L. Calió, S. Kazim, M. Grätzel, and S. Ahmad, Hole-transport materials for perovskite solar 425 cells, Angew. Chemie Int. Ed, vol.55, pp.2-26, 2016.

A. Gheno, S. Vedraine, B. Ratier, and J. Bouclé, ?-Conjugated materials as the hole-427 transporting layer in perovskite solar cells, Metals, vol.6, p.21, 2016.

J. Urieta-mora, I. Garcia-benito, A. Molina-ontoria, and N. Martin, Hole transporting 429 materials for perovskite solar cells: a chemical approach, Chem. Soc. Rev, vol.47, p.8541, 2018.

L. Guan, X. Yin, D. Zhao, C. Wang, Q. An et al., , p.432

Y. Yu, Z. Song, J. Zhou, W. Meng, F. Zhang et al.,

, Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill 434 factors up to 82%, Mater. Chem. A, vol.5, pp.23319-23327, 2017.

S. Mabrouk, M. Zhang, Z. Wang, M. Liang, B. Bahrami et al., , p.436

, 2-b:2',3'-d]pyrrole-based hole transport materials for perovskite solar cells with 437 efficiencies over 18%, J. Mater. Chem. A, vol.3, pp.23319-23327, 2018.

B. Xu, E. Sheibani, P. Liu, J. Zhang, H. Tian et al.,

L. Hagfeldt and . Sun, Carbazole-based hole-transport materials for efficient solid-state dye-440 sensitized solar cells and perovskite solar cells, Adv. Mater, vol.26, pp.6629-6634, 2014.

S. D. Sung, M. S. Kang, I. T. Choi, H. M. Kim, H. Kim et al.,

. Lee, 8% perovskite solar cells employing carbazole derivatives as hole transporting 443 materials, Chem. Commun, vol.14, pp.14161-14163, 2014.

S. Benhattab, A. Cho, R. Nakar, N. Berton, F. Tran-van et al., , p.445

, Simply designed carabazole-based hole transporting materials for efficient solar cells

, Electron, vol.56, pp.27-30, 2018.

R. Nakar, A. Cho, N. Berton, J. Faure-vincent, F. Tran-van et al., , p.448

, 6-carbazole derivative as hole-transporting material for mixed cation 449 perovskite solar cells, Triphenylamine, vol.3, pp.1779-1787, 2018.

W. W. Limburg and D. J. Williams, Variation in inter-ring interactions in a series of carbazyl 451 group containing polymers, Macromolecules, vol.6, pp.787-788, 1973.

M. Cai, T. Xiao, Y. Chen, E. Hellerich, R. Liu et al., Effect of molecular 453 weight on the efficiency of poly(N-vinylcarbazole)-based polymer light-emitting diodes

, Phys. Lett, vol.99, p.203302, 2011.

H. Kim, C. Kim, C. Ha, and J. Lee, Organic solar cell devices based on, p.456

, PVK/porphyrin system, Synth. Met, vol.117, pp.289-291, 2001.

F. Deschler, D. Riedel, B. Ecker, E. V. Hauff, E. Da-como et al., , p.458

, Increasing organic solar cell efficiency with polymer interlayers, Phys. Chem. Chem. Phys, vol.15, pp.764-769, 2012.

L. Yang, Y. Yan, F. Cai, J. Li, T. Wang et al., -vinylcarbazole) as a hole transport material 461 for efficient and stable inverted planar heterojunction perovskite solar cells, Sol. Energy Mater, issue.9

, Sol. Cells, vol.163, pp.210-217, 2017.

P. Su, L. Huang, J. Liu, Y. Chen, L. Xiao et al.,

. Su, A multifunctional poly-N-vinylcarbazole interlayer in perovskite solar cells for high stbility 465 and efficiency: a test with new triazatruxene-based hole transporting materials, J. Mater. Chem. 466 A, vol.5, 1913.

Z. Zhou, Y. Zhao, C. Zhang, D. Zhou, Y. Chen et al., A facile one-468 pot synthesis of hyper-branched carbazole based polymer as hole-transporting material for 469 perovskite solar cells, J. Mater. Chem. A, vol.5, pp.6613-6621, 2017.

A. Magomedov, S. Paek, P. Gratia, E. Kasparavicius, M. Daskeviciene et al., , p.471

A. Gruodis, V. Jankauskas, K. Kantminiene, K. T. Cho, K. Rakstys et al.,

M. K. Getautis and . Nazeeruddin, Diphenylamine-substituted carbazole-based hole transporting 473 materials for perovskite solar cells: Influence of isomeric derivatives, Advanced Functional 474 Materials, vol.28, issue.9, p.1704351, 2018.

I. Zimmermann, J. Urieta-mora, P. Gratia, J. Aragó, G. Grancini et al.,

N. Ortí, M. K. Martín, and . Nazeeruddin, High-efficiency perovskite solar cells using molecularly 477 engineered thiophene-rich, hole-transporting materials: Influence of alkyl chain length on 478 power conversion efficiency, Advanced Energy Materials, vol.7, issue.6, p.1601674, 2016.

