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s0010 4.1 Introduction

p0030 Although parasitism is one of the most common lifestyles among eukaryotes, popu-

lation genetics on parasites lag far behind those on free-living organisms, probably

because they are rarely conspicuous in the environment, do not possess the visible

morphologic or behavioral variation used in the early studies of population genet-

ics, and are less charismatic than the macrofauna. However, the advent of molecu-

lar markers offers great tools for studying key processes of parasite biology, such

as dispersal, mating systems, host adaptation, and patterns of speciation. Population

genetics studies have also valuable practical applications, for instance for studying

the evolution of drug resistance or new virulence. Another reason to study epidemi-

ology and evolution in parasites is that they display a huge diversity of life cycles

and lifestyles, thus providing great opportunity for comparative studies to test path-

ogen-specific questions or general issues about evolution. Nevertheless, the field of

parasitology has yet to attract more evolutionary biologists. This is especially true

for fungal parasites, despite their importance in crop diseases, and even in animal

and human diseases. Furthermore, despite their obvious common interests there are

few connections so far between scientists working on fungal parasites versus other

parasites.
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p0035 Approximately 100,000 species of fungi have been described so far (1.5 million

fungal species are estimated to exist; Hawksworth, 1991), of which a high percent-

age obtain nutrients by living in close association with other organisms, mainly

plants. Many fungi are pathogenic and can have important impact on human health

or lead to severe economic losses due to infected crops or to animal diseases.

Fungal species parasitizing animals and plants are found interspersed with sapro-

phytes and mutualists in fungal phylogenies (Berbee, 2001; James et al., 2006),

suggesting that transitions between these life-history strategies have occurred

repeatedly within the fungal kingdom.

p0040 True fungi belong to the opisthokont clade, as do animals. The two major groups

that have been traditionally recognized among the true fungi are the Ascomycota,

including the yeasts and filamentous fungi, with several important model species

(e.g., Saccharomyces cerevisiae, Neurospora crassa), and the Basidiomycota,

including the conspicuous mushrooms, the rusts and the smuts. Ascomycota and

Basidiomycota have been resolved as sister taxa (Lutzoni et al., 2004; James et al.,

2006) and they have been called the Dikaryomycota (Schaffer, 1975). The dikarya

contain the majority (ca. 98%) of the fungal species, including most of the human

and plant pathogens. Basal to the Dikarya branch there are several other fungal

groups. The Glomeromycota, mycorrhizal mutualists, are united within a clade

with the dikarya (James et al., 2006). The Zygomycota are common in terrestrial

and aquatic ecosystems, but they are rarely noticed by humans because they are of

microscopic size. Some fungi among the Zygomycota are pathogens of animals

(including humans), plants, amoebae, and other fungi (mycoparasites). Zygomycota

branch at the base of the clade containing the dikarya and the Glomeromycota. The

Chytridiomycota are defined as fungi with flagellated cells and were long thought

to be the sister group of all the other true fungi, nonflagellated. However, recent

phylogenies suggested that the chytrids may in fact be polyphyletic, representing

early diverging lineages having retained the ancestral flagellum (James et al.,

2006). Chytrids also encompass plant and animal pathogens. Microsporidia are

obligate endoparasitic, protist-like organisms with highly reduced morphology and

genomes; they have recently been proposed to belong to the fungi, as the most

basal group (James et al., 2006). Oomycetes have long been considered as fungi

but were recently recognized to belong to the distant Stramenopiles (Keeling et al.,

2005). These filamentous organisms however share many morphologic and physio-

logic characteristics with fungi and continue to be studied by mycologists. They

also contain plant pathogens, such as Plasmopara viticola, responsible for the grape

mildew, and Phytophthora species, causing devastating emerging diseases, in par-

ticular on trees. Some oomycetes are pathogens on fishes or amphibians. We will

therefore also consider oomycetes in this chapter.

p0045 Most fungi have been dependent on other organisms for their resources through

much of their evolutionary history, in particular, fungal pathogens. During the past

century, however, many new fungal diseases have emerged. This is probably due to

human activities that have completely modified the ecosystems on earth at a global

scale (e.g., climate warming, widespread deforestation, habitat fragmentation and

urbanization, changes in agricultural practices, global trade) (Kareiva et al., 2007).
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Of these, the intensification and globalization of agriculture as well as the increase

in international trade and travel have broken down many natural barriers to dis-

persal causing an unprecedented redistribution of many organisms (Kolar and

Lodge, 2001). Concomitantly, there is growing evidence that these global changes

play a key role in the emergence of infectious diseases in humans (Tatem et al.,

2006), wildlife (Daszak et al., 2000), domestic animals (Cleaveland et al., 2001),

and plants (Anderson et al., 2004).

p0050 To understand how new diseases emerge, and more generally to understand the

spread and maintenance of diseases, it is essential to study dispersal, mating sys-

tems, host adaptation, and mechanisms of speciation. The advent of molecular mar-

kers offers great tools for studying these key processes of parasite biology

(Criscione et al., 2005; Giraud et al., 2008a). Molecular markers, together with

mathematical modeling and experiments, have also been instrumental to unravel

the mechanisms of fungal speciation (Giraud et al., 2008b). The recent develop-

ment of full genome sequencing, especially among fungi because they have small

genomes (Galagan et al., 2005), has allowed comparative genomics to begin draw-

ing inference on the mechanisms of pathogenicity (Aguileta et al., 2009).

p0055 In this chapter, we will thus describe the main pathogenic fungi, parasitizing

humans, animals, and plants, and having important consequences on human health

or human activities. We will focus on some examples of recent emerging fungal

diseases on humans, animals, and plants. We will then review (1) the modern

molecular tools used for epidemiology and population genetics of fungal pathogens,

the types of markers most useful, and the different types of analyses that can be

performed to unravel their mating systems and dispersal; (2) the criteria used for

species delimitation in fungi and the mechanisms of fungal speciation that have

been elucidated to date; (3) the recent advances in fungal genomics, in particular

the insights that have been gained so far regarding the pathogenic lifestyles; and

(4) the relationship between mating and pathogenesis in fungi.

s0015 4.2 Major Human and Animal Pathogenic Fungi

p0060 Each of the four major fungal phyla has representatives that cause serious disease

in both humans and a vast range of other animals. Although less prevalent than

plant pathogens, the animal pathogens pose serious threats to entire animal popula-

tions and continue to cause serious morbidity and mortality among immunocom-

promised patients and otherwise healthy individuals worldwide. In many cases, the

incidence of disease is increasing due to a rise in susceptible hosts, while at the

same time the treatment options have remained limited in comparison to other clas-

ses of pathogens. A major factor influencing treatment is that, unlike bacteria and

viruses, the fungi are eukaryotic siblings to the animals. These issues cause major

obstacles in the search and development of new antimicrobials that target fungi

without causing major toxic side effects against animal metabolism. Here we sum-

marize the morbidity and mortality associated with several of the major classes of

human and animal pathogenic fungi.
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s0020 4.2.1 Ascomycetes: The Candida Species Complex, Aspergillus
fumigatus, Pneumocystis, the Dimorphic Fungi, and Others

p0065 Within the fungal kingdom, the ascomycetes harbor the majority of fungal pathogens

that afflict humans. Among these, Candida species are the most common causes of

invasive fungal infections in humans. Infections can range from readily

treatable mucocutaneous disorders, although these may be acute in AIDS-infected

patients, to severe invasive disease that can result in significant morbidity and

mortality, most often occurring in patients with immune system suppression (Pappas

et al., 2003, 2009). Candidemia is the fourth most common cause of nosocomial

bloodstream infections in the USA (Wisplinghoff et al., 2004), with similar levels in

many other developed countries. It has been estimated that the attributable mortality

of invasive candidiasis is approximately 15�25% for adults and 10�15% for the

pediatric population (Morgan et al., 2005; Zaoutis et al., 2005), with one study

reporting mortality rates reaching levels .45% (Gudlaugsson et al., 2003).

p0070 Another of the major causes of human fungal infections is the filamentous path-

ogen, A. fumigatus and other closely related Aspergillus species. Aspergillosis, pri-

marily invasive aspergillosis, is an emerging disease in the immunocompromised

population (Walsh et al., 2008). The spores are widely prevalent in all environ-

ments, and are readily inhaled, causing both respiratory and disseminated disease

in immunocompromised patients. There is a particularly high incidence of aspergil-

losis among stem cell and solid organ transplant recipients (Paterson and Singh,

1999; Marr et al., 2002a,b). Additionally, infected patients often have long and

costly hospitals visits (Dasbach et al., 2000), making this disease a major concern,

particularly in hospital settings.

p0075 A group of pathogenic fungi in humans that cause serious disease in both

healthy and immunocompromised individuals are the dimorphic fungi. The name

dimorphic stems from the common feature that all of these pathogens grow in a fil-

amentous mold form in the environment, and based on changes in temperature

grow as yeast at mammalian host temperatures and in the infected host (Rappleye

and Goldman, 2006). This class of fungi includes the primary pathogens

Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii, as well

as species that more often infect immunocompromised individuals, including

Blastomyces dermatitidis, Sporothrix schenckii, Paracoccidioides brasiliensis, and

Penicillium marneffei (Fraser et al., 2007; Reis et al., 2009; Sharpton et al., 2009).

All of these species (except S. schenckii and H. capsulatum) are known as

“endemic mycoses”. These are pathogenic fungi that have restricted ranges and

tend to be associated with specific ecologic niches. For instance, C. immitis and

C. posadasii are associated with the Lower Sonoran Life Zone—low hot deserts

found only in northern, central, and southern America. Within these regions, the

fungus exists as mycelia in sandy soils, as well as infections in small desert mam-

mals such as kangaroo rats (Dipodomys) (Rippon, 1988). Human infection occurs

as a consequence of the inhalation of arthroconidia, which can then undergo a tem-

perature-determined dimorphic transition into septate spherules that disseminate

throughout the body via hematogenous spread, causing a severe and life-threatening
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disease in a variable proportion of individuals. In common with Coccidioides, other

endemic dimorphic mycoses inhabit recognizable ecologic niches that are often

associated with animals. For instance, P. marneffei is the only pathogenic species

of Penicillium from the highly speciose biverticilliate clade, and exhibits a highly

constrained distribution to the wet tropics of Southeast Asia (Vanittanakom et al.,

2006). Within this region, the pathogen is found infecting a high proportion of the

tropical bamboo rat species Rhizomys and Cannomys, and is a key HIV-associated

mycosis across the region. Although the route of human infection has yet to be con-

firmed, it is likely to stem from the inhalation of airborne conidia whereupon a

thermally regulated dimorphic transition to a fission arthroconidium form occurs.

Dissemination throughout the body causes significant pathologic effects with

involvement documented for most of the major body organs (Vanittanakom et al.,

2006).

p0080 Although the incidence of HIV-associated mycoses has decreased since the

establishment of highly active antiretroviral therapy (HAART), pneumocystis infec-

tions are another of the major human pathogens infecting immunosuppressed hosts,

with high incidences observed in the AIDS-infected and stem cell transplant recipi-

ent populations (Cushion, 2004). Infections result in a severe pneumonia, and are

predominantly caused by Pneumocystis jirovecii, a widely prevalent species known

to principally infect mammalian lung cells (Calderon, 2010). Research in this group

of pathogens is difficult because axenic in vitro cultivation remains elusive.

Culturing techniques are currently limited to growth in mammalian tissue culture

cell lines (Cushion and Walzer, 1984a,b).

s0025 4.2.2 Basidiomycetes: The Pathogenic Cryptococcus Species Complex

p0085 Cryptococcus neoformans and Cryptococcus gattii comprise the pathogenic

Cryptococcus species complex. They are related basidiomycete yeast species that

are common fungal pathogens of both humans and animals. The two species are

distinguished in that C. neoformans is prevalent, ubiquitous worldwide, largely

associated with pigeon guano, and a common cause of meningitis in immunocom-

promised hosts (Perfect, 1989; Casadevall and Perfect, 1998; Carlile et al., 2001).

C. gattii is generally geographically restricted to tropical and subtropical regions,

associated with trees, and commonly infects immunocompetent hosts, although

cases in immunocompromised patients also occur (Kwon-Chung and Bennett,

1984a,b; Sorrell, 2001). It is estimated that the two sibling species diverged B37.5

million years ago, which may explain the observed differences in ecology and host

range (Kwon-Chung et al., 2002). Additionally, the “tropical” status of C. gattii has

been recently challenged by the occurrence of an outbreak that began in 1999, ini-

tially on Vancouver Island, Canada at latitude 49.28�. This emerging infection has

since expanded into mainland British Columbia and the Pacific Northwest region

of the USA (Kidd et al., 2004; Fraser et al., 2005; MacDougall et al., 2007; Upton

et al., 2007; Byrnes et al., 2009b; Datta et al., 2009).

p0090 C. neoformans can be further subdivided into two serotypes (A and D) based on

unique antigenic profiles and sequence divergence (Kwon-Chung and Varma,
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2006; Bovers et al., 2008). This distinction is clinically relevant, as serotype A

strains cause the vast majority of infections globally, with high incidences in the

AIDS and transplant populations (Casadevall, 1998; Blankenship et al., 2005;

Singh et al., 2008). Overall, .99% of AIDS-related infections and .95% of over-

all cases are attributable to serotype A (Casadevall, 1998). The global burden of

disease is significant, with a recent report documenting almost 1 million annual

cases with over 620,000 attributable mortalities, resulting in approximately one-

third of all deaths in AIDS patients (Park et al., 2009). While less prevalent glob-

ally, C. gattii has also been a significant cause of morbidity and mortality, with

high incidences in humans and animals reported in North America, Australia,

Southeast Asia, and South America (Sukroongreung et al., 1996; Chen et al., 2000;

Sorrell, 2001; Lizarazo et al., 2007; MacDougall et al., 2007; Galanis and

MacDougall, 2010). Thus, the Cryptococcus species complex remains a global

health concern for both humans and a wide range of domestic, agrarian, and wild

mammals.

s0030 4.2.3 Globally Emerging Fungal Infections in Wildlife Species

p0095 While fungi are recognized as serious pathogens to their human hosts, it is also

becoming clear that fungal pathogens have the capacity to cause severe disease in

wildlife species. Notably, several of the fungi that are currently causing impacts on

biodiversity were not previously recorded as pathogens. This illustrates not only

the vast pool of undescribed fungal taxa, but also the capability of any branch of

the fungal tree to give rise to serious pathogens. For instance, globally spreading

chytridiomycosis in amphibians stems from a basal fungal lineage that was never

before found to infect vertebrates (Fisher and Garner, 2007; Voyles et al., 2009).

Similarly, Nosema ceranae, another microsporidian basal fungal lineage, has been

discovered as a contributing agent for the currently mysterious declines in honey-

bee colonies (Klee et al., 2007). More recently, a new fungal infection of bats

called white-nose syndrome (WNS) has swept though the northeastern USA since

2008, causing the deaths of .1 million bats and extirpating some well-known cave

roosts (Blehert et al., 2008). The etiologic agent has been described as an ascomy-

cete fungus Geomyces destructans, related to the human skin-infecting fungus

Geomyces pannorum (Meteyer et al., 2009). These fungi exemplify the wide range

of disease syndromes that are attributable to fungi, and the breadth of hosts that

they are able to infect.

s0035 4.3 New and Emerging Mycoses

s0040 4.3.1 Evolution and Emergence of Pathogenic C. gattii Genotypes in the
Pacific Northwest

p0100 As of 1999, C. gattii emerged as a primary pathogen in northwestern North

America, including both Canada and the USA (Kidd et al., 2004, 2005; Fraser

et al., 2005; MacDougall et al., 2007; Bartlett et al., 2008; Byrnes et al., 2009b;
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Byrnes and Heitman, 2009; Galanis and MacDougall, 2010). This outbreak now

spans a large geographic range, with levels of infection as high or higher than any-

where else globally, with an annual incidence on Vancouver Island of approxi-

mately 25 cases/million (Galanis and MacDougall, 2010). The only two reports

with higher overall levels are one examination of native Aboriginals in the

Northern Territory of Australia, and a study conducted in the central province of

Papua New Guinea (Fisher et al., 1993; Seaton, 1996; Galanis and MacDougall,

2010). Specifically, C. gattii is classified into four discrete molecular types

(VGI�VGIV), with molecular types VGI and VGII as the two most frequent causes

of illness in otherwise healthy individuals (Byrnes and Heitman, 2009). Infections

due to VGI have been reported at high rates among populations in Australia, while

the levels of VGII infection are high in the Pacific Northwest, where B95% of all

cases are attributable to this molecular type (Sorrell, 2001; Fraser et al., 2003,

2005; Bovers et al., 2008; Byrnes and Heitman, 2009). The appearance of C. gattii

in North America is startling because this is the first major emergence in a temper-

ate climate (MacDougall and Fyfe, 2006; Kidd et al., 2007b). To examine the evo-

lutionary aspects of this unprecedented emergence, efforts were undertaken to

study the molecular epidemiology and characteristics of isolates collected from

humans, animals, and the environment. These efforts have and will continue to

shed light onto several key features of this outbreak, while other contributing fac-

tors remain elusive.

p0105 The first efforts to elucidate the molecular types of the isolates collected in the

Vancouver Island area revealed that two genotypes, now known as VGIIa/major

and VGIIb/minor, are responsible for the vast majority of cases (Kidd et al., 2004;

