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This paper presents a generalization of an analytical model of an axial flux permanent magnet machine to any magnet shape. It uses 

an existing model which computes the 3D magnetic flux density by the separation of variables and finite difference method. The 

original magnet shape is modified by adding a radial dependence to the arc pole. It will be shown that this radial dependency has no 

impact on the problem’s resolution. As an example, the model will be computed for a circular magnet shape and will be compared to a 

finite element analysis.  

 
Index Terms— Axial flux, finite difference method, Fourier series, magnetic scalar potential, magnet shape, permanent magnet, 

separation of variables. 

I. INTRODUCTION 

HE structures of Axial Flux Permanent Magnet (AFPM) 

machine structures are still under development [1]. Thus, 

modeling some of their particularities is becoming an issue. In 

axial flux surface mounted permanent magnet machines, 

permanent magnets are often considered as sector shaped 

magnets (trapezoidal form like in Fig. 1). However others 

magnet shapes can be found in some AFPM structures [1], [2]. 

Nevertheless, considering 3D analytical modeling, despite the 

variety of the methods used, only sector shaped magnets have 

been considered [3], [4], [5].  

 This paper proposes to generalize the model described in [5] 

which considers sector shape magnets with regard to different 

magnet shape. A radial dependence of the arc pole is put 

forward. From the mathematical point of view, it will be 

shown that this radial dependency of the arc pole has no 

impact on the development of the initial solution. 

Subsequently, the solution will be computed for circular 

shaped magnets and compared to FEA. 

II.  THE AXIAL FLUX SURFACE MOUNTED PERMANENT 

MAGNET MACHINE 

A representation of a pair of poles of a surface mounted 

permanent magnet axial flux motor is shown in Fig. 1. 

The 3D hybrid analytical finite difference (FD) model 

presented in [5] is easy to set up. Furthermore, it is also valid 

for modeling multi-stage machines thanks to the image 

method. This paper proposes to extend this model to more 

complex magnet shapes. 

 
Fig. 1. A 3-D representation of a pair of poles of the AFPM machine. 

III. GENERALIZATION OF THE MAGNET SHAPE 

In [5], the arc pole αp is constant. The method can be 

extended to complex magnet shapes as the example shown in 

Fig. 2. For this type of magnet shape the arc pole can be 

described as a function of the radial position r. This paper will  

compute the axial magnetic flux density Bz in the same way it 

is done in [5] adding this radial dependency of the arc pole 

αp(r). The arc pole is computed for each discretized radius. 

This discretization is performed by the 1D FD method 

developed in [5].  

 
Fig. 2.  Complex magnet shapes with arc pole depending on radial position. 

 

As in [5], the following assumptions are made: 

- Because of the air-space between the magnets, we assume 

that the permeability of magnets and the air is the same and 

equal to µ0. 

- Back-irons have infinite permeability so the boundary 

conditions (BC) at the planes z = 0 and z = hm + g are taken as 

normal flux boundary conditions. Where g is the airgap width 

and hm the permanent magnet width. 

- The problem is limited in the radial direction with parallel 

flux boundary conditions on cylinders at r = R0 and r = R1.  

Using magnetic scalar potential formulation (MSP), Ω, the 

partial differential equation to be solved is deduced from 

Maxwell equations:  

∆Ω = 𝑑𝑖𝑣 𝑴          (1) 

 To reduce the number of regions to consider, the image 

method is used to replace the normal flux BC by a periodical 

extension in the axial direction. This leads to a double Fourier 
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series description of the magnetization of the permanent 

magnets in the azimuthal and axial directions: 
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where p is the number of pole pairs and Mnk and Mn0 are the 

Fourier series coefficients. 

Therefore, there are three regions to be considered separated 

by cylindrical surfaces at r = Rint and r = Rext. Air regions I 

(Rint ≥ r ≥ R0) and III (R1 ≥ r ≥ Rext), and the PM region II (Rext 

≥ r ≥ Rint). The new magnet shape has to be included in the 

magnet region between Rint and Rext. The radial dependency of 

αp(r) implies that the Fourier series coefficients are now r 

dependent. 

All the magnets are axially magnetized. Therefore, the 

magnetization 𝑴 has only a component in the axial direction. 

The second member of the equation is reduced to: 
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Here, the partial derivative in accordance with the axial 

coordinate has no influence over the arc pole αp(r). 

 The method of separation of variables used in [5] is still 

valid even if the arc pole αp(r) depends on the radial position. 

The final expression of the axial magnetic flux density is now: 
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where vnk are functions of  𝑟. Differential equations are solved 

by FD method for each azimuthal n and axial k harmonics to 

compute these functions. The 1D FD method discretizes the 

problem in the radial direction.  

IV. COMPARISON WITH FEA 

As an example, circular magnet shape will be considered in 

this study as shown in Fig. 3. For each discretized radius, the 

arc pole is calculated in order to create a circular shape.  

 
Fig. 3. 3-D view of the AFPM machine with circular shaped magnets. 

 
Fig. 4. Axial flux density as a function of the radial coordinate computed by 

hybrid analytical-FD method and FEM. 

 

The FEA is carried out on ANSYS/Emag 3D [6] and based 

on a magnetic scalar potential formulation. The FEA is done 

under the same condition as the model, that means on one pair 

of poles of the machine and the same assumptions are made 

(the permeability of the magnets and BC). 

Both computation methods are compared on a radial line at 

z = hm + g/2 and for several angles θ = 0 (in front of the 

symetrical axis), θ = 5.5° and θ = 7.5°.  

The results are computed for 16 harmonics. The root mean 

square (RMS) error between the hybrid model and the FEA on 

Fig. 4 are about 1.2% for the three plots. The RMS errors are 

below 2% if we consider the influence of θ and z 

independently. Back electromotive force and torque can be 

easily computed from the Bz component of the magnetic flux 

density [5]. 

V.  CONCLUSION 

This paper presents a generalization of a 3D analytical 

model of AFPM with sector shaped magnets to AFPM with 

more complex magnet shapes. The method is validated with 

circular shaped magnets.  
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