I. Gibson, S. Best, and W. Bonfield, Chemical characterization of silicon-substituted hydroxyapatite, Journal of biomedical materials research, vol.44, issue.4, pp.422-428, 1999.

L. L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, vol.74, issue.7, pp.1487-1510, 1991.

L. L. Hench and J. M. Polak, Third-generation biomedical materials, Science, vol.295, issue.5557, pp.1014-1017, 2002.

T. Thamaraiselvi and S. Rajeswari, Biological evaluation of bioceramic materials-a review, Carbon, vol.24, issue.31, p.172, 2004.

E. White and E. Shors, Biomaterial aspects of Interpore-200 porous hydroxyapatite, vol.30, pp.49-67, 1986.

M. Hamdi and A. Ide-ektessabi, Dissolution behavior of simultaneous vapor deposited calcium phosphate coatings in vitro, Materials Science and Engineering: C, vol.27, issue.4, pp.670-674, 2007.

M. Kamitakahara, C. Ohtsuki, and T. Miyazaki, Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition, Journal of biomaterials applications, vol.23, issue.3, pp.197-212, 2008.

R. Z. Legeros, Biodegradation and bioresorption of calcium phosphate ceramics, Clinical Materials, vol.14, issue.1, pp.65-88, 1993.

R. Z. Legeros, Properties of osteoconductive biomaterials: calcium phosphates, vol.395, pp.81-98, 2002.

C. Cardemil, I. Elgali, W. Xia, L. Emanuelsson, B. Norlindh et al., Strontiumdoped calcium phosphate and hydroxyapatite granules promote different inflammatory and bone remodelling responses in normal and ovariectomised rats, PLoS One, vol.8, issue.12, p.84932, 2013.

A. Porter, N. Patel, R. Brooks, S. Best, N. Rushton et al., Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants, Journal of Materials Science: Materials in Medicine, vol.16, issue.10, pp.899-907, 2005.

J. H. Shepherd, D. V. Shepherd, and S. M. Best, Substituted hydroxyapatites for bone repair, Journal of Materials Science: Materials in Medicine, vol.23, issue.10, pp.2335-2347, 2012.

A. E. Porter, C. M. Botelho, M. A. Lopes, J. D. Santos, S. M. Best et al., Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon -substituted hydroxyapatite in vitro and in vivo, Journal of Biomedical Materials Research Part A, vol.69, issue.4, pp.670-679, 2004.

A. E. Porter, J. N. Patel, S. M. Skepper, W. Best, and . Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials, vol.24, issue.25, pp.4609-4620, 2003.

A. E. Porter, S. M. Best, and W. Bonfield, Ultrastructural comparison of hydroxyapatite and siliconsubstituted hydroxyapatite for biomedical applications, Journal of Biomedical Materials Research Part A, vol.68, issue.1, pp.133-141, 2004.

C. T. Wong, Q. Z. Chen, W. W. Lu, J. Leong, W. K. Chan et al., Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo, Journal of Biomedical Materials Research Part A, vol.70, issue.3, pp.428-435, 2004.

D. G. Guo, K. Xu, X. Zhao, and Y. Han, Development of a strontium-containing hydroxyapatite bone cement, Biomaterials, vol.26, issue.19, pp.4073-4083, 2005.

G. X. Ni, W. W. Lu, B. Xu, K. Y. Chiu, C. Yang et al., Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone, Biomaterials, vol.27, issue.29, pp.5127-5133, 2006.

W. C. Xue, J. L. Moore, H. L. Hosick, S. Bose, A. Bandyopadhyay et al., Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics, Journal of Biomedical Materials Research Part A, vol.79, issue.4, pp.804-814, 2006.

J. Christoffersen, M. R. Christoffersen, N. Kolthoff, and O. Bärenholdt, Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection, Bone, vol.20, issue.1, pp.47-54, 1997.

D. G. Guo, K. W. Xu, and Y. Han, The influence of Sr doses on the in vitro biocompatibility and in vivo degradability of single-phase Sr-incorporated HAP cement, Journal of Biomedical Materials Research Part A, vol.86, issue.86, pp.947-58, 2008.

S. Kannan, F. Goetz-neunhoeffer, J. Neubauer, S. Pina, P. Torres et al., Synthesis and structural characterization of strontium-and magnesium-co-substituted ?-tricalcium phosphate, Acta biomaterialia, vol.6, issue.2, pp.571-576, 2010.

W. Lam, H. Pan, Z. Li, C. Yang, W. Chan et al., Strontium-substituted calcium phosphates prepared by hydrothermal method under linoleic acid-ethanol solution, Ceramics international, vol.36, issue.2, pp.683-688, 2010.

M. Chapuy and P. Meunier, Prevention and treatment of osteoporosis, Aging Clinical and Experimental Research, vol.7, issue.4, pp.164-173, 1995.

J. Roberts, M. Russell, D. Kirk, P. Van-rijn, and J. Vandevivere, Strontium 89 in early relapse of hormone treated metastatic prostate cancer: can it delay onset of bone pain, International Journal of Radiation Oncology* Biology* Physics, vol.54, issue.2, p.193, 2002.