Fraser et al., 2005). C. gattii was identified in the number of environments includ-

ing several tree species, the air, soil, seawater, and freshwater (Kidd et al., 2007a,b;

Bartlett et al., 2008). These studies then led to questions surrounding the properties

of the common genotypes in the region. The VGIIa/major genotype was found to

be highly virulent in a murine model of infection (Fraser et al., 2005). In addition,

the examination of the isolates, particularly the discovery of a homozygous VGIIa/

major diploid and the molecular characterization of the genome and mating-type

locus, led to the hypothesis that same-sex mating was involved in this α only out-

break (Fraser et al., 2005). Together, these efforts showed that C. gattii VGII was

now endemic in much of the region, and that the genotype responsible for the

majority of cases is highly virulent in animal models of infection and also possibly

in humans.

p0110 The next question in the field became focused on a possible expansion of the out-

break zone and the molecular and phenotypic characterizations of virulent isolates.

p0115 In 2007 and 2008, the first reports of C. gattii in the Pacific Northwest of the

USA were published. The report of Upton and colleagues (2007) illustrated the first

confirmed case of the Vancouver Island outbreak VGIIa/major in the USA (2006)

from a patient in Puget Sound, Washington. Additionally, in 2005, MacDougall

and colleagues discovered an increased number of outbreak-related cases on the

mainland of British Columbia and related C. gattii VGII genotypes in the USA,

including one later recognized as a VGIIc/novel isolate. Shortly thereafter, studies
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by Byrnes et al. documented a large cohort of clinical and veterinary cases from

the VGIIa/major outbreak genotype in both Washington and Oregon (Byrnes et al.,

2009a,b). These studies also reported VGIIb/minor in the USA, and importantly,

defined a novel VGIIc genotype that was unique to Oregon and observed in both

human and animal cases (Byrnes et al., 2009b).

p0120 Recent phenotypic examinations have also begun to address several key aspects

of the outbreak genotypes. Studies in the mouse model revealed that C. gattii iso-

lates from the outbreak induced less protective inflammation than C. neoformans,

indicating that C. gattii may thrive in immunocompetent hosts by evading or sup-

pressing the protective immune responses that normally limit C. neoformans dis-

ease progression (Cheng et al., 2009). Another unique feature of the outbreak

VGIIa/major genotype is its ability to proliferate at high levels within macrophages

as well as the ability to form highly tubular mitochondria after intracellular parasit-

ism (Ma et al., 2009). These unique features were also shown to be positively cor-

related with murine virulence (Ma et al., 2009). Recently, it had also been shown

that the VGIIc/novel genotype shares similar intracellular proliferation rates, mito-

chondrial morphology, and murine virulence characteristics with the VGIIa/major

genotype, further supporting the hypothesis that the genotypes seen in the region

are uncharacteristically enhanced for virulence (Byrnes, Lewit, Li, et al., PLoS

Pathogens 2010 in press).

p0125 Over the past decade, we have witnessed the emergence and expansion of a

tropical/subtropical pathogen into a temperate climate, leading to the formation of

a multidisciplinary C. gattii working group established to address the epidemiol-

ogy, clinical features, and basic science questions surrounding this outbreak (Datta

et al., 2009). Although the overall incidence remains low, little is currently known

about how or why specific humans and animals become infected and may involve

unique host factors, including possible genetic predispositions. In addition, the ori-

gins of the VGIIa/major and VGIIc/novel genotypes remain elusive. Substantial

progress has been achieved in addressing the molecular epidemiology and expan-

sion of the outbreak, and also the phenotypic characteristics that make these geno-

types unique. However, many critical questions remain to be addressed in the

future to understand the evolutionary dynamics of this unprecedented C. gattii

emergence in the region of the world, including expanded environmental sampling,

further phenotypic characterizations of associations with host animals and plants,

and genome sequencing of more representative C. gattii mitochondrial and nuclear

genomes.

s0045 The Global Emergence of the Amphibian Pathogen
Batrachochytrium dendrobatidis

p0130 The ability of fungi to cause severe disease in nonhuman vertebrate species has

been dramatically illustrated by global declines in amphibian biodiversity caused

by the fungus Batrachochytrium dendrobatidis (Bd). Only discovered in 1997

(Berger et al., 1998) and named in 1999 (Longcore et al., 1999), Bd is a basal fun-

gal lineage in the Chytridiomycota; these fungi are characteristically aquatic and
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unique from other fungi in that they have a motile, flagellate zoospore (James

et al., 2006). Many species of chytrid have been described in aquatic environments

and soils, as free-living or commensal organisms, and as parasites of algae, inverte-

brates, and fungi (Gleason et al., 2008). Of these, Bd is unique in that it is the only

chytrid known to parasitize vertebrates, by infecting and developing within the ker-

atinized epidermal cells of living amphibian skin (Pessier et al., 1999; Piotrowski

et al., 2004). Bd is now known to be widespread in all continents except Antarctica

(where amphibian hosts do not occur). A global-mapping project for this pathogen

has shown that Bd infects over 350 species of amphibian, and has been implicated

in driving the declines and extinctions of over 200 of these (http://www.spatialepi-

demiology.net/bd-maps/; Fisher et al., 2009).

p0135 Following the discovery that Bd was a driver of declines in amphibian species

in Australia, the Americas, and Europe, much attention has been focused on finding

out how Bd was being spread, and from where. In eastern Australia, prospective

and retrospective sampling of amphibians has shown that populations were initially

Bd-negative prior to 1978, followed by an expansion north and south from a center

in southern Queensland; western Australia was Bd-negative until mid-1985, where-

upon the spread of disease was detected and documented (Berger et al., 1998).

Mesoamerica has witnessed a rapid wave-like front of expansion from an apparent

origin in Monteverde, Costa Rica, southward at estimated rates of 17�43 km/year,

and has recently jumped the Panama Canal (Lips et al., 2008). The epidemic front

of chytridiomycosis along the North-South transect of Central America has been

predictable to the extent that researchers have been able to anticipate the arrival of

Bd in uninfected regions, such as El Copé in Panama, and to document the collapse

of the amphibian community upon arrival of the pathogen and the onset of chytri-

diomycosis (Lips et al., 2006).

p0140 Given these patterns of declines, where is the original source of Bd? Answers to

this question have been sought by attempting to identify geographic regions where

Bd has had a long and stable association with host species, indicative of coevolu-

tion, as well as substantially increased levels of genetic diversity when compared

against the various regional epizootics. One such study by Weldon et al. (2004) has

identified Africa as a potential source of the panzootic. Histology on historical

museum specimens showed that Bd has infected amphibians in Southern Africa

since at least 1938, and the “Bd Out of Africa” hypothesis was coined to suggest

that Bd was spread around the world via the extensive trade in the African clawed

frog Xenopus laevis from the 1930s onward. However, the recently published

molecular analysis by James et al. (2009) on global strains of the pathogen failed

to find evidence that Africa contains more diversity than occurs in other regions,

and in fact found that North American isolates of Bd were more highly diverse

than elsewhere and that a single globalized lineage is causing the current panzootic.

However, recent discovery that genotypes of Bd occur in the Japanese archipelago

that appear basal to the panzootic lineage suggests that there may yet be other

potential sources of Bd diversity (Goka et al., 2009). Therefore, the overarching

question on the origin of Bd remains unanswered to date. What is clear, however,

is that the global trade in amphibians is a potent force in spreading Bd into naı̈ve
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populations and species. This statement is especially true for the so-called Typhoid

Mary species such as X. laevis and the North American bullfrog Rana

catesbeiana; these species carry Bd infections but rarely exhibit the disease, chytri-

diomycosis. They are also widely traded and are often highly invasive when intro-

duced by accident or purpose into new environments (Fisher and Garner, 2007).

Therefore, these two species constitute ideal vectors for introducing Bd into unin-

fected regions of the globe (Garner et al., 2006) and are likely a major source of

new Bd infections when released into naı̈ve environments.

p0145 Currently, it is not known whether the genome of Bd harbors the genes for mat-

ing and meiosis, although such genes have been found in the related Zygomycete

lineage Phycomyces blakesleeanus (Idnurm et al., 2008). Importantly, all popula-

tion genetic studies thus far have shown that Bd exhibits levels of heterozygosity

that are consistent with a predominately asexual mode of reproduction. Of James’

17 sequenced polymorphic loci, 8 of these exhibited heterozygote excess. By

anchoring the 17 sequenced loci to the genome-scaffolds, James et al. (2009)

showed that levels of heterozygosity were not uniformly distributed across the

genome, but were significantly reduced on the largest inferred chromosome where

loss of heterozygosity (LOH) had occurred. This pattern of LOH is not consistent

with sexual reproduction and segregation, but rather with a model of chromosome-

specific variation in mitotic (somatic) recombination, a process that is well docu-

mented in other fungi including the diploid pathogenic fungus Candida albicans

that exhibits vegetative diploidy (Odds et al., 2007).

p0150 This model of asexual LOH driving the diversity of Bd isolates is not, however,

consistent across all studied populations. For instance, Bd sampled from Sierra

Nevada populations of the mountain yellow-legged frogs, Rana muscosa, showed

that, while allelic diversity was still found to be low throughout the dataset, within

some local populations genotypic diversity was high. In these “high diversity”

populations no new alleles appeared to have been introduced, and no genotypes

were shared between different infected populations. Thus, it was suggested that

local recombination had occurred within introduced lineages infecting particular

lakes (Morgan et al., 2007). These findings have two interpretations: either Bd has

the potential for outcrossing that is largely unrealized due to population bottlenecks

causing the loss of complementary mating types or that LOH can occur at variable

rates in different populations, generating a spurious “signal” of genetic recombina-

tion. Recent efforts to sample more global isolates of Bd coupled to next-generation

sequencing techniques are likely to reveal with greater clarity the mechanisms by

which the Bd genome evolves.

p0155 Despite the apparent rapid spread of Bd and the high degree of genetic similarity

between isolates, data is accumulating showing that genotypes differ significantly

in their virulence. Fisher et al. (2010) showed that the sporangia of five isolates of

Bd from the Balearic Island of Mallorca, all with identical genotypes, were similar

in size, but differed significantly from those isolates recovered from amphibians in

mainland Spain and the UK. When the virulence of a Mallorcan isolate of Bd

(TF5a1) and a UK isolate of Bd (UKTvB) was assayed in Bufo bufo (Fisher et al.,

2010), the Mallorcan strain of Bd was avirulent in comparison against the UK
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strain of the pathogen. Proteomic profiling of a global set of isolates showed that

there was significant interisolate variation in patterns of protein expression. The

amount of differentiation among isolates at neutral genetic markers and biologic

(morphologic and proteomic) characters was greatest for morphologic traits, sug-

gesting that these characters are under selection, and that this is possibly related to

local environmental conditions (Fisher et al., 2009). These data suggest that, if Bd

is able to generate functional diversity from a genetically depauperate genetic back-

ground via recombination, and thus increase its rate of adaptation to new environ-

ments, then the pathogen likely has the capacity to adapt to new climates and/or

host species. This raises the possibility that Bd may increase its fitness to new

environments and/or species combinations, and in this way change future patterns

of disease in ways that parallel to those seen in other species of pathogenic fungi

such as C. gattii.

s0050 4.3.2 Origin of Human Pathogens: Cryptococcus and Candida from
Saprobes Associated with Insects

p0160 The origin and evolution of pathogens remain central questions in studies of both

plant and animal diseases. One method to examine the likely origins of pathogens

is to phylogenetically place the species into the context of closely related saprobic

relatives. As mentioned earlier, Cryptococcus and Candida represent major classes

of mammalian fungal pathogens, and in both cases their closest related species are

associated with insects. Although these sibling species are less often studied than

their medically relevant counterparts, they offer important insights into the evolu-

tion of the animal pathogens and how these pathogenic species might have arisen

from insect-associated saprophytes.

p0165 Phylogenetic analyses indicate that the Cryptococcus species complex likely

arose from the Tremella lineage and that it clusters closely with the Tremellales,

Trichosporonales, Filobasidiales, and Cystofilobasidiales (Ergin et al., 2004; Rimek

et al., 2004; Sampaio et al., 2004). Several of the species within these lineages are

saprophytes that are commonly associated with insect debris, leading to the hypoth-

esis that the pathogens emerged from an association within this environmental

niche (Findley et al., 2009). In support of this hypothesis, C. gattii has been iso-

lated from both insect frass and wasp nests, and C. neoformans has been isolated

from honeybee hives, indicating that these animal pathogens may still in some

cases act as an insect-associated saprophyte in the environment (Gezuele et al.,

1993; Kidd et al., 2003; Ergin et al., 2004). While the evolutionary factors influ-

encing the emergence of a mammalian pathogen from saprobes are still unclear,

the support for this hypothesis of emergence based on phylogenetic and ecologic

studies gives insights into the emergence of the pathogenic Cryptococcus species

complex.

p0170 In addition to the studies mentioned earlier, interactions between Cryptococcus

and insects have been further supported by the development of a well-validated

insect model of pathogenesis in the model insect Galleria mellonella (Mylonakis

et al., 2005; Fuchs and Mylonakis, 2006; London et al., 2006). Results from this
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system have been shown to correlate with the murine model of infection, and stud-

ies examining C. neoformans and C. gattii both show successful survival assays

(Byrnes et al., 2009c; Findley et al., 2009; Velagapudi et al., 2009). Additionally,

the pathogenic Cryptococcus species were shown to be more virulent than their

nonpathogenic insect-associated relatives (Findley et al., 2009). This invertebrate

model of infection is low-cost and poses fewer ethical issues, allowing for more

facile, high-throughput analyses of virulence.

p0175 Studies in the Candida clade have shown several species to be associated with

insects, particularly plant-associated beetles (Suh et al., 2004b, 2005, 2006, 2008).

In most cases, these yeast species are xylose-fermenting, closely related to the path-

ogenic Candida species, and isolated from the insect gastrointestinal (GI) tract,

leading to the hypothesis that this is a symbiotic relationship between the insects

and fungi (Suh et al., 2003, 2004a,b, 2005, 2006; Suh and Blackwell, 2004, 2005;

Nguyen et al., 2007). The large number of Candida taxa that are associated with a

diverse range of host beetles also suggests that this phylogenetic lineage has a

strong possibility of being involved in symbiotic insect associations (Suh et al.,

2006). Recently, four novel species from the C. albicans/Lodderomyces clade were

isolated from insect guts, with one, Candida blackwellae, the closest relative to

C. albicans yet to be reported (Ji et al., 2009). Furthermore, Candida dubliniensis,

a human pathogen, was isolated from seabird-associated ticks suggesting a possible

reservoir and ecologic niche for this pathogen (Nunn et al., 2007).

p0180 Although the phylogeny and ecology of the clade are being uncovered, little is

known about how several representative species from this lineage may have

emerged and expanded into mammals. One commonality between the pathogenic

mammalian and insect-associated species is that they are associated with the gut

(Nguyen et al., 2006, 2007; Suh et al., 2006; Schulze and Sonnenborn, 2009;

Tampakakis et al., 2009). While the environments are largely different, there may

be common links between the insect and mammalian GI tracts that are important

for survival and proliferation. An increase in number of studies examining the role

of fungi in the human GI tract will also enhance the understanding of what roles

the fungi, particularly the Candida clade, play in animal microbiomes.

s0055 4.4 Plant Pathogenic Fungi

p0185 Although several important fungal pathogens attack animals, land plants have prob-

ably been the main nutrient source of fungi through much of their evolutionary his-

tory, given the predominance of plant saprophytes, pathogens, and mycorrhizal

species in fungi (Berbee, 2001; Berbee and Taylor, 2001; James et al., 2006).

Collectively, fungi cause more plant diseases than any other group of plant pests

(such as viruses or bacteria), with over 8000 species shown to cause disease. The

life cycles of many of these are complex and involve two or more host plants.

Plant diseases caused by fungi exhibit a huge diversity of symptoms. Pathogenic

fungi can indeed be responsible for lesions on leaves or on flowers, stem cankers,

root and fruit rot, or for sterilizing plants.

Tibayrenc-1 978-0-12-384890-1 00004

70 Genetics and Evolution of Infectious Diseases



p0190 Fungal pathogens are therefore a serious concern for agriculture, as they reduce

crop yield and lower product quality by attacking cultivated plants and their pro-

ducts (seeds, fruits, grains). Nearly all crops have their pathogenic fungi, and often

several of them, from cereals to corn, rice, potatoes, beans, peas, soybean, fruit trees

(including coffee and cacao), and ornamental plants and trees. Some of the world’s

great famines and human suffering can be blamed on plant pathogenic fungi. Wheat

crops of the Middle Ages were commonly destroyed when the grains became

infected with a dark, dusty powder now known to be the spores of the fungus called

bunt or stinking smut (Tilletia spp.). Epidemics caused by rust fungi have also been

noted for millennia. These epidemics were recognized in ancient Greece and

described in the writings of Aristotle and Theophrastus. The Romans held a reli-

gious ceremony/festival, the Robigalia, to appease the gods Robigo and Robigus,

whom they believed responsible for the rust epidemics. Potato late blight, caused by

the oomycete Phytophthora infestans, is the most important biotic constraint to

potato production worldwide. It caused epidemics during the 1840s, because of

which more than 1 million people died from starvation or famine-related diseases,

and more than 1.5 million emigrated from Ireland. A more recent epidemic that

resulted in large-scale famine was caused by a fungus responsible for brown spot of

rice; 2 million people died of starvation during the great Bengal famine of 1942.

