1 slightly
outperforms C2 (up to 4%), justifying our strategy to only use
the uVM’s CPUs when there is no free CPU on the involved
sockets.

2) I/O task improvement: We evaluated the benefits of
running pVM’s tasks that are involved in a uVM’s I/O activity
on the same socket as that uVM. We evaluated both network

0

5

10

15

20

25

30

35

Vanilla

Our-Sol.

Vanilla

Our-Sol.

Vanilla

Our-Sol.

Vanilla

Our-Sol.

K
ilo

la
te

nc
y

(c
lo

ck
*1

k)

Packet size (byte)
Low load (100 req/sec)

t1 t2 t3

7000500030001000

0

50

100

150

200

250

300

Vanilla

Our-Sol.

Vanilla

Our-Sol.

Vanilla

Our-Sol.

Vanilla

Our-Sol.

K
ilo

la
te

nc
y

(c
lo

ck
*1

k)

Packet size (byte)
Low load (100 req/sec)

t1 t2

7000500030001000

Fig. 9. Packet reception (left) and packet emission (right) improved by
locality. (lower is better)

and disk activities. Concerning the former, we evaluated each
version presented in Section IV-C, namely: hyperLB at hyper-
visor level; OAPI, NAPI-1 or NAPI-n at the pVM level. For
these evaluations, we used a constant low load (100 req/sec).
Packet reception with a single uVM
The uVM is configured with 4vCPUs (all located on the
second socket) and 4GB memory. Another server runs Netperf.
We are interested in the following metrics: (t1) the treatment
duration before the backend invocation (this includes r3−6
steps, see Fig. 7); (t2) the time taken by the backend to inform
the frontend (step r7); and (t3) the time taken by the frontend
to transfer the packet to the application’s buffer. Fig. 9 left
presents the evaluation results of each ti while varying packet
size. Here, all versions provide almost the same values, thus
they are shown under the same label (Our-sol.) in Fig. 9 left.
We can see that our solution minimizes all ti in comparison
with Vanilla, leading to a low t1 + t2 + t3 (up to 36.50%
improvement).
Packet reception with multiple uVMs
The previous experiments do not show any difference between
our implementation versions. The differences appear only
when the server runs several uVMs. To this end, we performed
the following experiment. The testbed is the same as above in
which a second uVM (noted d2, the first one is noted d1) runs
on the first socket (the same which runs the MC). The two
uVMs receive the same workload. We are interested in d1’s
performance and we compare it with its performance when
it runs alone (as in the previous experiments). Fig. 10 left
presents t1+ t2+ t3 normalized over Vanilla. We can see that
OAPI and NAPI-n outperform NAPI-1 by about 21%. This
is because NAPI-1 (which does a batch treatment) fails in
choosing the correct target uVM for many request in r4. This
is not the case neither in OAPI nor in NAPI-n which are able to
compute the correct destination for each packet. Fig. 10 right
presents the amount of errors (wrong destination) observed
for each implementation version. Thus, in further experiments,
”our solution” refers to OAPI or NAPI-n.

0

0.2

0.4

0.6

0.8

1

1.2

Vanilla
Alone

OAPI
NAPI−1

NAPI−n

N
or

m
al

iz
ed

pe
rf

.

0

20

40

60

80

100

120

Vanilla
Alone

OAPI
NAPI−1

NAPI−n
E

rr
or

Fig. 10. Packet reception improved by locality: multiple uVMs evaluation.
Results are normalized over Vanilla (lower is better).

Packet emission
The testbed here is the same as in the experiment with packet
reception and a single uVM, except the fact that Netperf runs
inside the uVM. Remember that packet emission is agnostic
about the different implementation versions of our solution
(see Section IV-C). We are only interested in t1 and t2 (t3
is constant). Fig. 9 right presents the results. We can see that
thanks to locality, our solution improves (minimizes) t1 by
up to 42.33% for large packets in comparison with Vanilla.
Compared with packet reception results, the improvement is
more significant here because in the case of packet emission
with Vanilla, memory is allocated (on emission) on the uVM
socket and pVM’s I/O tasks access the packet remotely. This
is not the case with packet reception since the packet enters
the machine via the pVM’s socket (therefore, packet handling
is more important in the pVM than in the uVM).
Disk operations
The testbed here is the same as above except the fact that
the benchmark is dd. The uVM’s hard disk is configured in
write-through mode in order to avoid caching. The collected
metric is the execution time. We evaluated different write block
sizes. Fig. 11 presents the results. We can see that our solution
outperforms Vanilla, especially with large blocks (up to 22%
improvement).
Macro-benchmark improvement
We also evaluated the benefits of locality on macro-
benchmarks. The testbed is the same as above in which the
benchmark is replaced by a macro-benchmark. Fig. 12 left
presents the results normalized over Vanilla. We can see that
all the benchmarks are improved with our solution: about 25%
for wordpress, 21% for Kernbench, and 30% for Magento.