M. Sila-asna and A. Bunyaratvej, Kobe University Repository: Kernel, Kobe, J. Med. Sci, vol.53, issue.1, pp.25-35, 2007.

G. Ni, W. Lu, B. Xu, K. Chiu, C. Yang et al., Interfacial behaviour of strontiumcontaining hydroxyapatite cement with cancellous and cortical bone, Biomaterials, vol.27, issue.29, pp.5127-5133, 2006.

H. B. Pan, Z. Y. Li, W. M. Lam, and J. C. Wong, Solubility of strontium-substituted apatite by solid titration, Acta Biomaterialia, vol.5, issue.5, pp.1678-85, 2009.

C. P. Klein, J. Blieck-hogemrst, J. Wolket, and K. D. Groot, Studies of the solubility of different calcium phosphate ceramic particles in vitro, Biomaterials, vol.11, issue.7, pp.509-512, 1990.

H. Koerten and J. , Van der Meulen, Degradation of calcium phosphate ceramics, Journal of biomedical materials research, vol.44, issue.1, pp.78-86, 1999.

D. Guo, Y. Z. Hao, H. Y. Li, C. Q. Fang, L. J. Sun et al., Influences of Sr dose on the crystal structure parameters and Sr distributions of Sr -incorporated hydroxyapatite, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.101, issue.7, pp.1275-1283, 2013.

Z. Y. Li, W. M. Lam, C. Yang, B. Xu, G. X. Ni et al., Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite, Biomaterials, vol.28, issue.7, pp.1452-1460, 2007.

R. T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, vol.32, issue.5, pp.751-767, 1976.

J. Terra, E. R. Dourado, J. G. Eon, D. E. Ellis, G. Gonzalez et al., The structure of strontiumdoped hydroxyapatite: An experimental and theoretical study, Physical Chemistry Chemical Physics, vol.11, issue.3, pp.568-77, 2009.

J. Zeglinski, M. Nolan, M. Bredol, A. Schatte, and S. A. Tofail, Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses, Physical Chemistry Chemical Physics Pccp, vol.14, issue.10, pp.3435-3443, 2012.

W. B. Zhang, Y. H. Shen, H. B. Pan, K. L. Lin, X. G. Liu et al.,

D. P. Deng and . Wang, Effects of strontium in modified biomaterials, Acta Biomaterialia, vol.7, issue.2, pp.800-808, 2011.

J. Arends and W. L. Jongebloed, Dislocations and dissolution in apatites: theoretical considerations, vol.11, pp.186-188, 1977.

G. Daculsi, R. Z. Legeros, and D. Mitre, Crystal dissolution of biological and ceramic apatites, Calcified Tissue International, vol.45, issue.2, pp.95-103, 1989.

H. Margolis and E. Moreno, Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions, Calcified Tissue International, vol.50, issue.2, pp.137-143, 1992.

Y. Y. Earmme, J. K. Lee, R. J. Harrison, and G. H. Bishop, Lattice dynamics studies of grain boundary structures, Surface Science, vol.118, issue.3, pp.623-633, 1982.

R. Hellmann, R. Wirth, D. Daval, J. Barnes, J. Penisson et al., Unifying natural and laboratory chemical weathering with interfacial dissolutionreprecipitation: A study based on the nanometer-scale chemistry of fluid-silicate interfaces, Chemical Geology, vol.294, pp.203-216, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01834914

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson et al., Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion, Nature materials, vol.14, issue.3, p.307, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01929134

A. Putnis, Mineral replacement reactions: from macroscopic observations to microscopic mechanisms, Mineralogical Magazine, vol.66, issue.5, pp.689-708, 2002.

N. H. Leeuw, A computer modelling study of the uptake and segregation of fluoride ions at the hydrated hydroxyapatite (0001) surface: introducing a Ca10(PO4)6(OH)2 potential model, Physical Chemistry Chemical Physics, vol.6, issue.8, pp.1860-1866, 2004.

P. P. Dholabhai, J. A. Aguiar, L. Wu, T. G. Holesinger, T. Aoki et al., Structure and segregation of dopant-defect complexes at grain boundaries in nanocrystalline doped ceria, Physical Chemistry Chemical Physics, vol.17, issue.23, pp.15375-15385, 2015.

M. D. O'donnell, Y. Fredholm, A. D. Rouffignac, and R. G. Hill, Structural analysis of a series of strontium-substituted apatites, Acta Biomaterialia, vol.4, issue.5, pp.1455-1464, 2008.

S. Weiner and P. A. Price, Disaggregation of bone into crystals, Calcified Tissue International, vol.39, issue.6, pp.365-375, 1986.

C. M. Botelho, M. A. Lopes, I. R. Gibson, S. M. Best, and J. D. Santos, Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy, Journal of Materials Science Materials in Medicine, vol.13, issue.12, pp.1123-1127, 2002.

T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, Solutions able to reproduce in vivo surface -structure changes in bioactive glass -ceramic A -W3, Journal of Biomedical Materials Research Part A, vol.24, issue.6, pp.721-734, 1990.

D. Guo, K. Xu, and Y. Han, The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties, Journal of Biomedical Materials Research Part A, vol.88, issue.1, pp.43-52, 2009.

G. Dagang, X. Kewei, and L. Yaxiong, Physicochemical properties and cytotoxicities of Sr-containing biphasic calcium phosphate bone scaffolds, Journal of Materials Science: Materials in Medicine, vol.21, issue.6, pp.1927-1936, 2010.