A related fungus, which attacks corn and causes southern leaf blight, resulted in a

widespread epidemic in the USA in 1970; ca. 15% of the total corn crop was lost,

with yields in some states reduced to 50%. In the USA alone, hundreds of millions

of bushels of wheat have been lost in epidemic years due to stem rust (Puccinia gra-

minis tritici). Rice blast, caused by the fungus Magnaporthe oryzae, is an important

disease on rice, among many other diseases. It is found wherever rice is grown, it is

always important, and it is always a threat. Coffee rust, caused by Hemileia vasta-

trix, caused epidemics on cultivated coffee in Ceylon (Sri Lanka, which was British

at the time) in the nineteenth century. All exports of coffee from Ceylon had to be

stopped; planters turned to tea in place of Arabian coffee, and tea became the social

drink of the British (Staples, 2000). Scarcity of wheat caused by epidemics of wheat

stem rust is the historical reason that the bread of central Europe is often made of

rye and that cornbread is so popular in the southern US (Horsfall, 1983; Palm,

2001). The Botrytis gray mold is a common disease of greenhouse floral crops and

all ornamental plants can be infected by powdery mildews. These are only few

examples of the many pathogenic fungi devastating crops.

p0195 In addition to being agents of preharvest and postharvest diseases and rots, fungi

produce highly toxic, hallucinogenic, and carcinogenic chemicals that not only

affected the lives of millions of people historically, but also continue to be of pro-

blems today. In 2006, dozens of dogs perished in the USA from food tainted with

aflatoxin, a chemical produced by several Aspergillus species. These fungi can

grow on corn and fill the seed with the toxin that not only attacks the liver, but is

one of the most carcinogenic substances known. Another example comes from the

genus Fusarium, which contains numerous phytopathogenic species, F. culmorum

and F. graminearum being particularly important pathogens of cereal crops in

many areas of the world. They are responsible for head and seedling blight of small
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grains such as wheat and barley, ear and stalk rot of corn, and stem rot of carnation.

Besides causing yield reduction, these Fusarium diseases come with the production

of mycotoxins, which are highly toxic to both plants and animals, including

humans (Desjardins et al., 1993).

p0200 Several methods are used in modern agroecosystems to control fungal patho-

gens, including spraying fungicides, creating resistant varieties, crop rotations, and

a variety of cultural practices aimed at reducing plant infections. Fungicides and

resistance can be very efficient at first, but are expensive, polluting, and often do

not last. Fungi have indeed huge effective sizes, with millions of spores produced

by a single diseased plant, great dispersal abilities, and several generations per

year, enabling rapid adaptation. Fungicide breakdown often occurs within a few

years, as does resistance resistance (Brown, 1994).

p0205 Pathogenic fungi are also widespread in natural ecosystems, with great impacts

on the compositions of natural communities. Forest trees, for instance, are attacked

by many pathogenic fungi. Armillaria root disease, causing branch dieback and

crown thinning, is often one of the most important diseases of trees in temperate

regions of the world, especially in native forests. The most infamous tree diseases

include Dutch elm disease caused by Ophiostoma species, chestnut blight caused

by Cryphonectria parasitica, and sudden oak death, ramorum leaf blight, and

ramorum shoot blight all caused by the oomycete Phytophthora ramorum. These

diseases have dramatic consequences on forest composition and their associated

biota, with some tree species even disappearing from continents. For instance, the

chestnut blight fungus caused the death of 80% of the native American chestnut

trees throughout eastern forests from Maine to Georgia during the first half of the

twentieth century. The Dutch elm disease fungus, Ophiostoma ulmi, has led to the

destruction of American elm trees and has altered urban landscapes by killing orna-

mental elms across the country. It has been estimated that more than 77 million

elms have died. Not only trees, but virtually all natural plants have their own patho-

genic fungi. Examples include choke disease on grasses caused by Epichloë spe-

cies, anther smut disease on Caryophyllaceae caused by Microbotryum violaceum,

and powdery mildew on many natural plants.

s0060 4.5 New and Emerging Plant Diseases

p0210 Fungi are also responsible for about 30% of emerging diseases in plants (sensu

lato, i.e., including oomycetes), which is 3 times more than for emerging diseases

in humans or wildlife (Anderson et al., 2004). These patterns of fungal disease

emergence in plants have elicited great concern for several reasons. First, epi-

demics caused by invasive pathogens have been repeatedly reported to alter natural

ecosystems (Anderson et al., 2004; Desprez-Loustau et al., 2007). Well-documen-

ted examples of emergent diseases in natural plant communities include some of

the ones mentioned earlier, such as the spread of Cryphonectria parasitica that

eliminated the dominant chestnut forests throughout eastern North America at the

end of the nineteenth century. The Dutch elm disease caused by Ophiostoma ulmi
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and O. novo-ulmi appeared in Europe around 1919, and the fungus was described

in Holland in 1921; it was first found in the USA in Ohio in 1930 (Anagnostakis,

2001). Phytophthora cinnamomi that threatens native forests throughout Australia

is also an emerging disease (Anderson et al., 2004; Desprez-Loustau et al., 2007).

Many powdery mildews appear as invasive fungi (Kiss, 2005). Such dramatic dis-

eases not only affect the host plants, but also the whole associated fauna, including

insects, birds, and mammals.

p0215 Second, our primary food production is at risk due to emerging crop diseases;

the most dramatic historical example being the Irish Potato Famine caused by

P. infestans on cultivated potato in the beginning of the twentieth century (Birch

and Whisson, 2001). Other examples of invasive fungi parasitizing crops include

Plasmopara viticola, an oomycete causing the grapevine downy mildew, that has

been introduced from North America to Europe in the past two centuries,

Plasmopara halstedii, another oomycete causing sunflower downy mildew

(Delmotte et al., 2008), the soybean rust in North America and the coffee rust in

Asia and South America (Staples, 2000). Crop plants are in fact particularly sus-

ceptible to the emergence of new diseases because of the large-scale planting of

genetically uniform varieties.

p0220 Third, epidemics on crop plants generate a huge production of potentially infec-

tious spores (Brown and Hovmoller, 2002). In addition to spreading disease over

agricultural areas, this high propagule pressure on surrounding areas may contribute

to disease emergence in natural plant communities. Indeed, though nonhost resis-

tance is quite durable, host shifts are known to occur (Stukenbrock and McDonald,

2008; Tellier et al., 2010), so epidemics of crop species may pose an undetected and

poorly recognized danger to natural plant communities (Power and Mitchell, 2004).

p0225 There has been an increasing focus on identifying the factors that drive the

emergence of new fungal diseases (Anderson et al., 2004; Thrall et al., 2006;

Desprez-Loustau et al., 2007; Stukenbrock and McDonald, 2008). As mentioned

earlier, introduction of pathogens in a new area is one of the most obvious causes.

It has been estimated that between 65% and 85% of plant pathogens worldwide are

alien in the location where they were recorded (Pimentel et al., 2001). The emer-

gence of a new fungal disease following an introduction may be due to the reunifi-

cation of a pathogen and a crop that had been introduced to new continents. This

has been the case for instance for the potato late blight, rubber leaf blight, and cof-

fee rust (Staples, 2000; Birch and Whisson, 2001; Desprez-Loustau et al., 2007).

Fungal pathogens introduced into new continents have also been responsible for

disease emergence in natural plant communities. Examples include the sudden oak

death in North America caused by Phytophthora ramorum (Rizzo et al., 2005), the

oak decline in Europe and Jarrah decline in Australia caused by Phytophthora cin-

namomi (Hardham, 2005), the Dutch elm disease caused by Ophiostoma ulmi and

O. novo-ulmi (Brasier, 2001), and the chestnut blight caused by Cryphonectria

parasitica (Anagnostakis, 2001).

p0230 Horizontal gene transfer (HGT) (i.e., the exchange of specific genes between

species that are normally reproductively isolated) has also been invoked to explain

the emergence of new fungal diseases (Stukenbrock and McDonald, 2008). The
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most convincing example is a HGT between Phaeosphaeria nodorum and

Pyrenophora tritici-repentis, both fungal pathogens of wheat with similar foliar

symptoms worldwide. P. tritici-repentis is a very recently emerged pathogen,

which was suggested to be due to the acquisition of a host-specific toxin gene by

horizontal transfer from P. nodorum (Friesen et al., 2006).

p0235 Interspecific hybridization involves whole genomes, in contrast to HGTs.

Hybridization is quite common in fungi, and can also lead to the emergence of new

hybrid species (see Section 4.8). Transgressive traits in hybrids could even lead to

the emergence of a disease on a new host that the hybrid would be able to parasit-

ize while its parent species would not (Brasier, 2001; Olson and Stenlid, 2002;

Stukenbrock and McDonald, 2008). In fact, this scenario has been suggested for

some emerging fungal diseases, in particular the rusts caused by Melampsora spp.

on poplar (Newcombe et al., 2000) and the diseased caused by a complex of

Phytophthora species on alder in Europe (Ioos et al., 2006).

s0065 4.6 Modern Molecular Epidemiologic Tools for
Investigating Fungal Diseases

p0240 To understand the dynamics of fungal diseases and the dynamics of emergence of

new diseases, epidemiology is a necessary step. Epidemiology is indeed a disci-

pline concerned with understanding the factors affecting the dynamics of disease in

space and in time, with an emphasis on being quantitative and predictive. During

the past decade, the integration of molecular biology into traditional epidemiologic

research has revolutionized the discipline (Tibayrenc, 1998; Taylor et al., 1999a).

This led to the development of a new field, molecular epidemiology, which

addresses epidemiologic problems using “the various molecular methods that aim

to identify the relevant units of analysis of pathogens involved in transmissible dis-

ease” (Tibayrenc, 2005). Increasingly sophisticated, sensitive, and reproducible

detection methods have made studies of spatial patterns of disease, nosocomial

infections, or disease outbreaks much more convincing and have provided unprece-

dented opportunities to track pathogen populations with particularly harmful char-

acteristics in pathogenicity, virulence, or resistance to chemicals. Early adoption of

molecular typing techniques to address applied questions in fungi of medical, veter-

inary, and agronomical relevance was soon cross-fertilized by the related field of

molecular evolutionary genetics (Milgroom, 1996; Taylor et al., 1999b). However,

in common with other microbial fields, a plethora of novel platforms and typing

techniques was developed to study the molecular epidemiology of fungi during the

1990s. This multiplication may have, to some extent, confused rather than eluci-

dated fungal epidemiology (Achtman, 1996; Urwin and Maiden, 2003).

Fortunately, the list of esoteric acronyms for typing techniques (or YATMs, for yet

another typing method; Achtman, 1996) eventually ceased to expand as research

coalesced on those platforms that yielded unambiguous and portable data.

Specifically, two methods in particular are now predominant in molecular epidemi-

ologic studies of fungal pathogens: MLST, for multilocus strain typing (Maiden
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et al., 1998) and MLMT, for multilocus microsatellite typing (Fisher et al., 2001).

The advantages of these two techniques as typing approaches are their portability

and reproducibility (typing can be done in any molecular biology laboratory and

generates identical results for identical DNA samples), their archiveability (results

can be compiled by multiple contributors in publicly available web databases) and

their amenability to high-throughput automation. The development of these meth-

ods, designed to be enduring, would not have been possible without the technologic

advances that eased and reduced the cost of generating, determining, storing, and

interpreting genetic data. Currently, new advances in next-generation high-through-

put sequencing techniques mean that MLST and MLMT typing schemes are on the

brink of being absorbed into whole-genome single nucleotide polymorphism

(SNP)-typing platforms. However, the nature of MLST/MLMT typing schemes is

such that older data will be incorporated into new schemes rather than discarded,

as was previously the case.

p0245 MLST schemes compare nucleotide polymorphisms within regions of ca. 500

nucleotides from five to seven genes. Traditionally, the regions represent coding

sequences of housekeeping genes, which are under purifying selection to retain

function and persist in genomes. MLST was originally developed to facilitate stud-

ies of epidemiology in bacterial populations (Maiden et al., 1998). Mycologists

were using a similar technique since the mid-1990s championed by J.W. Taylor and

his associates, but it was lacking an acronym and more oriented toward the study of

evolutionary features of fungal species than issues of epidemiology (Taylor et al.,

1999a; Taylor and Fisher, 2003). The principle of an MLST scheme is simple: alle-

lic variants, resulting from SNPs, are recorded as series of integers that together

constitute a barcode called a strain sequence type (ST). The MLMT scheme is a

direct extension of the MLST approach to microsatellite loci, which are short tan-

dem repeats of 2�6 nucleotides. Allelic variants at ca. 5�15 microsatellite loci,

here resulting from variation in the number of repeats of the microsatellite motif,

are recorded as series of integers called microsatellite types (MT). Both MLST and

MLMT have been greatly enhanced by the availability of complete fungal genomes

that render the steps of isolation of new markers less cumbersome and more likely

to succeed. This is particularly true for MLMT schemes, whose development is

often hindered in fungi by the weak representation of microsatellite loci in fungal

genomes, the low abundance of motifs with potentially high mutability (i.e., with

high number of repeats), and the small size of genomes (Dutech et al., 2007).

p0250 The main use of fungal MLST is for diagnosis and species identification (Taylor

and Fisher, 2003). Issues such as quarantine, selection of appropriate treatments

and disease control measures, identification of significant sources of inoculum for

epidemics, or nosocomial infections depend on a proper taxonomic assignment

(Palm, 2001). Traditional methods based on phenotype or mating tests, if applica-

ble, were laborious and compromised in their accuracy. Phylogenetic methods

using genealogical concordance phylogenetic recognition (GCPSR) are progres-

sively superseding previous approaches (Taylor et al., 2000; Giraud et al., 2008b).

Gene-sequence data from studies using GCPSR can easily be converted to STs and

stored in web databases accessible to the whole community of mycologists. Species
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recognition studies are also an elementary prerequisite to the design of an MLST

scheme, as molecular epidemiology tools are based on the idea that pathogen popu-

lations form discrete entities that are stable enough to be identifiable. These enti-

ties, and their biologic relevance, are conditioned by evolutionary forces; hence,

the usefulness of a preliminary exploration of species limits and population struc-

ture by evolutionary biologists (Tibayrenc, 2005). The delimitation of species, and

therefore implicitly the design of a new MLST scheme, requires assembling a

diverse collection of isolates on the basis of current knowledge on the ecology of

the fungus and existing typing information (Urwin and Maiden, 2003). Clinical or

field isolates can be quite readily collected, but even a modest sampling of environ-

mental individuals of pathogenic fungi can turn out to be a very difficult task

(Greene et al., 2000; Taylor and Fisher, 2003). Where fungi have been thoroughly

sampled across their range and habitats and have provided a sufficient diversity of

genotypes, MLST schemes can assist in dissecting the factors behind a disease out-

break. For instance, a recent MLST study of the chytrid fungus Batrachochytrium

dendrobatidis (James et al., 2009), suggested as a principal cause for the worldwide

decline of amphibians, found the global epidemic owes to the global dispersal of a

single genotype. This data was used to argue that the observed low allelic diversity

and high heterozygosity provide strong support that the fungus is a novel pathogen

introduced into naı̈ve host populations, over the alternative hypothesis that the spe-

cies is an endemic pathogen whose emergence is due to recent changes in the envi-

ronment. By contrast, an MLST study of Coccidioides immitis, the etiologic agent

of coccidiomycosis revealed that the epidemic observed in California in the early

1990s was not due to the emergence of a virulent genotype but rather governed by

the synchrony of environmental factors (Fisher et al., 2000). In this study, analyses

of clinical isolates with MLST data revealed extensive genetic, genotypic diversity

and a lack of significant association across loci, rejecting the hypothesis of aggres-

sive clonal spread, and in conjunction with these elements, multivariate statistical

treatment of environmental data showing that the number of cases of disease was

best explained by the interaction between two climatic factors.

p0255 MLMT-based techniques are more useful in discriminating genotypes within

species and inbred populations than among species, which make their use comple-

mentary to MLST. A primary reason is that the cross-species transferability of

microsatellite appears lower in fungi than in other organisms (Dutech et al., 2007),

which limits their utility to discriminate among species (with some exceptions, e.g,.