D. Pay-per-use effectiveness

We validated the effectiveness of our architecture in charg-
ing to uVMs resources consumed by the pVM on their behalf.
This includes demonstrating that MC’s resource consumption
remains constant regardless uVMs activities. We also evaluated
the fairness of our solution, meaning that each uVM is charged
proportionally to its activity. We only present the evaluation
results for the packet reception experiment (which is the

0

10

20

30

40

50

60

256 512 1024 2048

E
xe

c.
ti

m
e

(s
ec

)

Block size (MB)

Vanilla Our-sol

Fig. 11. Disk operations (from dd) improved by locality. (lower is better).

0

0.2

0.4

0.6

0.8

1

Wordpress

Kernbench

Magento

N
or
m
al
iz
ed

pe
rf
.

Vanilla Our-sol

0

0.2

0.4

0.6

0.8

1

Hyper-On

Hyper-Off

M
C
’s

lo
ad

Vanilla
OAPI

NAP-1
NAPI-n

Fig. 12. (left) Macro-benchmarks improved by locality. The results are
normalized over Vanilla (the first bar). (right) MC’s CPU load.

most sensitive one, packet emission and disk operations being
less tricky regarding pay-per-use). To this end, we used the
same testbed as previously. The server under test runs three
uVMs (noted vm1, vm2, and vm3), each configured with
two vCPUs. They share the same socket and each vCPU is
pinned to a dedicated CPU. vm1, vm2, and vm3 respectively
receives 1000req/sec (which accounts for 10% of the total
load), 3000req/sec (30% of the total load) and 6000req/sec
(60% of the total load). In this experiment, we do not care
about memory locality. We collected the following metrics:
MC’s CPU load, and the proportion of CPU time stolen by
SC’s vCPUs from each uVM (this represents the contribution
of the uVM, used for fairness evaluation).

Fig. 12 right shows MC’s CPU load consumption while
Fig. 13 presents each uVM contribution. In Fig. 12, the ideal
solution is the one which leads to no CPU consumption in
the MC, meaning that the MC is not impacted by uVMs
activities. The load reported for Vanilla is relative on the
MC reserved capacity (e.g. 100% for Vanilla means that its
CPU consumption is equivalent to the entire MC capacity).
We can see that all our implementation versions are close
to the ideal value, the best version being OAPI/NAPI-1
combined with hyperLB-On while the worst one is NAPI-n

0

10

20

30

40

50

60

vm1 vm2 vm3

C
on

tr
ib

(%
)

Expec. OAPI NAPI-1 NAPI-n

Fig. 13. Fairness of our solutions. (close to the first bar is better).

with hyperLB-Off. But the difference between these versions
is very low, meaning that the activation of hyperLB is
not necessary. In other words, r3’s CPU consumption is
negligible. Therefore, in Fig. 13, we only present results with
hyperLB-Off (hyperLB-On provides the same results). The
ideal solution is the one which provides the expected result
(the first bar). The latter corresponds to the proportion of the
uVM’s I/O traffic in the total traffic generated by all uVMs.
We can see that except NAPI-1, both OAPI and NAPI-n
ensure fairness.

E. All together

We evaluated our solution when locality and pay-per-use
mechanisms are enabled at the same time. The testbed is
the same as above where macro-benchmarks replace micro-
benchmarks. We tested all possible colocation scenarios. Our
solution is compared with Vanilla when the pVM is allocated
the same amount of resources as the MC. Given a benchmark,
the baseline value is the one obtained when it runs alone.
Having already discussed the impact on performance, the
interesting subject here is performance predictability. Several
studies [7], [23] showed that this issue may occur when the
pVM is saturated due to uVMs activities. We also compared
our solution with [7] (called Teabe here). The latter presented a
solution which ensures that the aggregated CPU time (includ-
ing the one generated inside the pVM) used by a uVM cannot
exceed the capacity booked by its owner. Fig. 14 presents
the results for Kernbench using the best implementation ver-
sion (NAPI-n with HyperLB-Off), all benchmarks running
at the same time. In Fig. 14, each evaluation <situation>-
<solution> is done in a given situation and with a given
solution. Situation can be alone or col (for colocation of the 3
benchmarks) and Solution identifies the used solutions (all is
our full solution). We can see that Teabe enforces predictability
as our solution: in Fig. 14 alone-all is almost equal to col.-
all; and alone-Teabe is almost equal to col.-Teabe. However,
our solution improves application performance thanks to our

0

0.2

0.4

0.6

0.8

1

1.2

1.4

alone-Vanilla

col.-Vanilla

alone-locality

col.-locality

alone-payperuse

col.-payperuse

alone-all

col.-all
alone-Teabe

col.-Teabe

N
or

m
al

iz
ed

pe
rf

.