J. Zhang, B. Xu, L. Yang, C. Ruan, L. Wang et al., , p.480

G. Boschloo, L. Sun, A. Hagfeldt, and E. M. Johansson, The importance of pendant groups on 481 triphenylamine-based hole transport materials for obtaining perovskite solar cells with over 482 20% efficiency, Advanced Energy Materials, vol.8, issue.2, p.1701209, 2017.

C. Huang, W. Fu, C. Li, Z. Zhang, W. Qiu et al., , p.484

, Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient 485 perovskite solar cells, Journal of the American Chemical Society, vol.138, issue.8, pp.2528-2531, 2016.

F. Zhang, S. Wang, H. Zhu, X. Liu, H. Liu et al., , p.487

, Impact of peripheral groups on phenothiazine-based hole-transporting materials for perovskite 488 solar cells, ACS Energy Letters, vol.2018, issue.5, pp.1145-1152

Y. Xu, T. Bu, M. Li, T. Qin, C. Yin et al., , p.490

L. Xie and W. Huang, Non-conjugated polymer as an efficient dopant-free hole-transporting 491 material for perovskite solar cells, ChemSusChem, vol.10, pp.2578-2584, 2017.

H. Mori, M. Yahagi, and T. Endo, RAFT polymerization of N-vinylimidazolium salts and 493 synthesis of thermoresponsive ionic liquid block copolymers, Macromolecules, vol.42, p.8082, 2009.

A. Karali, G. E. Froudakis, P. Dais, and F. Heatley, Carbon-13 nuclear magnetic relaxation 496 study of solvent effects on chain local dynamics of poly(N-vinylcarbazole) in dilute solution, p.497

, Macromolecules, vol.33, pp.5524-5531, 2000.

B. Xu, E. Sheibani, P. Liu, J. Zhang, H. Tian et al.,

L. Hagfeldt and . Sun, Carbazole-based hole-transport materials for efficient solid-state dye-500 sensitized solar cells and perovskite solar cells, Adv. Mater, vol.26, pp.6629-6634, 2014.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran et al., , p.502

, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc, vol.134, pp.17396-17399, 2012.

P. Tonui, S. O. Oseni, G. Sharma, Q. Yan, and G. T. Mola, Perovskites photovoltaic 505 solar cells: An overview of current status, Renewable and Sustainable Energy Reviews, vol.91, pp.1025-1044, 2018.

Z. Tang, T. Bessho, F. Awai, T. Kinoshita, M. M. Maitani et al.,

T. Wang, S. Kubo, H. Uchida, and . Segawa, Hysteresis-free perovskite solar cells made of 509 potassium-doped organometal halide perovskite, Scientific Reports, vol.7, p.12183, 2017.

D. Shi, X. Qin, Y. Li, Y. He, C. Zhong et al., , p.511

O. Bakr and S. -. , OMeTAD single crystals: remarkably enhanced charge-carrier transport via 512 mesoscale ordering, Sci. Adv, vol.2, 2016.

, 6-di-methoxy)-9-vinylcarbazole, Synthesis of poly

. Poly, 32 mL of sodium methoxide in methanol (25 wt.%) and 4.05 g 605 of copper bromide (28 mmol, 4 equ.) were added to 2 g of PVK-Br 2 in 10 mL of DMF, 20 mL 606 of ethyl acetate and 20 mL of toluene in a 250 mL round bottomed flask. The reaction was 607 carried in inert atmosphere at 80°C for 24h. Then the mixture was poured over water, filtered 608 and washed with THF. Excess of solvents was evaporated. The left powder was resolubilized 609 in THF and precipitated in ethanol. Finally, filtration and drying overnight at 50°C led to 1.7 g 610 of PVK, -methoxy)-9-vinylcarbazole] was synthesized from PVK-Br2 by direct methoxide 604 displacement of bromine. First, p.611

, (m, 2H) were identified. FTIR (Fig. S2) (ATR, 32 scans, cm -1 ) 3100-3000 ar

C. and .. Stretch, ar. C-H overtones, 1640-1070 skeletal 613 vibrations al. and ar. C-C, C=C stretch, 1260-1000 C-O stretch, 1060-860 C-H in-plane 614 bending, and 800-650 C-H out-of-plane bending were found. 615 616 (a) For reagents, price from Aldrich, except ( t Bu) 3 P from from STREM chemicals, Pd 2 (dba) 3 from 621 ABCR, and 4,4'-dimethoxdiphenylamine from TCI 622 (b) For solvents, pp.2300-1700

, The cost for 1 g of PVK I was estimated to be about 59 ?/g which is significantly lower than 625 spiro-OMeTAD (250 ?/g Aldrich)