Fisher et al., 2002; Matute et al., 2006). A second reason is that microsatellites typ-

ically have high mutation rates in fungi, even though they appear less polymorphic

in this kingdom than in others (Dutech et al., 2007). Factors such as recent specia-

tion, demographic bottlenecks, or selective sweeps associated with a lack of recom-

bination can dramatically reduce variation at housekeeping genes and thus

seriously hamper the discriminatory power of MLST schemes at the intraspecific

level (Morehouse et al., 2003; Couch et al., 2005; Bain et al., 2007). In such cases

where nucleotide variation is not sufficient to address questions at the intraspecific

level, MLMT provide a powerful alternative (Fisher et al., 2004; Morgan et al.,

2007). In a recent study Ivors et al. (2004) sequenced three housekeeping genes in

outbreak isolates of Phytophthora ramorum, the etiologic agent of the devastating
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“sudden oak death” disease. This study showed that all sequences were identical

among all isolates and therefore completely uninformative on the nature of epi-

demic. MLMT tools developed later (Prospero et al., 2004, 2007; Ivors et al.,

2006) proved very useful in tracking the pathogen as it spread in the USA (Cooke,

2007; Prospero et al., 2007). Analyses of MLMT data provided evidence of a his-

torical link between nursery and wild populations of the pathogen, and identified

three common genotypes as the likely founders of the Californian epidemics

(Mascheretti et al., 2008). The potential of MLMT as a tool to resolve interstrain

differences even at fine-scale can also be useful to study basic features of the biol-

ogy of fungi. For instance, in plant pathology it is critical to know the relative

importance of ascospores, mycelium, and conidia in dispersal of fungi and whether

the source of primary inoculum is soil, plant debris, infected seeds, other plants,

etc. The most obvious application of this knowledge in disease management is to

eliminate the source of inoculum by sanitation, debris, and weed management, or

crop rotation (Milgroom and Peever, 2003). MLMT also provides a useful tool to

infer the source and type of primary pathogen inoculum, which are often impossi-

ble to identify by direct observation or using the traditional epidemiologic approach

of studying the distribution of disease foci (Douhan et al., 2002; Peever et al.,

2004). A last original application of MLMT tools in fungi is in plant breeding

efforts. Here, the basic idea is the use of a better representative of existing variation

in pathogen populations to screen for resistant germplasms in order to assist in

breeding plant varieties with more durable and effective resistance. Based on the

assumption that variation at microsatellite markers can be used as a proxy for varia-

tion in pathogenicity traits, MLMT schemes have found use in selecting a core col-

lection of pathogen genotypes that are more representative of extant genetic

diversity than are a random sample of the local inoculum found in the immediate

neighborhood of the nursery (Peever et al., 2000).

p0260 What biostatistical methods can be used to track genotypes and species using

MLST and MLMT data? Many fungal species exhibit limited recombination in

nature and form complexes of genetically related haplotypes (Taylor et al., 1999b).

For these taxa, split decomposition (Huson and Bryant, 2006), statistical parsimony

(Clement et al., 2000), or eBURST (Feil et al., 2004; Spratt et al., 2004) can pro-

vide a graphical representation of the relationships among genotypes and their

prevalence (Morehouse et al., 2003; Urwin and Maiden, 2003; Couch et al., 2005;

Fisher et al., 2005; Morgan et al., 2007). These network approaches can be used

to infer the origin of particular isolates, provided that the species have sufficient

host-specific or geographical population structure. Where population structures are

highly recombining, however, network approaches are improper for epidemiologic

tracking because recombination mixes genotypes at individual loci and renders

multilocus genotypes unstable (Tibayrenc, 2005). Therefore, in recombining spe-

cies, determining source populations requires comparing individual isolates in sta-

tistical settings that explicitly model the associations amongst loci. A number of

Bayesian methods have been developed to produce robust assignments for organ-

isms with extensive genetic recombination (Rannala and Mountain, 1997; Pritchard

et al., 2000; Falush et al., 2003; Piry et al., 2004). An example of the utility of this

approach is provided by Fisher et al., 2001 to identify the source populations for
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Coccidioides isolates recovered from patient treated outside the endemic area of

Coccidioides sp. These methods can also be used to exclude possible sources. In

one study, Bayesian tests were used to demonstrate that populations of Venturia

inaequalis, the apple scab fungus, spreading in France on apple varieties harboring

the Vf major resistance gene were not derived from local apple scab populations,

but rather introduced from another region (Guérin et al., 2007).

p0265 Recent technologic developments have increased the rate of data generation and

concomitantly greatly enhanced our understanding of fungal species and popula-

tions. The next step will be to increase the level of data sharing and to promote the

development of curated Internet databases that can accommodate the incoming ava-

lanche of SNP-diversity that is generated by next-generation sequencing schemes.

Web-based community tools are still underdeveloped in fungi in comparison with

other microbial pathogens, and an extensive sharing of data could allow more

sophisticated spatio-temporal surveys of epidemics. Recent progress is illustrated

by the development of an MLST-typing scheme for the fungal pathogen C. neofor-

mans that integrates MLST-approaches with new scalable mapping technologies to

ascertain regional and global patterns of spread (http://cneoformans.mlst.net/earth/

maps/) (Meyer et al., 2009). Such informatic technologies will in the future be inte-

grated with next-generation sequencing and combined with the development of pre-

dictive models of disease spread to relate strain typing data with phenotypic traits,

environmental data, and disease risk-assessment decision platforms.

s0070 4.7 Population Genetics of Pathogenic Fungi

p0270 Population genetics is also needed to understand fungal diseases. The genetic struc-

ture of a species refers to the amount and distribution of genetic variation within

and among populations. Population genetics aims to understand the evolutionary

processes that shape the genetic structures of species. For pathogenic fungi, popula-

tion genetics questions are not simply of academic interest, as these questions have

genuinely practical applications. Issues such as breakdown of plant resistance,

resistance to fungicides, emergence and spread of virulent strains, or the design of

tools for identification are related to the genetic structure of fungal populations. By

providing an understanding of the processes that shaped the structure of a pathogen

species in the past, population genetics offers the opportunity to forecast the emer-

gence of genotypes, populations, or species with detrimental characteristics for

human affairs (McDonald and Linde, 2002; Giraud et al., 2010), and also to inform

practical attempts to bring fungal pathogens into durably effective human control

(Williams, 2009). Currently, a great part of the research effort of population geneti-

cists on fungal pathogens is devoted to fuel the development of risk-assessment

models. Herein, we provide an overview of the tools available to understand three

important components of population structure of fungal pathogens that are related

to their evolutionary potential: the reproductive system, gene flow, and population

subdivision. We also provide examples of case studies where the methods have

been successfully applied to elucidate genetic structures in fungi.
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s0075 4.7.1 Reproductive System

p0275 Fungi present a striking diversity of life cycles, and studying their reproductive

biology is a challenging task. However, this information is critical to assess the risk

posed by pathogens and for the design of disease management strategies

(McDonald and Linde, 2002). For instance, outcrossing promotes genetic exchange

and can accelerate the spread of new mutations in combination with other benefi-

cial alleles, which is critical in the context of an arms race between hosts (or the

humans that breed or grow them) and pathogens. By contrast, selfing or asexual

reproduction provides insurance of reproduction for species having a low probabil-

ity of finding a mate, and these species can therefore invade distant territories more

easily and/or more rapidly (Taylor et al., 2006). Asexual reproduction is also an

expeditious way of multiplying rapidly favorable combinations of genes built by

past selection (Otto, 2009) and a more efficient strategy of transmitting genes to

the next generation. Indeed, an asexual parent transmits 100% of its genes to the

next generation, against only 50% for a sexual parent, which is called “the twofold

cost of sex” in anisogamous species (Bell, 1982). In the following, we briefly

define the terminology used to qualify different aspects of fungal reproductive sys-

tems, and then we provide an overview of the methods available for their analysis,

with some case studies among the fungal pathogens.

s0080 Terminology

p0280 Inconsistent use of key terms might be a cause of the slow integration of fungi in

the field of evolution, and more generally unclear definitions of concepts are often

an obstacle in the progress of science (Neal and Anderson, 2005). A proper identifi-

cation of the key features of the reproductive system of fungal pathogens is also

fundamental for the correct selections of appropriate models to study population

structure (Giraud et al., 2008a). Three aspects of the fungal reproductive system

can be distinguished: the reproductive mode, the breeding system, and the mating

system.

p0285 Sexual reproduction is the process by which progeny is formed through the com-

bination of two parental nuclei, generally involving syngamy and meiotic recombi-

nation (Schurko et al., 2009). In fungi, genes can be transmitted across generations

through asexual, sexual, or mixed modes of reproduction (“mixed” referring

to the alternation of sexual and asexual reproduction during the life cycle).

Approximately one-fifth of described fungal species have been thought to be asex-

ual, but population genetic studies have revealed that most show footprints of

recombination, which is incompatible with strictly asexual reproduction (Taylor

et al., 1999b). The difficulty in determining the reproductive mode mostly stems

from the failure of morphologic observations of sexual structures. There is also the

complication that fungal species often participate in both sexual and asexual repro-

duction, and therefore the same fungal species can display different reproductive

modes in different places or at different times. It is often asserted that mitotic

recombination via parasexuality can mix parental genomes and mimic the effect of
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sexual reproduction in fungi (Taylor et al., 1999b), but the importance of parasexu-

ality in nature remains to be determined (but see Milgroom et al., 2009).

p0290 The term “breeding system” refers to the physiologic determinants of compati-

bility among individuals (Neal and Anderson, 2005). Mating compatibility in fungi

is regulated strictly in the haploid stage by mating-type loci. For most species, the

successful fusion of gametes can occur only between haploids carrying functionally

different mating-type alleles, a phenomenon called heterothallism. Compatibility

can be determined by alleles at a single locus (a condition termed bipolar hetero-

thallism) or by alleles at two unlinked loci (a condition termed tetrapolar hetero-

thallism). Some fungi are homothallic, meaning that they do not require genetic

differences for mating compatibility.

p0295 The term “mating system” refers to the degree of genetic relatedness between

mates. Outcrossing corresponds to the mating between cells derived from meioses

in two different unrelated diploid genotypes, whereas inbreeding corresponds to the

mating between related individuals. Inbreeding can be caused by selfing, the mat-

ing between meiotic products of the same diploid genotype. Three subcategories of

selfing can be distinguished: intertetrad, intratetrad, and intrahaploid mating.

Intertetrad mating refers to the union of cells derived from the same diploid indi-

vidual but from different meiotic tetrads. Intratetrad mating refers to the union of

cells derived from the same meiotic tetrad. Intrahaploid mating is allowed by

homothallism, where genetic differences between pairing individuals are not

required, permitting union between haploid mitotic descendants of the same mei-

otic product. We invite the reader to note that, contrary to persistent misconcep-

tions in the fungal literature, the breeding system has little influence on the mating

system. For instance, heterothallism does not prevent selfing, because any diploid

individual is necessarily heterozygous at the mating-type locus (see Giraud et al.,

2008c, for more details), and homothallism may have been selected for more effi-

cient outcrossing rather than for allowing intrahaploid mating, the latter having lit-

tle advantage over asexuality while retaining some of the costs of sex (Billiard

et al., 2010). Tetrapolarity is often suggested to promote outcrossing. If one consid-

ers biallelic breeding systems, it is true that tetrapolarity is less favorable to intrate-

trad mating than bipolarity, since the chance that any two siblings are compatible is

50% in a bipolar cross compared to only 25% in a tetrapolar cross (Hsueh et al.,

2008). However, if gametes disperse before mating, these odds of compatibility

within a progeny will be of little relevance. Whereas the breeding system cannot be

determined without laboratory experiments, the mating system and reproductive

mode of fungi cannot be inferred without analyzing patterns of genetic variation in

natural populations.

s0085 Analysis of the Reproductive System

p0300 Following Milgroom (1996), we can distinguish three basic questions usually asked

by fungal population geneticists: (1) Is population structure consistent with random

mating? (2) Is there evidence for recombination? (3) What is the degree of related-

ness between mates? In practice, answers to these questions are not independent
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and investigators often take the inability to reject a random mating hypothesis as

an evidence for recombination.

p0305 The identification of populations and species is an essential prerequisite to the

study of the reproductive mode and mating system. Hidden population subdivision

or cryptic species within the units defined to perform analyses can indeed lead to

erroneous conclusions on the reproductive biology of a fungus. This causes devia-

tions from random mating or from random association among alleles. A well-

known example is the Wahlund effect, where the failure to detect population subdi-

vision influences measures of inbreeding and association among alleles at different

loci and leads to the same signal as inbreeding. Although they form a prerequisite

to the study of reproduction, methods to analyze population subdivision generally

do not provide a genuine assessment of the characteristics of the mating system

(Gao et al., 2007), and therefore specific analyses are needed.

p0310 The most immediate consequence of asexual reproduction is the occurrence of

repeated identical genotypes. The ratio of the number of multilocus genotypes

found over the sample size can give an idea as to the rate of asexual reproduction,

ranging from zero for a completely clonal population to one for a sexually reprodu-

cing population. Many populations of plant pathogens actually fall between the two

extremes, having annual sexual cycles and asexual epidemic phases that amplify

clones (Milgroom, 1996). One approach to analyzing the reproductive biology of

these pathogens is to include a single representative of each multilocus genotype

(an approach referred to as “clone correction”). However, one should ensure prior

to clone correction that repeated genotypes do not simply result from insufficient

discriminative power of the molecular markers assayed. This can be tested by cal-

culating the likelihood that a multilocus genotype observed more than once in a

sample is the result of sexual reproduction, given the observed allele frequencies

and assuming random mating (Stenberg et al., 2003). The GENODIVE (Meirmans and

Van Tienderen, 2004) and GENCLONE (Arnaud-Haond and Belkhir, 2007) programs

offers user-friendly implementations of clone correction methods.

p0315 Under random mating, the frequency of multilocus genotypes is expected to be

equal to the product of the allelic frequencies. Deviation from this expectation (or

linkage disequilibrium) can hence serve as a test for random mating. A first

approach is to analyze linkage disequilibrium between pairs of loci. The lack of

association among pairs of loci in two isolated groups of the agent responsible for

gray mold (Botrytis cinerea), for example, supported regular events recombination

despite the absence of a sexual structure in field observations (Giraud et al., 1997).

The existence of linkage equilibrium was also taken as evidence for sexual repro-

duction in populations of the wheat pathogen Mycosphaerella graminicola in

regions where the teleomorph is rare or absent (Chen and McDonald, 1996; Zhan

et al., 2003). Another, more powerful approach is to analyze linkage disequilibrium

over multiple loci. This forms the basis of the test based on the index of association

(IA; Maynard-Smith et al., 1993). The IA statistic relies on the variance of the num-

ber of differences among individual allelic profiles. This variance is higher than

expected if mating is nonrandom due to an excess of very close and very large dis-

tances among individuals. The statistical significance of the IA statistic can be
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established using the program MULTILOCUS, by comparing the observed value of the

statistics to the distribution obtained from datasets for which alleles at each locus

are resampled without replacement to simulate the effect of random mating

(Agapow and Burt, 2001). This procedure has been applied to investigate the repro-

ductive mode of Penicillium marneffei, the causal agent of biverticilliate mycosis

in mammals. Analyses revealed very high and significant values of the IA statistic

(Fisher et al., 2005), providing one of the very rare cases of a fungus showing no

evidence of recombination by population genetic criteria (Taylor et al., 2006).

Another striking example of a fungus displaying a highly clonal population struc-

ture is provided by the European populations of the yellow rust of wheat (Puccinia

striiformis f. sp. tritici). There are also several examples where the IA suggested the

existence of cryptic sexual reproduction in fungal pathogens in species where sex

has not been observed in nature, such as the human pathogens Coccidioides immitis

(Burt et al., 1996), Aspergillus nidulans (Pringle et al., 2005), and the alfatoxin pro-

ducing A. flavus (Geiser et al., 1998).

p0320 Several tests for recombination or random mating were adapted from phyloge-

netic methods. A popular implementation of this approach is the parsimony tree

length permutation test (PTLPT; Burt et al., 1996) that tests for random mating.

The statistic used is the tree length, in number of steps, and the data are allelic pro-

files. The rationale for using PTLPT is that asexual populations produce few short,

well-resolved genealogies, whereas the contrary is expected for recombining popu-

lations (Taylor et al., 1999b). The significance of the PTLPT can be assessed using

the same method and program as the IA. Significance is calculated based on the

proportion of trees in simulated datasets that are at least as long as those built from

data. Other phylogenetic approaches search for the presence of recombination,

based on sequence data. These tests exploit the predictions that in the absence of

recombination, alleles at different regions are associated and all gene trees should

therefore be congruent (Maynard-Smith, 1999) and have mutation (reversals, paral-

lelisms, or convergence) as the sole possible cause of homoplasy (Hudson and

Kaplan, 1985; Maynard-Smith and Smith, 1998). For instance, Matute et al. (2005)

analyzed gene genealogies from eight regions to search for recombination in the

pathogen Paracoccidioides brasiliensis. Incongruence among gene genealogies was

examined by comparing the sum of the lengths of the most parsimonious trees

inferred for each region to the sum of the length of trees obtained by permuting

characters among regions (the incongruence length difference test; Farris et al.,

1994). The null hypothesis of congruence for all isolated and all regions could be

rejected, consistent with a lack of association among alleles, and thus with recom-

bination. Another elegant application of methods inspired by phylogenetic analysis

to search for recombination is provided by Couch et al. (2005). On the basis of a

worldwide collection of isolates of the rice pathogen Magnaporthe oryzae, they

investigated the reproductive mode of the fungus using a pairwise compatibility

matrix for polymorphic sites built from the combination of nine sequence loci.

A compatibility matrix is a visual representation of Hudson and Kaplan’s four gam-

ete test (Hudson and Kaplan, 1985) for all possible pairs of sites (the program

SITES, available from Jody Hey’s website at Rutgers University, can be used to
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perform such analyses). Incompatible sites are sites that support conflicting geneal-

ogies (and therefore introduce homoplasy in tree reconstructions) due to recombi-

nation or recurrent mutations. The finding of large blocks of incompatibility among

loci from the same chromosome and from different chromosomes was interpreted

as a sign of recombination on some, but not all, hosts of this pathogen.

p0325 In diploids or dikaryotic fungi, insights into the reproductive mode can be pro-

vided by the use of Wright’s F-statistics (Halkett et al., 2005). F-statistics are hier-

archical measures of the correlations of alleles within individuals and populations.