Fig. 14. Our solution with all mechanisms, Kernbench results. The latter are
normalized over Vanilla when the benchmark runs alone. For predictability,
compare <alone>-<solution> and <col.>-<solution>. For performance
improvement, lower is better.

locality enforcement contribution: alone-all (respectively col.-
all) performs better than alone-Teabe (respectively col.-Teabe).
As mentioned above, the improvement will increase when
the number of sockets hosting the uVMs memory increases.
Fig. 14 also shows the results reported in the previous sections
so that the reader can easily appreciate on the same curve the
impact of each contribution.

VI. RELATED WORK

Several research studies have investigated pVM manage-
ment task improvements. Most of them have focused on uVM
creation [8], [24]–[32] and migration [33]–[38] in order to pro-
vide reactive applications (quick elasticity) and consolidation
systems. Very few of them exploit locality to improve these
management tasks as we do.

Related to our scrubbing optimization, a Xen patch [39] was
proposed to delay the scrubbing process and perform it during
idle CPU cycles. Contrarily to our solution in which scrubbing
is done synchronously with uVM destruction, [39] has the
drawback of letting a completely arbitrary amount of time be
spent before the memory is available again, introducing a lot of
non-determinism. [8] presents a solution which is quite similar
to the one we proposed.

Concerning live migration improvement, we didn’t find any
solution using a multi-threaded algorithm in order to execute
in parallel and close to the migrated uVM’s memory as we
do.

Regarding I/O virtualization improvement, existing solu-
tions either act at the hypervisor scheduler level [40]–[45]
in order to minimize the scheduling quantum length thus
minimizing I/O interrupt handling latency.

Very few researchers studied pVM resource utilization (on
behalf of uVMs) from the pay-per-use perspective. To the
best of our knowledge, [23] and [7] are the only studies
which investigated pVM’s resource partitioning as we do. [23]
is limited to mono-processor machines while [7] leads to
resource waste.

VII. CONCLUSION

This paper identified several issues related to the design of
the pVM in today’s virtualization systems. These issues arise
from the fact that current pVMs rely on a standard OS (e.g.,
Linux) whose resource manager does not consider the corre-
lation between pVM’s tasks and uVM’s activities. These
issues lead to resource waste, low performance, performance
unpredictability, and vulnerability to DoS attacks.

To take into account this correlation between virtual ma-
chines, we introduce Closer, a principle for implementing a
suitable OS for the pVM. Closer promotes the proximity and
the utilization of uVMs resources. It influences the design
of the pVM with three main rules: on-demand resource
allocation, pay-per-use resource charging and locality of
allocated resources in a NUMA architecture. We designed
a pVM architecture which follows Closer and demonstrated
its effectiveness by revisiting Linux and Xen. An intensive
evaluation of our implementation using both micro- and
macro-benchmarks shows that this architecture improves both
management tasks (destruction and migration) and application
performance (I/O intensive ones), and enforces predictability.

VIII. ACKNOWLEDGMENT

This work was supported by the HYDDA Project (BPI
Grant) and the IDEX IRS (COMUE UGA grant).

REFERENCES

[1] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: Running
commodity operating systems on scalable multiprocessors,” ACM Trans.
Comput. Syst., vol. 15, no. 4, pp. 412–447, Nov. 1997. [Online].
Available: http://doi.acm.org/10.1145/265924.265930

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
art of virtualization,” in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’03. Bolton
Landing, NY, USA: ACM, 2003, pp. 164–177. [Online]. Available:
http://doi.acm.org/10.1145/945445.945462

[3] B. Bui, D. Mvondo, B. Teabe, K. Jiokeng, L. Wapet, A. Tchana,
G. Thomas, D. Hagimont, G. Muller, and N. DePalma, “When
extended para - virtualization (xpv) meets numa,” in Proceedings
of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19.
Dresden, Germany: ACM, 2019, pp. 7:1–7:15. [Online]. Available:
http://doi.acm.org/10.1145/3302424.3303960

[4] vmware.com, “Migration disabled with vmware vsphere sr-iov,” Apr.
2018. [Online]. Available: https://goo.gl/d8MGD5