A very informative F-statistic in this context is FIS, a measure of the deviation

from random mating. FIS corresponds to the identity of alleles within individuals

relative to the identity of alleles randomly drawn from two different individuals

within the same population (Balloux and Lugon-Moulin, 2002; De Meeus et al.,

2006). The value of FIS can vary between 21 (all individuals being heterozygous)

and 11 (all individuals being homozygous). Large negative values are expected

for asexuals (Goyeau et al., 2007), and large positive values for selfers (Giraud,

2004). Several programs implement the calculation and test of FIS (e.g., GENODIVE,

Meirmans and Van Tienderen, 2004; GENEPOP, Rousset, 2008b; FSTAT, Goudet,

1995). For instance, the finding of FIS values nonsignificantly different from zero

allowed Mboup et al. (2009) to conclude to the existence of sexuality in Chinese

populations of P. striiformis f. sp. tritici, a fungus showing a highly clonal popula-

tion structure in other regions of the world. In another application of this approach,

James et al. (2009) revealed a significant excess of heterozygous genotypes for half

of the loci surveyed (i.e., FIS,0) in worldwide samples of the amphibian-killing

fungus Batrachochytrium dendrobatidis, suggesting a predominantly asexual mode

of reproduction. Another remarkable particularity of diploids is the “Meselson

effect,” where the absence of sex over long evolutionary times allows alleles at a

single locus to become highly divergent within individuals as the two gene copies

accumulate mutations independently in the absence of recombination (Birky, 1996;

Welch and Meselson, 2000). Meselson effects have been evidenced in European

populations of P. striiformis f. sp. tritici (Enjalbert et al., 2002; Mboup et al., 2009)

and in Scutellospora castanea, an arbuscular mycorrhizal (nonpathogen) fungus

(Kuhn et al., 2001).

p0330 A number of methods have also been developed to estimate the population

recombination rate (ρ) from haplotype data representing multiple positions in the

genome (i.e., typically, moderate to large genomic dataset) (Hudson, 1987) and

Wakeley (1997) developed moment estimators of the population recombination

rate from the variance in pairwise differences. By making use of only a summary

of the data, these methods are not computationally demanding at the expense of

some loss in accuracy (Wall, 2000). Other methods use coalescent models to relate

genetic variation in random population samples to the underlying recombination

rate. Some approaches use conditioning on the complete dataset to obtain a maxi-

mum likelihood of the recombination rate (Griffiths and Marjoram, 1996; Kuhner

et al., 2000; Nielsen, 2000; Fearnhead and Donnelly, 2001). These full likelihood

methods have the advantage of making use of all of the information available in

the data, but they become impractical for genomic regions of moderate size
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(Fearnhead and Donnelly, 2001). Hudson (2001), Fearnhead and Donnelly (2002),

and McVean et al. (2002) proposed a “composite-likelihood” approach for estimating

rates of recombination for large genomic regions. The principle of the composite-

likelihood approach is to calculate likelihoods for subsets of data (pairs of sites or

small genomic regions) and multiplying likelihoods obtained for each subset. A

promising recent development is the approximate likelihood approach developed

by Li and Stephens (2003). This approach relies on a “copying model” to represent

haplotypes (Davison et al., 2009) and overcome several limitations of the

approaches described earlier (see Li and Stephens [2003] for details). A population

genomics study has recently been conducted to gain insights into the reproductive

biology of the wild yeast Saccharomyces paradoxus. Tsai et al. (2008) analyzed

DNA sequence variation on the third chromosome (containing the mating-type

locus) among 20 isolates. By comparing estimates of population size obtained from

the population mutation rate θ (Watterson, 1975) and from three distinct estimates

of the population recombination rate ρ (using methods of Wakeley, 1997; McVean

et al., 2002; Li and Stephens, 2003), in addition to using estimates of the rates of

mutation and recombination per base pair per generation from S. cerevisiae, the

author inferred from this discrepancy that sexual reproduction occurs once every

1000�3000 generations in this species. They also estimated the frequency of intra-

tetrad mating to be approximately 94%. This was accomplished by comparing

values of the population recombination rate for regions located near the mating-

type locus and for the whole chromosome.

s0090 4.7.2 Dispersal, Migration, and Gene Flow

p0335 Dispersal is the movement of gametes or individuals. Parameters of dispersal can

be estimated by: (1) direct methods, relying on direct observation of dispersing

individuals at particular life-history stages, which provides a measure of actual dis-

persal; or (2) by indirect methods that use the changes in some characteristics of

populations caused by movement of individuals and provide a measure of effective

dispersal (Slatkin, 1985; Broquet and Petit, 2009). Because the movement of indivi-

duals obviously leads to movement of genes, the study of dispersal is tightly related

to the study of gene flow (direct methods) and the monitoring of particular geno-

types (indirect methods). The two types of methods are treated together here. We

use the term “gene flow” synonymously with “migration,” as is often the case in

population genetics (though migrants that do not reproduce in a new environment

do not contribute to gene flow).

p0340 Gene flow can be defined as the change (in gene frequency) due to movements

of gametes, individuals, or groups of individuals (Slatkin, 1987). Implications of

gene flow among populations and species are so manifold that it is difficult to pro-

vide a synthetic and concise overview. Generally speaking, gene flow can be

regarded as either a constraining force that prevents adaptation to local conditions

or a creative force that promotes evolution by spreading new genes and combina-

tions within and between species (Slatkin, 1985, 1987). For fungal pathogens, in

practical terms, some of the most unfortunate consequences of gene flow for human
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affairs include immigration of genotypes capable of defeating a resistance gene,

exchanges of alleles allowing resistance to antifungal molecules (and more gener-

ally the spread of variants with increased pathogenicity), increase in population

size which in turns increases the probability of accumulating mutations, and

increase the efficacy of selection (and the possibility of selective sweeps). The

degree of gene flow is also of central importance in the formation and maintenance

of pathogen species. Humans have moved many pathogens far beyond their natural

dispersal limits, and it is a safe bet that many pathogens are still transported among

continents today (Yarwood, 1970; McDonald and Linde, 2002). These introduc-

tions likely have set the stage for the formation of reproductively isolated popula-

tions adapting to local hosts or environments (Giraud et al., 2010) or for secondary

contacts followed by introgression or hybridization among species (Stukenbrock

and McDonald, 2008). Gene flow is thus a critical target for disease management

tactics. The objective is dual: first to set up or maintain barriers to gene flow

among fungal pathogen populations, and second to prevent the emergence of new

diseases. This requires a comprehensive understanding of transmission pathways

and of the processes that govern gene flow in focal species, as well as the role of

gene flow in species formation or maintenance. Three different aspects can be dis-

tinguished in analyses of gene flow and dispersal: rate and direction of gene flow,

dispersal distance, and distribution of gene flow in time and in the genome.

s0095 Rate and Direction of Gene Flow

p0345 Pathogenic fungal species are often organized into discrete populations. Population

genetics usually assumes a simple model of n populations, each of which is equally

likely to receive and give migrants to and from each of the other populations (the

n-island model; Wright, 1931; Latter, 1973). Under this model, providing addi-

tional simplifying assumptions, a relationship between Neme (Ne being the effective

size of each population; me being the effective migration rate between populations)

and FST (a F-statistic that measures genetic differentiation among populations by

quantifying the differences in allele frequencies between populations) can be

derived: FST � 1/(11 4 Neme). The same type of relationships can be established

from other measures of differentiation, using the same assumptions (Slatkin, 1985;

Excoffier, 2007). This approach has been severely criticized by some authors

(Bossart and Prowell, 1998; Whitlock and McCauley, 1999) who raised concerns

about the unrealistic assumptions under the n-island model (constant population

sizes, symmetrical migration at constant rates, no selection, and persistence for per-

iods of time long enough to achieve migration-drift equilibrium), leaving only little

quantitative information to be gained about gene flow from measures of population

differentiation. Hence, although Neme was taken as an effective number of migrants

in the original model, it is safer to interpret its value as the per-generation number

of migrants that would characterize an idealized island system having the same FST

value as the study system (Broquet and Petit, 2009). For the fungal pathogens. a

major pitfall of estimating migration rates from allele frequency data is the assump-

tion that the whole population has reached equilibrium between migration and
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genetic drift. However, many fungal pathogens have been introduced recently into

new areas, or have recently invaded continents. Therefore, populations may not

have had sufficient time to reach equilibrium. The time to reach a new equilibrium

can be extremely long if population sizes are large and migration rates are low

(Whitlock and McCauley, 1999). Even though they do not provide reliable esti-

mates of rates of gene flow, measures of population differentiation can nonetheless

be used to gain information on the history of dispersal. Several studies reported

very low differentiation among samples of fungal pathogens of agricultural crops

or forestry trees from different localities across a continent, including Fusarium

verticillioides (Reynoso et al., 2009), M. graminicola (Linde et al., 2002), Venturia

inaequalis (Tenzer and Gessler, 1999; Gladieux et al., 2008, 2010c), Gibberella

zeae (Zeller et al., 2004), Phaeosphaeria nodorum (Keller et al., 1997), and

Melampsora larici-populina (Barres et al., 2008). These patterns of weak popula-

tion structure within continent are likely due to the superimposition of moderate to

high levels of contemporary gene flow and relatively recent colonization. However,

other pathogens of cultivated crops show highly significant differentiation within

continents. For example, North American populations of the chickpea blight patho-

gen Ascochyta rabiei are highly differentiated, possibly due to restricted dispersal

and possible selection by host cultivar combined with some life cycle characteris-

tics conducive to differentiation (Peever et al., 2004; Giraud, 2006). High popula-

tion differentiation is also a footprint of the “founder effect” that occurs following

introduction in a new region. Such patterns have been evidenced for newly virulent

populations of V. inaequalis spreading in northern France (Guérin et al., 2007), for

populations of Mycosphaerella fijiensis spreading on banana plantations in Africa

(Rivas et al., 2004), and for populations of several species that spread across conti-

nents (Salamati et al., 2000; Engelbrecht et al., 2004; Ordonez and Kolmer, 2007;

Zhou et al., 2007; Zaffarano et al., 2009).

p0350 The coalescent theory (Kingman, 1982) relates patterns of common ancestry

within a set of genes to the structure of the populations from which they were sam-

pled. In coalescent models, patterns of relationships among genes are represented

by a genealogy, and the structure of the population is represented by parameters

such as population size, rates of population growth, or rates and directions of gene

flow (as is relevant in the present section). Both the genealogy and the parameters

are generally unknown, and one usually wants to estimate the parameters of the

model. It is generally impossible to jointly consider all possible ancestral relation-

ships and parameter values and to search for the combinations that maximize the

probability of the model. Instead, approaches have been developed that simulta-

neously explore many relatively probable genealogies (loosely speaking, irrelevant

genealogies are disregarded) and parameter values (see Stephens, 2008; Kuhner,

2009 for reviews). These approaches are collectively referred to as “coalescent

genealogy samplers”; there are two families of such samplers: Markov chain

Monte Carlo (MCMC) algorithms and important sampling algorithms. Several

methods relying on coalescent genealogy samplers were designed to estimate,

among other parameters, rates of gene flow between species or populations

(Griffiths and Tavare, 1994; Wang et al., 1997; Beerli and Felsenstein, 1999, 2001;
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Nielsen and Wakeley, 2001; Hey and Nielsen, 2004, 2007). These methods offer

the advantage of allowing less restrictive models than the more traditional methods

presented earlier, and thus they accommodate complexities that are typical of real

populations, such as nonsymmetrical gene flow. These methods have been success-

fully applied to infer the ancestral routes of colonization for several fungal globally

distributed plant pathogens such as the wheat pathogens M. graminicola (Banke

and McDonald, 2005) and P. nodorum (Stukenbrock et al., 2006), the barley scald

pathogen Rhynchosporium secalis (Brunner et al., 2007; Zaffarano et al., 2009), and

the apple scab pathogen V. inaequalis (Gladieux et al., 2008). Programs using

coalescent genealogy samplers can also be applied to assess gene flow between well-

defined species. The isolation-with-migration model implemented in the IMa pro-

grams (Hey and Nielsen, 2007) was used, for instance, to demonstrate unidirectional

gene flow from Microbotryum lychnidis-dioicae into M. silenes-dioicae, respectively

anther smut pathogens of the white and red campions (Gladieux et al., 2010b).

p0355 Additional information on historical migration routes can also be retrieved by

examining the relationship between patterns of diversity and the putative history of

introduction of the species in different regions from a source population. Under a

model of serial founder effects, genetic variation is expected to decrease steadily

from the earliest to the latest populations formed along the colonization route

(Austerlitz et al., 1997; Ramachandran et al., 2005; Linz et al., 2007; Szpiech

et al., 2008). The existence of such patterns has been uncovered for V. inaequalis,

in which allelic richness tends to be lower in regions where apple has been intro-

duced more recently, suggesting that the pathogen tracked its host during the spread

of apple cultivation worldwide (Gladieux et al., 2008).

p0360 Methods based on coalescent genealogy samplers remain computationally

demanding. For many datasets and models of population structure, they even

remain computationally intractable. As a result, there is an increasing interest in

developing alternative approaches that are faster and easier to implement, without

loosing too much accuracy (Marjoram and Tavare, 2006; Stephens, 2008; Nielsen

and Beaumont, 2009). The most promising approaches are rejection sampling and

approximate Bayesian computation (Tavare et al., 1997; Li and Fu, 1999; Pritchard

et al., 1999; Beaumont et al., 2002), composite-likelihood methods (Hudson, 2001),

and product of approximate conditionals (Li and Stephens, 2003; Davison et al.,

2009). These methods also potentially offer the advantage of being more easily tai-

lored to the specificities of fungal pathogens, such as for life cycles with both sex-

ual and asexual modes of reproduction, or histories of sequential introduction with

exchanges of migrants among neighboring populations. Approximate Bayesian

computation has been shown to be particularly powerful to determine the origin

and routes of introduction of invading pest species (Miller et al., 2005; Cornuet

et al., 2008; Guillemaud et al., 2010), and it is very likely that it will also provide

important insights into the history of fungal pathogens.

p0365 A number of approaches have been developed for inferring recent gene flow by

extracting information from the transient disequilibrium observed at individual

multilocus genotypes of migrants or their recent descendants. These methods can

serve as direct estimators of recent migration (Paetkau et al., 1995; Rannala and
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Mountain, 1997; Cornuet et al., 1999; Pritchard et al., 2000; Dawson and Belkhir,

2001; Anderson and Thompson, 2002; Gaggiotti et al., 2002; Gao et al., 2007) or

even rates of recent gene flow (Wilson and Rannala, 2003). More details on these

methods are given in Section 4.7.3. Such an approach was used, for instance, to

estimate the frequency of cross host-species disease transmission and hybridization

between two species of anther smut fungi (Gladieux et al., 2010b), or to demon-

strate intercontinental dispersal and admixture of populations of the destructive dry

rot fungus Serpula lacrymans, possibly linked to the development of worldwide

shipping activity with wooden sea vessels (Kauserud et al., 2007). For pathogens

with very little genetic variation and also with life cycles violating assumptions of

the above-cited methods, approaches based on measures of the percentage of iden-

tity between isolates from recently colonized areas and putative source populations

can also provide an easy-to-use and rapid method for the identification of migration

routes. Hovmoller et al. (2008) used this approach, in combination with pathotyp-

ing, to demonstrate the foreign incursion of particular strains of the wheat yellow

rust fungus in regions of North America, Australia, and Europe where severe epi-

demics have been observed in recent years.

s0100 Dispersal Distance

p0370 There is considerable interest in estimating the distance fungal pathogens disperse

at agriculturally relevant scales, such as fields or production areas. This information

can be inferred from patterns of genetic variation by fitting a model of isolation by

distance (Wright, 1943, 1946; Kimura, 1953). A general formulation of isolation

by distance models is the infinite lattice model (Malécot, 1951), in which indivi-

duals or populations are distributed on a lattice with spatially homogenous demo-

graphic parameters (i.e., homogenous population sizes or density and dispersal;

Broquet and Petit, 2009; Guillot et al., 2009). The slope of the regression of differ-

entiation statistics (e.g., FST) onto the log-transformed geographic distance among

individuals or populations allows estimation of the product of D, the population

density, and σ2, the second moment of dispersal distance (Rousset, 1997, 2000,

2008a; Vekemans and Hardy, 2004). For fungal pathogens that alternate asexual

and sexual reproduction during their life cycle, these methods are not suitable due

to the occurrence of repeated genotypes (Dutech et al., 2008). This specificity must

be considered for correct inference of dispersal distance. Wagner et al. (2005)

developed a weighting procedure that retains the spatial positions of all individuals

but also applies a weighting to each genotype inversely proportional to its fre-

quency. They also showed that variograms (i.e., plots of the semivariance in num-

ber of differences between genotypes against distance) are efficient tools to

estimate the degree and extent of spatial genetic structure accounting for autocorre-

lation (which is the tendency that nearby observations to be more similar than dis-

tant ones). Variograms were used to study dispersal in the chestnut blight fungus

(Cryphonectria parasitica), showing that asexual spores probably disperse over

several hundred meters, which is a far larger spatial scale than previously thought

(Dutech et al., 2008).
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s0105 Distribution of Gene Flow in Time and Along the Genome

p0375 The coalescent-based implementation of the isolation-with-migration model in the

IM and IMa program (Nielsen and Wakeley, 2001; Hey and Nielsen, 2004, 2007)

offers the opportunity to gain valuable insights into the history of gene flow

between species. An interesting feature of the program is that counts and dates of

migration events in sampled genealogies can be recorded during the course of the

MCMC at stationarity for each locus to obtain the migration time distribution. IM

was used to demonstrate that the wheat pathogen M. graminicola emerged in the

Fertile Crescent at the time of wheat domestication following a series of introgres-

sions from populations infecting three different uncultivated grasses (Stukenbrock

et al., 2007). Estimates of the time of gene flow events indicated that populations

from wheat and uncultivated grasses diverged in the face of gene flow but are now

genetically isolated. This approach was also used to show that the species of anther

smut fungi M. lychnidis-dioicae and M. silenes-dioicae initially diverged in allopa-

try without gene flow and exchanged genes only recently following secondary con-

tact (Gladieux et al., 2010b). Gene flow between the two species of Microbotryum

appeared restricted to four loci, supporting the view that genomes are mosaics with

respect to interspecific gene flow, with some regions more or less permeable to

genetic exchanges (Wu and Ting, 2004).

s0110 4.7.3 Population Subdivision

p0380 Fungal pathogens, like all organisms, are not homogenously distributed across the

environment, which can lead to genetic structure. There are two main sources of

population subdivision in fungal pathogens: geography and hosts. While some spe-

cies have very broad host ranges (e.g., the amphibian pathogen B. dendrobatidis,

.350 host species, Fisher et al., 2009; or the gray mold B. cinerea, .235 host spe-

cies, Fournier et al., 2005; Staats et al., 2005), others display clear subdivisions that

correspond to the host of origin of populations (e.g., Verticillium dahliae, Atallah

et al., 2010; V. inaequalis, Gladieux et al., 2010a, or A. rabiei, Frenkel et al.,

2010). Such host-specific divergence may evolve as a consequence of limited dis-

persal or of trade-offs in adaptation (Timms and Read, 1999; Giraud et al., 2006).