[5] Oracle.com, “Migration disabled with oracle vm server sr-iov,” Nov.
2017. [Online]. Available: https://goo.gl/uneSHr

[6] Redhat.com, “Migration disabled with hyper-v sr-iov,” Mar. 2015.
[Online]. Available: https://goo.gl/qUtsQz

[7] B. Teabe, A. Tchana, and D. Hagimont, “Billing system CPU time
on individual VM,” in IEEE/ACM 16th International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2016, Cartagena,
Colombia, May 16-19, 2016, 2016, pp. 493–496. [Online]. Available:
https://doi.org/10.1109/CCGrid.2016.76

[8] V. Nitu, P. Olivier, A. Tchana, D. Chiba, A. Barbalace, D. Hagimont,
and B. Ravindran, “Swift birth and quick death: Enabling fast parallel
guest boot and destruction in the xen hypervisor,” in Proceedings of
the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE ’17. Xi’an, China: ACM, 2017, pp.
1–14. [Online]. Available: http://doi.acm.org/10.1145/3050748.3050758

[9] Q. Huang and P. P. Lee, “An experimental study of cascading
performance interference in a virtualized environment,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 4, pp. 43–52, Apr. 2013. [Online].
Available: http://doi.acm.org/10.1145/2479942.2479948

[10] Wordpress.org, “Wordpress.” Aug. 2012. [Online]. Available:
https://wordpress.org/plugins/benchmark/

[11] Pcisig.com, “Sr-iov.” [Online]. Available:
https://pcisig.com/specifications/iov/.

[12] Oracle.com, “Changing the dom0 memory size,” Jun. 2014. [Online].
Available: https://docs.oracle.com/cd/E27300 01/E27308/html/vmiug-
server-dom0-memory.html

[13] C. Delimitrou and C. Kozyrakis, “Hcloud: Resource-efficient
provisioning in shared cloud systems,” in Proceedings of the
Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16.
Atlanta, Georgia, USA: ACM, 2016, pp. 473–488. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872365

[14] Microsoft., “Microsoft’s top 10 business practices for environmentally
sustainable data centers 2010,” Aug. 2009. [Online]. Available:
http://tiny.cc/vro25y

[15] linux.die.net, “Irq balance,” Jun. 2013. [Online]. Available:
https://linux.die.net/man/1/irqbalance.

[16] U. Drepper, “What every programmer should know about memory,”
2007.

[17] HewlettPackard, “Netperf,” Jun. 2008. [Online]. Available:
https://github.com/HewlettPackard/netperf

[18] kolivas.org, “Kernbench.” Apr. 2014. [Online]. Available:
http://ck.kolivas.org/apps/kernbench/kernbench-0.50/

[19] magento.com, “Magento,” Mar. 2008. [Online]. Available:
https://magento.com/

[20] openstack.org, “Openstack,” Aug. 2017. [Online]. Available:
https://www.openstack.org/

[21] openNebula, “Opennebula,” Jul. 2017. [Online]. Available:
https://opennebula.org/

[22] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system,” in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and
the Grid, ser. CCGRID ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 124–131. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2009.93

[23] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation across virtual machines in xen,” in Proceedings
of the ACM/IFIP/USENIX 2006 International Conference on
Middleware, ser. Middleware ’06. Melbourne, Australia: Springer-
Verlag New York, Inc., 2006, pp. 342–362. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1515984.1516011

[24] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
Rapid virtual machine cloning for cloud computing,” in Proceedings of
the 4th ACM European Conference on Computer Systems, ser. EuroSys
’09. Nuremberg, Germany: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1519065.1519067

[25] J. Zhu, Z. Jiang, and Z. Xiao, “Twinkle: A fast resource provisioning
mechanism for internet services,” in 2011 Proceedings IEEE INFOCOM,
April 2011, pp. 802–810.

[26] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr, “Fast restore of
checkpointed memory using working set estimation,” in Proceedings
of the 7th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, ser. VEE ’11. Newport Beach,
California, USA: ACM, 2011, pp. 87–98. [Online]. Available:
http://doi.acm.org/10.1145/1952682.1952695

[27] I. Zhang, T. Denniston, Y. Baskakov, and A. Garthwaite, “Optimizing vm
checkpointing for restore performance in vmware esxi,” in Proceedings
of the 2013 USENIX Conference on Annual Technical Conference, ser.
USENIX ATC’13. San Jose, CA: USENIX Association, 2013, pp. 1–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2535461.2535463