Among pathogen species found on a single host, some species display clear geo-

graphically distinct populations (e.g., the mammalian pathogen Histoplasma capsu-

latum, Kasuga et al., 2003); or the white campion smut M. lychnidis-dioicae,

Vercken et al., 2010), while others appear to have global distributions such as the

human pathogen A. fumigates (Pringle et al., 2005; Rydholm et al., 2006). These

patterns of geographical subdivision result from a complex interplay between con-

temporary and historical gene flow processes.

p0385 Understanding the origin of population subdivision is fundamental to our knowl-

edge of the mechanisms responsible both for disease emergence and for the biodi-

versity of fungi. Four main approaches are available to analyze population

subdivision: measures of differentiation, evolutionary trees, multivariate methods,

and model-based clustering algorithms.
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s0115 Measures of Differentiation

p0390 Population subdivision can be assessed by calculating differentiation indices (e.g.,

FST) between pairs of populations (see Section 4.7.2 for a detailed discussion). A

more general framework to study population subdivision has been developed by

Cockerham (1969; 1973), who introduced the use of the analysis of variance

(ANOVA) framework to decompose the total variance of gene frequencies into var-

iance components associated to different subdivision levels (reviewed in Excoffier,

2007). Later, Cockerham’s ANOVA of gene frequencies was extended to include

information conveyed by the amount of differences (mutations) between alleles

(the analysis of molecular variance, AMOVA; Excoffier et al., 1992). The

AMOVA framework is widely used in population genetics studies of fungal patho-

gens. It is implemented in the ARLEQUIN (Excoffier et al., 2005) and GENETIC STUDIO

packages (Dyer, 2009). The principle is to summarize population differentiation

into F-statistics by partitioning molecular variance among the different hierar-

chically nested levels of sampling represented in a dataset (which can be localities,

host species, regions, continents, etc.). The main drawback of this procedure is that

the sampling units must be assigned into given hierarchical subdivisions by investi-

gators, which may be a relevant issue. The main advantage is that it is a very fast

way to get a summary representation of the differentiation existing among the dif-

ferent assumed levels of subdivision within a species. A useful application of the

AMOVA procedure is for instance to determine whether the most important source

of differentiation within a species is the host or the region of origin (e.g., see

Morgan et al., 2007 or Gladieux et al., 2010c).

p0395 The issue of defining an a priori model of population arrangement can be side-

stepped by using a multivariate graph-theoretic approach called population graphs

(Dyer and Nason, 2004). The principle is to measure the genetic covariance rela-

tionships among all sampling units simultaneously and to represent these relation-

ships graphically. Examples of application to fungal pathogens can be found in

Guérin et al. (2007) and Fournier and Giraud (2008). Population graphs can be built

using GENETIC STUDIO (Dyer, 2009).

s0120 Evolutionary Trees

p0400 The most traditional approach to track population subdivision from genetic data is

to build an evolutionary tree. Such trees are often improperly called “phylogenetic

trees,” though a phylogeny describes the pattern of ancestry among species, rather

the pattern of genetic ancestry among pieces of DNA sampled within a species or a

set of closely related species (Hey and Machado, 2003). Two main classes of evo-

lutionary tree construction methods are available: (1) clustering methods use an

iterative method (e.g., neighbor-joining) to combine samples in a hierarchical fash-

ion, (2) searching methods that consider a range of possible trees and choose the

ones that best fit the data according to an optimality criterion (such as maximum

parsimony, maximum likelihood, or maximum Bayesian probability; Holder and

Lewis, 2003). In practice, clustering methods are often used for data from multiple

loci (typically, microsatellite markers) summarized by a matrix of distances among
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samples (Kalinowski, 2002), while searching methods are used for data from

individual loci (typically, sequence data). Note that a very useful application of

evolutionary trees based on sequence data is for species identification, but this

approach is developed in Section 4.8, and we therefore focus on intraspecific subdi-

vision here.

p0405 Evolutionary trees are appealing because they provide a graphical representation

of the relationships among samples (Hey and Machado, 2003). When constructed

from multilocus data, evolutionary trees can be very useful for exploratory data

analysis or for visualizing the main subdivisions within a dataset. When interpret-

ing an evolutionary tree, there are two main reasons to be cautious: (1) the stochas-

tic variance in evolutionary trees (the problem being greater for evolutionary trees

based on a single locus), and (2) the inadequacy of a bifurcating model when

applied at the intraspecific level. The stochastic variance in evolutionary trees is

due to the fact that different loci that have passed through the same demographic

history, leading to evolutionary trees that vary widely in topology and branch

lengths (Hey and Machado, 2003). The cause of this variance is that the processes

that produce treelike relationships among gene copies (i.e., birth, death, and

Mendelian reproduction, in a neutral model) and mutations are stochastic

(Felsenstein, 2007). The other potential issue is that bifurcating models may not be

appropriate to represent relationships at the intraspecific level. Several phenomena

lead to violation of the assumptions underlying reconstruction methods and lead to

poor resolution or inadequately portray genealogic relationships (reviewed in

Posada and Crandall, 2001). These phenomena include low divergence among

alleles, the persistence of an ancestral allele together with its descendants within a

population, the existence of multiple descendants for a single allele, recombination

among alleles through crossing-over, and exchanges of alleles (gene flow) between

lineages. An alternative to tree-based approaches for representing relationships

among samples is to use a network. Several methods of network reconstruction

have been developed. Networks offer the advantage over evolutionary trees of

being able to incorporate persistent ancestral nodes, multifurcations, and reticula-

tions (Posada and Crandall, 2001). Examples in fungal pathogens can be found in

Morgan et al. (2007) or Couch et al. (2005).

p0410 Another caveat for the use of evolutionary trees concerns the so-called popula-

tion trees. The distance among populations is often represented as a tree in studies

analyzing the population structure of fungal pathogens. However, this approach is

questionable, as there is no reason to think that a model in which populations split

from a common ancestor and subsequently do not mix represents the reality of pop-

ulation evolution.

s0125 Model-Based Bayesian Clustering Algorithms

p0415 The aim of model-based Bayesian clustering algorithms (or assignment methods) is

to infer groups of individuals (called clusters or populations) that fit some genetic

criteria that define them as distinct groups (Guillot et al., 2009). The use of a clus-

tering method is an almost unavoidable step in every population genetic study. This

field has been flourishing for a decade, and we will not give an extensive
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description of all the methods currently available. The most popular program is

STRUCTURE (Pritchard et al., 2000; Falush et al., 2003). The method assumes a model

in which there are K clusters, each of which is characterized by a set of allele fre-

quencies. Assuming Hardy�Weinberg and linkage equilibrium within clusters, the

program simultaneously estimates allele frequencies in each cluster and then

assigns every individual probabilistically to a single cluster (“no-admixture

model”), or estimates the proportion of ancestry of every individual in every cluster

(“admixture model”). It uses a variant of MCMC to approximate the probabilities

of assigning individuals to clusters or membership proportions. The method has

also been modified to allow for linkage of the loci (Falush et al., 2003). When using

STRUCTURE, one usually wants to determine the number of clusters that is optimal

for describing the population structure. The program does not estimate such an opti-

mal number of clusters, but a heuristic method for selecting K can be used, based

on the rate of change in the log-probability of data between successive K value

(Evanno et al., 2005). Other Bayesian clustering programs can be used to obtain

estimates of the optimal number of clusters based on various statistical methods

(Dawson and Belkhir, 2001; Pella and Masuda, 2006; Corander and Tang, 2007;

Huelsenbeck and Andolfatto, 2007), some of which are subject to debate (Durand

et al., 2009; Guillot, 2009a,b). However, the biologic interpretation of any “best K”

estimate may not be straightforward (Pritchard et al., 2007) and should not be taken

at face value. This is all the more true as there may be several different relevant K

numbers, in particular if the population structure is hierarchical. The best approach

is therefore to provide a representation of several K values and not a single “opti-

mal” one. Departures from the structure of the model due to isolation by distance

or inbreeding can lead to spurious signals of population structure and artificially

increase the number of inferred clusters (Gao et al., 2007; Guillot et al., 2009). This

issue is partially alleviated when using the INSTRUCT program (Gao et al., 2007), an

extension of the approach implemented in STRUCTURE that eliminated the assump-

tion of Hardy�Weinberg equilibrium within clusters and instead estimates individ-

ual membership on the basis of inbreeding or selfing rates. Last, we note that in

case of poorly informative datasets (too few loci or individuals, or not enough dif-

ferentiation among populations), group information such as host or region of origin

of samples or geographic coordinates can be incorporated to achieve better results

in analyzes of population subdivision (briefly reviewed in Hubisz et al., 2009).

s0130 Multivariate Methods

p0420 The principle of multivariate analyses, when applied to genetic variation among

individuals or populations, is to extract and summarize multivariate genetic infor-

mation into a few synthetic variables (Jombart et al., 2009). Methods such as prin-

cipal component analysis have long been applied to population genetics questions

(Cavalli-Sforza, 1966). They benefit from a renewed interest thanks to recent

results of theoretical statistics and the development of software packages specifi-

cally devoted to the multivariate analysis of genetic data (Patterson et al., 2006;

Jombart, 2008). Multivariate methods offer three main advantages. A first
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advantage is that they perform much faster than methods that are based on evolu-

tionary trees or Bayesian clustering algorithms. The speed of analytical tools will

become an increasingly important criterion of choice with the development of pop-

ulation genomics datasets of hundreds of markers for hundreds of individuals. A

second advantage is that these methods make no assumption of population struc-

ture, such as Hardy�Weinberg or linkage equilibrium. This can be particularly use-

ful for fungal pathogens with asexual or partially asexual modes of reproduction,

for which Bayesian clustering algorithms present a high risk of producing spurious

assignments (Falush et al., 2003). A principal component analysis was applied to

investigate the origin of French populations of the chestnut blight fungus, a species

in which high rates of asexual reproduction and may be also of intrahaploid sexual

reproduction (allowed by homothallism) result in high frequencies of repeated mul-

tilocus genotypes (Dutech et al., 2010). Analyses revealed three distinct genetic

lineages with separate geographic distributions, suggesting independent introduc-

tion events with limited gene flow among lineages descending from the three origi-

nal groups of founding strains.

s0135 4.7.4 Conclusion

p0425 Empirical population genetics studies have revolutionized our understanding of

fungal pathogen evolutionary biology. The distribution range of pathogens (in

space and on hosts), their reproductive system, and transmission pathways are cru-

cial features of pathogen biology that would have remained inaccessible based

solely on phenotypic data and without the powerful inferential framework of popu-

lation genetics. How could have we showed that “everything is not everywhere”

and that many broadly distributed fungal pathogens are actually subdivided into

populations constrained to small geographical areas? How could have we known

that only very few fungal pathogens are ancient strictly asexual species and that the

deuteromycota do not constitute a formal phylum of fungi? The upcoming flood of

genomic data should galvanize investigations on central topics such as the evolu-

tion of reproductive systems (Heitman et al., 2007; Billiard et al., 2010), the acqui-

sition of virulence to new hosts, resistance to disease control strategies

(Stukenbrock and McDonald, 2008; Hogenhout et al., 2009; Morris et al., 2009;

Giraud et al., 2010), and the evolution of reproductive isolation (Kohn, 2005;

Taylor et al., 2006; Giraud et al., 2008b). However, this technologic leap should be

accompanied by the development of population genetic models tailored to the spe-

cificities of fungal pathogens, such as the possibility of complex life cycles or non-

panmictic mating systems. There is still much to discover using population

genetics. Most existing work has been focused on fungal species causing disease of

humans, agricultural crops, or domesticated animals in the developed world

(Taylor and Fisher, 2003; Morris et al., 2009). Studies are needed of pathogens

from wild species in natural settings, from developing areas, and of nonpathogenic

species that might be the pathogens of the future.
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s0140 4.8 Species and Speciation in Pathogenic Fungi

p0430 Understanding how the 1.5 million fungal species estimated to exist (Hawksworth,

1991) have arisen is of fundamental interest and has tremendous applied conse-

quences for understanding emergent diseases on plants and animals (Giraud et al.,

2010). We will briefly summarize here the main recent advances on fungal specia-

tion, but more extensive reviews on speciation and species recognition in fungi

have been written elsewhere (Taylor et al., 2000; Kohn, 2005; Giraud et al., 2008b).

s0145 4.8.1 Species Concept Versus Species Criteria

p0435 To study speciation, an obvious first step is to define species. The continual pro-

posal of new species concepts may lead one to think that there is no general agree-

ment about what species are. The apparently endless dispute about species concepts

stems from the confusion between a species definition (describing the kind of entity

that is a species) and species criteria (standard for judging or recognizing whether

individuals should be considered members of the same species). Many so-called

species concepts actually correspond to species criteria (i.e., practical means to rec-

ognize and delimit species) (Taylor et al., 2000; Hey, 2006; De Queiroz, 2007).

The biological species concept (BSC) for instance emphasizes intersterility, the

morphological species concept (MSC) emphasizes morphologic divergence, the

ecological species concept (ESC) emphasizes adaptation to a particular ecologic

niche, and the phylogenetic species concept (PSC) emphasizes nucleotide diver-

gence. These species criteria correspond to the different events that occur during

lineage separation and divergence, rather than to fundamental differences in what

is considered to represent a species. To the contrary, it has been argued that all

modern biologists agree on a common “species concept” or “species definition”

that would be segments of evolutionary lineages that evolve independently from

one another (de Queiroz, 1998).

p0440 One may wonder why there are conflicts over which species criterion we adopt.