[28] T. Knauth and C. Fetzer, “Dreamserver: Truly on-demand cloud
services,” in Proceedings of International Conference on Systems and
Storage, ser. SYSTOR 2014. Haifa, Israel: ACM, 2014, pp. 9:1–9:11.
[Online]. Available: http://doi.acm.org/10.1145/2611354.2611362

[29] T. Knauth, P. Kiruvale, M. Hiltunen, and C. Fetzer, “Sloth: Sdn-enabled
activity-based virtual machine deployment,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. Chicago, Illinois, USA: ACM, 2014, pp. 205–206. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620765

[30] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire,
D. Sheets, D. Scott, R. Mortier, A. Chaudhry, B. Singh,

J. Ludlam, J. Crowcroft, and I. Leslie, “Jitsu: Just-in-time
summoning of unikernels,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15).
Oakland, CA: USENIX Association, 2015, pp. 559–573. [On-
line]. Available: https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/madhavapeddy

[31] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C.
Hunt, “Rethinking the library os from the top down,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
Newport Beach, California, USA: ACM, 2011, pp. 291–304. [Online].
Available: http://doi.acm.org/10.1145/1950365.1950399

[32] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My vm is lighter (and safer) than
your container,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17, 2017.

[33] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive, memory compression,” in 2009 IEEE Interna-
tional Conference on Cluster Computing and Workshops, Aug 2009, pp.
1–10.

[34] S. Nathan, P. Kulkarni, and U. Bellur, “Resource availability
based performance benchmarking of virtual machine migrations,”
in Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering, ser. ICPE ’13. Prague, Czech
Republic: ACM, 2013, pp. 387–398. [Online]. Available:
http://doi.acm.org/10.1145/2479871.2479932

[35] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of
delta compression techniques for efficient live migration of large
virtual machines,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’11. Newport Beach, California, USA: ACM, 2011, pp. 111–120.
[Online]. Available: http://doi.acm.org/10.1145/1952682.1952698

[36] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe,
“Cloudnet: Dynamic pooling of cloud resources by live wan migration
of virtual machines,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’11. Newport Beach, California, USA: ACM, 2011, pp. 121–132.
[Online]. Available: http://doi.acm.org/10.1145/1952682.1952699

[37] Y. Abe, R. Geambasu, K. Joshi, and M. Satyanarayanan,
“Urgent virtual machine eviction with enlightened post-copy,”
in Proceedings of the12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’16.
Atlanta, Georgia, USA: ACM, 2016, pp. 51–64. [Online]. Available:
http://doi.acm.org/10.1145/2892242.2892252

[38] K. Kourai and H. Ooba, “Vmbeam: Zero-copy migration of
virtual machines for virtual iaas clouds,” in 35th IEEE Symposium
on Reliable Distributed Systems, SRDS 2016, Budapest, Hungary,
September 26-29, 2016, 2016, pp. 121–126. [Online]. Available:
https://doi.org/10.1109/SRDS.2016.024

[39] Xen.org, “xen: free domheap pages: delay page
scrub to idle loop.” May 2014. [Online].
Available: https://lists.xenproject.org/archives/html/xen-devel/2014-
05/msg02436.htm

[40] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella,
and D. Xu, “vslicer: Latency-aware virtual machine scheduling
via differentiated-frequency cpu slicing,” in Proceedings of the 21st
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’12. Delft, The Netherlands: ACM, 2012, pp.
3–14. [Online]. Available: http://doi.acm.org/10.1145/2287076.2287080

[41] B. Teabe, A. Tchana, and D. Hagimont, “Application-specific quantum
for multi-core platform scheduler,” in Proceedings of the Eleventh
European Conference on Computer Systems, ser. EuroSys ’16.
London, United Kingdom: ACM, 2016, pp. 3:1–3:14. [Online].
Available: http://doi.acm.org/10.1145/2901318.2901340

[42] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu, “vturbo: Accelerat-
ing virtual machine i/o processing using designated turbo-sliced core,”
in Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13). San Jose, CA: USENIX, 2013, pp. 243–254.
[Online]. Available: https://www.usenix.org/conference/atc13/technical-
sessions/presentation/xu

[43] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling i/o in virtual machine
monitors,” in Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE

’08. Seattle, WA, USA: ACM, 2008, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/1346256.1346258

[44] L. Zeng, Y. Wang, D. Feng, and K. B. Kent, “Xcollopts: A novel
improvement of network virtualizations in xen for i/o-latency sensitive
applications on multicores,” IEEE Transactions on Network and Service
Management, vol. 12, no. 2, pp. 163–175, June 2015.

[45] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,
R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert, “Intel
virtualization technology for directed i/o,” Intel Technology Journal,
vol. 10, no. 03, pp. 179–192, August 2006.