In fact, there are three main reasons why such criteria cannot be universal: (1) spe-

ciation is a temporally extended process, but one which varies tremendously in its

pace among different types of organisms; (2) several modes of speciation can

occur, during which the phenomena used for species recognition do not necessarily

appear in the same chronologic order (Figure 4.1); and (3) characteristics of certain

organisms render some criteria difficult to apply. The most useful criterion to apply

to recognize species in nature thus necessarily depends on the type of organism, on

its history of speciation, and on the degree of achieved divergence. Searching for a

single species criterion that would be applicable to all cases thus appears funda-

mentally hopeless.

p0445 Until quite recently, the most commonly used species criterion for fungi has

been the MSC. However, many cryptic species have been discovered within mor-

phologic species, using the BSC (Anderson and Ullrich, 1978), or the genealogical

concordance phylogenetic species recognition (GCPSR) (Taylor et al., 2000), an

extension of the PSC. This latter species criterion uses the phylogenetic
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concordance of multiple unlinked genes to indicate a lack of genetic exchange, and

thus evolutionary independence of lineages. Species can thus be identified that can-

not be recognized using other species criteria due to the lack of morphological

characters or incomplete intersterility. The GCPSR criterion has proved immensely

useful in fungi, because it is more finely discriminating than the other criteria in

many cases, or more convenient (e.g., for species that we are not able to cross),

and is currently the most widely used within the fungal kingdom (Koufopanou

et al., 2001; Dettman et al., 2003a; Fournier et al., 2005; Johnson et al., 2005;

Pringle et al., 2005; Le Gac et al., 2007a).

s0150 4.8.2 Fungal Speciation

p0450 How new species arise in nature is still a highly active field of research. It has long

been believed that species originate mostly through allopatric divergence (Mayr,

1963), because extrinsic geographic barriers seemed obvious impediments to gene

flow. Fungi could appear as exceptions because eukaryotic microorganisms have

long been considered to have global geographic ranges (ubiquitous dispersal

hypothesis; Finlay, 2002), at least for those not dependent on a host having a

restricted range. This was in particular true for airborne fungal pathogens because

their spores can be dispersed over a very long distance (Brown and Hovmoller,

2002). Among the numerous complexes of sibling species recently uncovered using

the GCPSR criterion, many however appear consistent with allopatric divergence

because the cryptic species occupy nonoverlapping areas separated by geographic

barriers (Taylor et al., 2006). This is the case for the species complexes of the

model organism Neurospora crassa (Dettman et al., 2003a), the yeast

Saccharomyces paradoxus (Kuehne et al., 2007), the plant pathogen Fusarium gra-

minearum (O’Donnell et al., 2004), and the mushrooms Schizophyllum commune

(James et al., 1999) and Armillaria mellea (Anderson et al., 1980, 1989).
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f0010 Figure 4.1 Schematic divergence of two species, in two hypothetical cases of respectively

allopatric and sympatric speciation, with the progressive appearance of various criteria

traditionally used to recognize species.
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p0455 In contrast to the wide acceptance of allopatric speciation, the possibility of

sympatric speciation in sexual populations had long been dismissed. This is

because recombination between different subsets of a population that are adapting

to different resources or habitats counteracts natural selection for locally adapted

gene combinations (Felsensein, 1981; Rice, 1984). Recombination indeed prevents

both the building of linkage disequilibrium between adaptive alleles at different

loci and divergence at loci not under disruptive selection.

p0460 Theoretical models have shown that the simplest way to eliminate the role of

recombination in breaking down the effects of selection, and thereby allow sympat-

ric speciation, is to have the same gene(s) controlling pleiotropically both enhanced

fitness in a specialized habitat and assortative mating (mate choice, i.e., prezygotic

isolation) or both fitness and habitat choice if mating takes place within habitats

(Rice, 1984). Such “magic traits” (Gavrilets, 2004) have, however, proved difficult

to find in nature. Another way to reduce recombination between two populations

specialized on different niches is to build up an association (linkage disequilibrium)

between habitat-based fitness genes and either assortative mating genes and/or hab-

itat choice genes if mating is restricted within habitats (Dickinson and Antonovics,

1973; Johnson et al., 1996). Theoretical models have shown that this is plausible

under certain conditions, although the limitations to the process are far from trivial.

p0465 Fungi are passively dispersed and cannot actively choose the habitat in which

they will grow, but for many fungal species sex must occur in the habitat after

mycelial development (e.g., on or within the host for fungal parasites). A recent

model has shown that, due to this important characteristic of the lifestyle (inability

to disperse between development on the host or habitat and mating), mutations pro-

viding adaptation on a new habitat can affect pleiotropically both the fitness on the

habitat and the ability to mate in this habitat. Adaptation to a new habitat can thus

be sufficient to restrict gene flow in sympatry in fungi for which mating occurs

within their specialized host or habitat, without requiring active assortative mating

(i.e., prezygotic intersterility) (Giraud, 2006; Giraud et al., 2006). Specialization

would act in these fungi as a “magic trait” (Gavrilets, 2004), pleiotropically allow-

ing both adaptation to the new host or habitat and reproductive isolation, thus facil-

itating sympatric speciation (Giraud et al., 2010). This mechanism where a single

gene controls both host adaptation and assortative mating is different from that

seen in phytophagous insects mating onto their host plants, and where a linkage

disequilibrium has to evolve between a gene controlling host choice and a gene

controlling host adaptation (Johnson et al., 1996). The mechanism of speciation by

host adaptation causing pleiotropically assortative mating is closer to the recently

proposed “reduced viability of immigrants” barrier to gene flow (Nosil et al., 2005;

Giraud, 2006; Giraud et al., 2006).

p0470 Sympatry is often said to be difficult to define for microorganisms and parasites.

For instance, parasites specialized on different sympatric hosts are sometimes con-

sidered allopatric (Huyse et al., 2005). A simple, widely applicable definition of

sympatry is available: “In sympatry, the probability of mating between two indivi-

duals depends only on their genotypes,” (Kondrashov, 1986) and not on extrinsic

barriers. Two populations of pathogens adapted to different hosts but able to
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disperse to both hosts are therefore truly in sympatry: only their genes responsible

for host adaptation will prevent them meeting within their respective hosts to mate

(Giraud et al., 2006).

p0475 Compelling evidence for the sympatric divergence is extremely difficult to pro-

vide because excluding a past period of allopatry is almost always impossible

(Coyne and Orr, 2004, p. 142). Even the most famous candidate cases are still

debated, such as the phytophagous insect Rhagoletis pomonella (Coyne and Orr,

2004; Feder et al., 2005, pp. 159�162) or the cichlid fishes in African lakes

(Coyne and Orr, 2004, pp. 145�154). Evidence consistent with sympatric diver-

gence of fungal populations driven by parasitic adaptation to different hosts has,

however, been reported.

p0480 An example is provided by Ascochyta pathogens, where recent multilocus phy-

logenetic analyses of a worldwide sample of Ascochyta fungi causing blights of

chickpea, faba bean, lentil, and pea have revealed that fungi causing disease on

each of these hosts form distinct species (Peever, 2007). Experimental inoculations

demonstrated that infection was highly host-specific, yet in vitro crosses showed

that the species were completely interfertile. The host specificity of these fungi

may therefore constitute a strong reproductive barrier, and the sole one (Peever,

2007), following a mechanism of sympatric divergence by host usage (Giraud,

2006; Giraud et al., 2006). More generally, there exist many close species of asco-

mycete pathogens that are sympatric but isolated by weak intersterility barriers (Le

Gac and Giraud, 2008). The coexistence in sympatry of interfertile populations,

specialized on different hosts, and that remain genetically differentiated cannot

indeed be explained currently by models other than the reduced viability of immi-

grants (Nosil et al., 2005; Giraud, 2006; Giraud et al., 2006). This mechanism

seems to be able to maintain the species differentiated in sympatry and could simi-

larly have created the divergence in sympatry. It is difficult to exclude a period of

allopatry in the past that would have facilitated specialization, such as the accumu-

lation of different alleles beneficial on alternate hosts, as has been proposed for the

well-studied case of the phytophagous insect R. pomonella (Coyne and Orr, 2004,

pp. 159�162).

p0485 An elegant way to demonstrate the sympatric occurrence of speciation is to

show that gene flow has occurred after initial divergence using approaches based

on coalescence (Wu and Ting, 2004). Such approaches appear very promising and

have been used in the fungal plant pathogen Mycosphaerella graminicola, showing

that this wheat pathogen arose recently, most probably during wheat domestication

in the fertile crescent, by differentiation from Mycosphaerella species pathogens of

natural grasses in the face of gene flow (Stukenbrock et al., 2007).

p0490 Many examples exist in fungi of divergence of sibling pathogen species on dif-

ferent hosts. In disagreement with the long-prevailing view that coevolution

between host and parasites should lead to cospeciation, these radiations of different

hosts most often involved hosts’ shifts (Roy, 1998; Refrégier et al., 2008; Tellier

et al., 2010). This also seems the case for some fungi causing diseases on crop

plants, having arisen from shifts from natural plants (Couch et al., 2005; Brunner

et al., 2007; Stukenbrock and McDonald, 2008; Zaffarano et al., 2008).
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p0495 As seen earlier, a sine qua non of speciation in sexually reproducing organisms

is the decrease of gene flow between incipient species due to the development of

reproductive barriers. Two types of reproductive barriers are usually distinguished,

premating and postmating. Premating isolation has been shown to prevent gene

flow in fungi, with different types of barriers: (1) for organisms depending on

biotic vectors, specialization of these vectors can prevent contact between two

populations even if they lie close to one another, yielding ecological isolation. For

example, the endophyte Epichloë typhina is preferentially chosen by its fly vectors

Botanophila as opposed to Epichloë clarkia (Bultman and Leuchtmann, 2003),

which may promote a certain degree of reproductive isolation. Another example is

the complex Microbotryum violaceum, where the insect vectors are different to

some extent between host species, leading to a reduction in mating opportunities

among strains from different plants, although the barrier is not complete (van

Putten et al., 2007); (2) specialization may also allow for ecological premating iso-

lation if mating occurs within habitats (hosts for parasites), as discussed earlier

(Giraud, 2006; Giraud et al., 2006); (3) allochrony, or differences in the time of

reproduction, may also be efficient to promote premating isolation. The sister spe-

cies Saccharomyces cerevisiae and S. paradoxus exhibit different cell growth kinet-

ics; this allows most individuals of one species to undergo homospecific crosses

before or after reproduction of the individuals of the other species. Proportion of inter-

specific matings can therefore be significantly reduced without the need of incompati-

bility factors (Murphy et al., 2006); (4) as has been invoked in plants (Fishman and

Wyatt, 1999), a high rate of selfing may be efficient in limiting interspecific matings.

Selfing has been suggested to act as a reproductive barrier in the anther smut fungus

M. violaceum (Giraud et al., 2008c); and (5) assortative mating due to mate recogni-

tion occurs if individuals or gametes are able to discriminate between conspecifics

and heterospecifics. Assortative mating seems to be especially important in the repro-

ductive isolation of Homobasidiomycota, where clamp connections between mycelia

of opposite types are almost exclusively observed when the tested mycelia belong to

the same species when in sympatry (Le Gac and Giraud, 2008).

p0500 Postmating isolation refers to barriers associated with hybrid inviability and ste-

rility and is expected to arise as a result of the divergence of incipient species. In

the case of postmating isolation, heterospecific crosses occur and lead to the pro-

duction of unfit offspring. Hybrids may be inviable or sterile due to genetic incom-

patibilities if mutations fixed independently in the diverging lineages display

negative epistatic interactions when brought together in the same individual, a phe-

nomenon known as Dobzhansky�Müller incompatibilities (Orr and Turelli, 2001).

This kind of intrinsic postmating reproductive isolation is responsible for the

numerous reported cases in fungi of crosses that initiate and subsequently abort

during in vitro experiments. For instance, heterospecific crosses among

Microbotryum species produce in vitro fewer viable mycelia than conspecific ones

(Le Gac et al., 2007b), and hybrids are sterile (Sloan et al., 2008; de Vienne et al.,

2009); crosses among Neurospora species lead to few or abnormal perithecia or to

few viable ascospores (Dettman et al., 2003b). Dobzhansky�Müller incompatibili-

ties have been identified between a nuclear gene and a mitochondrial gene as
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causing sterility in hybrids between two yeast species (Lee et al., 2008).

Chromosomal rearrangements have also been proposed as mechanisms generating

sterility in fungi given their high genomic fluidity (Zolan, 1995; Poggeler et al.,

2000; Delneri et al., 2003; de Vienne et al., 2009). However, the karyotypically dif-

ferentiated strains may also have differed in their genic content, and showing that

the rearrangements were a cause of the divergence and not only its consequence

remains a challenging task.

p0505 Speciation in fungi can also occur by hybridization between species (see

Brasier, 2001; Olson and Stenlid, 2002; Schardl and Craven, 2003; Giraud et al.,

2008b; Aguileta et al., 2009 for extensive reviews). Allopolyploid hybrids (with

higher ploidy level than the parental lines) have been identified in diverse genera.

Examples include Botrytis allii, the agent of gray mold neck rot of onion and garlic

(Staats et al., 2005), several Neotyphodium species, symbiotic endophytes of

grasses (Moon et al., 2004), and several Saccharomyces species empirically

selected for brewing (Masneuf et al., 1998). Homoploid speciation (with no change

in chromosome number) has also been described in fungi. A well-known case is

that of the rust Melampsora3 columbiana that emerged from hybridization of

M. medusa, parasite of Populus deltoides, and M. occidentalis, parasite of P. tri-

chocarpa (Newcombe et al., 2000), and that is able to parasitize the hybrid trees.

p0510 In conclusion, important advances have been made recently on the speciation in

fungi, and they have proved tractable biologic models for the general study of spe-

ciation. Fungi also exhibit some specific and interesting modes of speciation, and

many open questions remain which will be fascinating to explore.

s0155 4.9 Mating and Pathogenesis

p0515 Within the fungal kingdom, the ability to undergo sexual reproduction is linked to

pathogenesis from a number of different aspects. The four major links to pathogen-

esis include the ability to form infectious spores, the production of invasive hyphae,

the generation of genetic diversity through meiotic recombination, and in some spe-

cies an association of mating type with virulence.

p0520 Sexual reproduction in many fungal pathogens leads to the formation of infec-

tious spores. Spores are one of the likely routes of infection for human pathogens,

including Cryptococcus, and have recently been documented to be infectious like

yeast cells (Giles et al., 2009; Velagapudi et al., 2009). In representative plant

pathogens including the Ustilago and Microbotryum genera, sexual reproduction is

stimulated in association with the host plant and the dikaryotic hyphae produced by

mating are the infectious form, thus requiring sexual reproduction for successful

infections (Bakkeren et al., 2008). In Cryptococcus (Xue, 2010), it has been shown

that a full sexual cycle, leading to the production of infectious spores, can be com-

pleted in association with plants, in some cases triggering hyphal penetration and

disease in leaves and triggering jasmonate-mediated plant defenses, further linking

the animal and plant fungal pathogens (Xue et al., 2007). Following these studies,
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recent work has shown that the inositol permease family is expanded in

Cryptococcus (Xue et al., 2010), and inositol stimulates mating and can be supplied

by the plant. These findings in a plant-associated human pathogen complement anal-

ogous mechanisms defined in well-characterized plant pathogens. For example, a

recent study described a novel sucrose transporter in U. maydis that is required for

virulence, which allows the pathogen to scavenge sucrose from the host while

avoiding immune recognition by enabling direct carbon source utilization without

the production of extracellular monosaccharides (Wahl et al., 2010). In contrast to

the plant pathogenic basidiomycetes, the infectious form of Cryptococcus in animals

is the yeast cells, and hyphal forms are only rarely observed in tissue sections from

infected patients and animals.

p0525 Sex can create diversity by enabling genetic exchange within a population of a

given species, but can also impact the evolution of virulence via introgression of

more limited genomic regions between closely related species (Kavanaugh et al.,

2006) or hybridization between two different species (Cogliati et al., 2001;

Lengeler et al., 2001). There are a series of reports on hybridization events, likely

that occurred via sexual reproduction between distinct species, which have resulted

in isolates with altered virulence properties in plant and insect pathogens, including

both fungi and oomycetes (Viaud et al., 1998; Olson and Stenlid, 2002; Schardl

and Craven, 2003). In these cases, hybrid vigor may be the cause of altered host

range, environmental niche, or virulence properties. Studies in plant pathogens

have also found that hybridizations between species can lead to mitochondrial

transfer, impacting virulence (Olson and Stenlid, 2001). These mitochondrial find-

ings have garnered interest from the Cryptococcus field, as recent studies of the C.

gattii outbreak genotypes indicate a strong association between the mitochondrial

genome and virulence, although studies in C. neoformans found no link associated

with the exchange of serotype A and D mitochondrial genomes and virulence

(Toffaletti et al., 2004; Ma et al., 2009).

p0530 While the mammalian fungal pathogens do not require sex for infections, sexual

reproduction has been retained, and in a number of cases, shown to be critical for

aspects of successful infections. A recent seminal discovery of sexual reproduction

in Aspergillus fumigatus reported that sex occurred only after 6 months of incuba-

tion on oatmeal supplemented agar, and may lead to the production of aerosolized

resistant infectious spores (O’Gorman et al., 2009). Through whole genome analy-

sis, it was revealed that the dandruff causing basidiomycete Malassezia has retained

many of the genes related to mating and meiosis, including the mating-type locus,

leading to the current hypothesis that this organism may complete a sexual cycle in

association with human skin (Xu et al., 2007). Similar bioinformatics studies in the

ascomycete dermatophytes, the dimorphic pathogens, and an examination of

Pneumocystis also found evidence for mating-type loci and meiotic genes, indicat-

ing likely roles of sexual reproduction in these human pathogens and possibly

occurring with a commensal or infectious state in humans (Smulian et al., 2001;

Bubnick and Smulian, 2007; Fraser et al., 2007; Mandel et al., 2007; Burgess et al.,

2008, 2009; Li et al., 2010). In the case of Pneumocystis, a group of obligate patho-

genic species that only proliferate in the lungs of their infected hosts and which are
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highly species-specific, pathologic studies have suggested that sexual reproduction

may be occurring in the lung of the infected host. Genomic studies have revealed

genes encoding meiotic gene homologs, and when heterologously expressed in the

closely related fission yeast Schizosaccharomyces pombe, these genes can comple-

ment to restore meiotic function in mutants lacking the S. pombe ortholog (Burgess

et al., 2008). This suggests the potential capacity for an extant sexual cycle that

may remain to be defined in the Pneumocystis sp. Additionally, mating has been

observed to occur in vivo during infections with C. albicans, with reports docu-

menting mating on the skin, in the GI tract, and other regions, and might therefore

influence the evolutionary trajectory in response to, for example, antifungal drug

therapy (Hull et al., 2000; Lachke et al., 2003; Dumitru et al., 2007).

p0535 Phylogenetic studies reveal that the Malassezia species, which are specialized to

survive as commensals on human skin and associated with a myriad of inflamma-

tory skin disorders, are basidiomycetes closely related to the plant pathogen of

corn, Ustilago maydis. Although no extant sexual cycle has been defined for the

Malassezia species, as discussed earlier, the genome reveals a mating-type locus

similar to that of the bipolar species Ustilago hordei that infects barley (Bakkeren

et al., 2008), and the machinery for mating and meiosis. Thus, like U. maydis, this

raises the possibility that sexual reproduction might occur in conjunction with and

even be stimulated by the host, and could be associated with infection. It further

raises the possibility that the infectious form in humans could be a filamentous

dikaryon produced by mating, rather than the yeast form. Further studies to address

this interesting hypothesis are clearly warranted, and might reveal that sex produces

novel antigens associated with disease manifestations.

p0540 Another distinct way in which the sexual cycle of fungi is linked to virulence

involves roles for the mating-type locus itself in promoting pathogenesis. This has

been most clearly established in C. neoformans, in which the serotype D variety

neoformans lineage strains of the α mating type are more pathogenic than congenic

strains of the a mating type (Kwon-Chung et al., 1992; Nielsen et al., 2005a).

There appears to be an influence of genetic background, and thus the α locus con-

tributes to virulence to a greater extant compared to the a locus in some serotype D

genetic backgrounds but not others (Nielsen et al., 2005b), consistent with models

in which virulence is a quantitative trait and the mating-type locus represents one

of several genomic loci that contribute to infection. In contrast to these findings in

serotype D, in the serotype A variety grubii lineage congenic strains of the α and a

mating type were found to be of equivalent virulence in several different animal

models, including heterologous model hosts (Nielsen et al., 2003). Thus far this has

only been addressed in congenic strains derived from the sequence reference strain

H99, and whether there might be a virulence difference for strains of opposite mat-

ing type during solo infections of the host remains to be explored in other serotype

A strain backgrounds. Thus, it may emerge that this is a serotype/variety-specific

difference, or it may emerge that in both serotype D and A that the mating-type

locus contributes to virulence but that the impact is dependent on the strain back-

ground. Construction of additional serotype A congenic strain pairs will be neces-

sary to examine this question in further detail.
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p0545 Interestingly, during co-infections of the serotype A congenic strains of opposite

mating type, the α strain has a greater predilection to penetrate and infect the cen-

tral nervous system (CNS) compared to a co-infecting strain of a mating type

(Nielsen et al., 2005a). This involves crossing the blood�brain barrier, as there is

no apparent difference in colonization of the lung, or dissemination to the spleen,

but fewer a cells are observed in the CNS compared to α cells in most infected ani-

mals. When the inocula was directly delivered to the CNS rather than to the lung,

there was no difference in survival of the α and a strains, providing evidence that

their interaction occurs at the level of crossing the blood�brain barrier (Nielsen

et al., 2005a). Recent findings provide evidence that the Ste3 pheromone receptor

is involved in the interaction between α and a cells, in that a strains lacking the

ste3a receptor are enabled to compete with α cells for CNS penetration, suggesting

that a form of pheromone-based quorum sensing may occur between the two mat-

ing types during co-infection (Okagaki et al., 2010).

p0550 Similar types of interactions may occur with other fungal pathogens during

infection of the host, and which may involve a dialog between cells in the popula-

tion involving mating machinery but which does not actually lead to sexual repro-

duction. For example, Soll and colleagues have presented evidence that long-

distance communication occurs between a/a and α/α MTL homozygous strains of

C. albicans in the context of a biofilm, and that this pheromone communication

alters the formation and adhesiveness of the resulting biofilm (Daniels et al., 2006).

p0555 Sexual reproduction among eukaryotes is pervasive and a major driving force in

evolution. Among the fungi, sexual reproduction often occurs at a lower frequency

than asexual propagation, although all species examined thus far appear to retain

genes encoding meiotic machinery. Thus, there may be few if any true asexual

fungi but many that are cryptically or covertly sexual, enabling recombination and

increasing genetic diversity. Among the fungal pathogens, sexual reproduction also

leads to the production of infectious spores and invasive hyphae. While sex is not

yet known to be directly necessary for successful animal infections, it is in several

examples linked to aspects of pathogenicity. In the plant pathogens the links

between pathogenicity and sex are often obligatory, illustrating a requirement of

sex for infection. Overall, sexual reproduction remains a central aspect of fungal

virulence in both the plant and animal kingdoms, and whether sex plays a more

intimate role in fungal infection of animals remains a provocative hypothesis to be

explored in future investigations, as in fungi infecting plants.

s0160 4.10 Genomics of Fungi: What Makes a Fungus Pathogenic?

s0165 4.10.1 Comparative Genomics of Plant Pathogens

p0560 In this section, we are interested in exploring the genomic characteristics that allow

some fungi to infect plants and, more rarely, animals (for a thorough review see

Aguileta et al., 2009). The pathogenic fungi are most often opportunistic

(Richardson, 1991; Pfaller and Diekema, 2004). Their capacity to derive nutrients

from a large range of plant hosts appears to rely on a battery of genomic resources
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that are the result of different evolutionary processes. Perhaps the most important

source of new genes and gene functions that are specific of fungal pathogens are

derived via expansions of gene families that facilitate the infection of the host

(Sidhu, 2002; Keller et al., 2005). Typically, these gene families include cell sur-

face receptors such as the G-protein-coupled receptors (GPCRs), which bind exoge-

nous ligands and participate in signaling cascades (Dean et al., 2005; Cuomo et al.,

2007); secreted proteins, which constitute a diverse group of small peptides such as

toxins, proteinaceous effectors, hydrolytic and degrading enzymes (Machida et al.,

2005; Hane et al., 2007; Xu et al., 2007); protein effectors that suppress plant

defenses and alter cellular metabolism (Kamper et al., 2006; Hane et al., 2007);

and secondary metabolites such as nonspecific and host-specific toxins (Soanes

et al., 2007). Key gene families involved in the biosynthesis of toxins include poly-

ketide synthases (PKS) (Hopwood, 1997; Shen, 2000), nonribosomal peptide syn-

thesis genes (NRPS) (Yuen et al., 2003), hybrid PKS-NRPSs (Kroken et al., 2003;

Bohnert et al., 2004), and cytochrome P450 (Deng et al., 2007). Other genomic ele-

ments that have expanded include genes that trigger regulatory cascades (Martin

et al., 2007; Martin et al., 2008). Gene families typically expand by gene duplica-

tion, which in fungal genomes range from whole-genome duplications (Dujon

et al., 2004; Kellis et al., 2004; Scannell et al., 2006) to several instances of tandem

duplications, such as events involving pathogenicity-related gene families including

adhesins (Verstrepen and Fink, 2009), cellular motors called kinesins (Schoch

et al., 2003), the ABC transporters and MFS drug efflux systems that help fungi

detoxify products from the plants defenses (Howlett, 2006), the multidrug resis-

tance transporter families (Gbelska et al., 2006), major surface glycoproteins, hex-

ose uptake (Dulermo et al., 2009), TRK potassium transporters (Miranda et al.,

2009), related proteins, and proteases (Keely et al., 2005). Gene duplications

related to adaptations to the pathogenic lifestyle have also been documented, as in

the case of the oxidative phosphorylation pathway, whose components have

evolved by functional divergence with several instances of gene loss and duplica-

tion (Marcet-Houben et al., 2009). Following duplication, rapid rates of evolution

and positive selection can give rise to novel gene functions that allow the fungus to

coevolve with its host or to infect new hosts. In fungal genomes, positive selection

has been found to act in the evolution of functionally important gene families, in

particular those that confer an adaptation to a pathogenic lifestyle. These include

genes coding for defense systems or for evading host resistance mechanisms, toxic

protein genes, and other virulence-related genes (Staats et al., 2007). Particular

examples of genes under positive selection that have been identified in fungal gen-

omes include the mycotoxin gene cluster in Fusarium (Ward et al., 2002; Cuomo

et al., 2007), various phytotoxin genes in Botrytis (Staats et al., 2007) and

Phytophthora infestans (Liu et al., 2005), the aflatoxin gene cluster in Aspergillus

(Carbone et al., 2007), host-specific toxin the wheat pathogen Phaeosphaeria

nodorum (Stukenbrock and McDonald, 2007), antigens in Coccidioides human

pathogens (Johannesson et al., 2004), and serine proteases in 10 fungal species (Hu

and Leger, 2004). Positive selection in the plant defense R-genes is frequently fol-

lowed by coevolution in the avirulence genes of the fungal parasite (Jones and

Jones, 1997; Parniske et al., 1997; Meyers et al., 1998). This gene-for-gene
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interaction with corresponding responses in both the host and the parasite genomes

is referred to as an “arms-race” process (Dawkins and Krebs, 1979).

p0565 In terms of the structure of fungal genomes, it has been shown that genes encod-

ing biochemical products aiding in infection are often clustered together (Jargeat

et al., 2003). Clustering of important gene families appears to offer several advan-

tages for pathogenicity (Sidhu, 2002; Keller et al., 2005). Indeed, evidence shows

that fungal genes interacting in the same metabolic pathway tend to be clustered

together (Keller and Hohn, 1997). Another mechanism linking genes in the genome

is the suppression of recombination that occurs surrounding the genes that deter-

mine mating compatibility, which are clustered at the mating-type loci

(Herskowitz, 1989). Protein products of mating-type loci additionally may serve

functions for mating and virulence through common G-protein-mediated environ-

mental sensing and response pathways (Bolker, 1998). Interestingly, and in contrast

with gene clustering, genetic variation created by chromosomal rearrangements has

been reported to favor the adaptation to novel hosts or nutritional environments

(Larriba, 2004), thus contributing to pathogenicity. Transposable elements are

another class of genomic elements that have also been shown to play a significant

role in enhancing the pathogenic capacities of fungi (Wostemeyer and Kreibich,

2002). In several pathogenic fungi, including Leptosphaeria maculans and

Magnaporthe grisea, sequences coding for avirulence genes are found in genomic

regions dense with transposable elements (Kang et al., 2001; Gout et al., 2006;

Rehmeyer et al., 2006; Fudal et al., 2007), potentially contributing to the extreme

variability of avirulence genes that are associated with host�pathogen coevolution.

Telomeres are rapidly evolving genomic regions particularly prone to the accumu-

lation of transposable elements, and they sometimes contain avirulence genes,

thereby playing a role in host adaptation (Rehmeyer et al., 2006; Chen et al., 2007;

Sánchez-Alonso and Guzman, 2008). Sometimes the genes that confer pathogenic-

ity to fungi come from other species, either via HGT or hybridization. Although

HGT is not as pervasive in fungal genomes as it is in bacteria, it appears to have

occurred multiple independent times (Penalva et al., 1990, Kavanaugh et al., 2006).

Occasionally, complete clusters are speculated to have been horizontally transferred

(Walton, 2000). Finally, hybridization is another way to mix genes and produce

new crosses with increased pathogenic capacities. There has been growing concern

during the past decade over the number of reported hybridizations in fungi, particu-

larly among pathogenic species (see Olson and Stenlid, 2002, for a review).

Several hybridization events have thus been identified among parasites and mutual-

ists from all clades of fungi. Some have been related to an increase in virulence or

host range, a shift in host spectrum or even a switch toward mutualism (Olson and

Stenlid, 2002).

p0570 Fungal genomes are extremely plastic. This is highlighted by the different geno-

mic processes that have generated a versatile repertoire of biochemical functions

that allow fungi to colonize a diverse range of environments and to also establish

relationships with other species, either by infection or symbiosis, with an extensive

array of partners. New genomic data will continue to fascinate us with examples of

amazing potentials for adaptation.

Tibayrenc-1 978-0-12-384890-1 00004

104 Genetics and Evolution of Infectious Diseases



s0170 4.10.2 Comparing Animal and Plant Pathogens

p0575 Pathogenic fungi are mostly intracellular pathogens, indicating that at some point

during the interaction between the host and the invading species the pathogen lives

inside the host cell. Despite the variety of intracellular fungal pathogens infecting

both plant and animal cells in seemingly unique ways, there are only a few general

solutions to the challenge of penetrating and surviving inside host cells

(Casadevall, 2008). Indeed, the problem represented by intracellular infection has

been tackled by convergent solutions that have evolved in parallel in the different

fungal lineages (Morris et al., 2009) of both plant and animal pathogens. It is inter-

esting to note that among fungi there appear to be many more species that parasit-

ize plants than animals (Desprez-Loustau et al., 2010). The reasons for this

imbalance are not very clear and deserve further attention. Typically, fungi main-

tain closer relationships with plants and have evolved many biochemical functions

to take advantage of their plant hosts to obtain nutrients (Pallen and Wren, 2007;

Boller and He, 2009; Burdon and Thrall, 2009; Pringle et al., 2009). An intriguing

hypothesis posits that fungi became pathogenic through the evolution of dual-use

traits. It is hypothesized that this first appeared as a mechanism to defend from

environmental aggressions, such as predation by amoebae, and later allowed inva-

sion of plant and animal cells alike (Morris et al., 2009). C. neoformans provides a

good example of dual-use traits that have helped this species to defend itself from

amoebal predation and infect animal cells. Dual-use traits include, but are not lim-

ited to, capsule formation, and the production of melanin, laccase, phospholipase,

proteases, and ureases (Casadevall et al., 2003). Also, according to this thesis, orig-

inally saprophytic interactions existed among plants, animals, and fungi that

allowed the evolution of interkingdom biochemical exchanges by different strate-

gies (Dodds et al., 2009; Oldroyd et al., 2009). Later on, these innovations were

exploited to invade plant and animal cells and derive benefits (Brun et al., 2009;

Grant and Jones, 2009). Examples of the new uses of previous adaptations to sapro-

phytic lifestyles abound, and include toxin production, adhesins to adhere to host

cells, injectors to penetrate the cell, interaction of fungal cells with host effector

cells, and microbial efflux pumps for managing toxic environmental compounds

that also help detoxify the fungal cell from defense plant products (Morris et al.,

2009; Panstruga and Dodds, 2009).

p0580 The genomes of fungal animal pathogens have not been as extensively studied

as phytopathogens. However, work has been published on a few of the best known

infect animals. These include Aphanomyces astaci (Bangyeekhun et al., 2001;

Oidtmann et al., 2004), which causes the crayfish plague; Cordyceps tuberculata

(Sung et al., 2007) and Beauveria bassiana (Coates et al., 2002), both of which are

entomopathogens; Batrachochytrium dendrobatidis (Kilpatrick et al., 2010), a chy-

tridiomycete fungus that is suspected to have caused the demise of many frog spe-

cies; and recently an emergent disease of bats resulting in a population decline in

excess of 75% has been associated with the pathogenic fungus Geomyces destruc-

tans (Blehert et al., 2008; Puechmaille et al., 2010). Also, there are the documented

cases of Malassezia globosa (Xu et al., 2007), the causative agent of dandruff; the
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infamous species A. fumigatus (Nierman et al., 2005; O’Gorman et al., 2009),

which is responsible for aspergillosis in immunosuppressed human patients; and

the well-known infections caused by C. albicans (http://www.candidagenome.org/),

C. neoformans (Loftus et al., 2005), Coccidioides immitis (Johannesson et al., 2004),

and Histoplasma capsulatum (Magrini et al., 2004). In all of these examples, lineage-

specific gene family expansions have played a significant role in pathogenicity.

p0585 More research needs to be conducted and more animal pathogens need to be

sequenced before we have a comprehensive view of the genetic basis, if any, of the

differences between the fungal genomes of plant and animal pathogens. Most

mechanisms and gene functions may be shared, as has been shown by a study of

the NLP toxin whose fold is conserved and shows similarities with that of bacteria

(Ottmann et al., 2009), so we can speculate about lineage- and host-specific genes

and gene functions in each case.

s0175 4.11 Conclusion

p0590 Comparative genomic studies in plant pathogenic and symbiotic fungi, although

still in the early stages and limited to a few pathogens, have already brought many

insights into the evolution of the pathogenic lifestyle, in particular into the mechan-

isms of virulence and host adaptations. There is a marked bias in the sequencing

efforts toward pathogenic fungi, but current projects are covering the fungal gen-

omes of species with very diverse lifestyles, that will hopefully allow us to gain

further insights into the genomics of pathogenicity.

p0595 Regarding epidemiology, molecular methods have much to offer to the study of

fungal pathogens, allowing elucidation of ecological and microevolutionary pro-

cesses. Population genetic approaches have provided important insights for some

fungal pathogens on their mating systems, dispersal, and population structure.

However, much wider employment of these methods is warranted to study fungal

pathogens, where it is still too restricted, although much progress has been made

recently. Microsatellite markers in particular are very powerful tools (Jarne and

Lagoda, 1996) and should be more widely used for population studies in fungi,

despite the technical challenges of their isolation in this kingdom (Dutech et al.,

2007). Further, new methods to analyze data are being developed at a rapid pace,

some using the Bayesian or coalescence frameworks, or coupling geography and

genetics to unravel migration and speciation histories, which should allow even

more powerful inferences on the evolutionary processes. However, further theoreti-

cal development is badly needed to apply the extant molecular methods to the vari-

ety and specificities of the fungal life cycles, such as pervasive clonality and

alternation between haplo- and diploid phases (Balloux and Lugon-Moulin, 2002;

Halkett et al., 2005).

p0600 Important advances have also been made recently on the speciation in fungi.

Recently developed analytical methods for studying past gene flow and dif-

ferentiation should be useful to determine in which cases fungal speciation by spe-

cialization onto novel hosts has occurred in sympatry (Hey and Nielsen, 2004; Hey

et al., 2004). Deciphering the genetics of speciation should also prove to be
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fascinating; for instance, by finding markers segregating with inviability or sterility

in interspecific progeny.
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Malécot, G., 1951. Un traitement stochastique des problèmes linéaires (mutation, linkage,
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