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Abstract. Lewis’s counterfactual logics are a class of conditional logics
that are defined as extensions of classical propositional logic with a two-
place modal operator expressing conditionality. Labelled proof systems
are proposed here that capture in a modular way Burgess’s preferential
conditional logic PCL, Lewis’s counterfactual logic V, and their exten-
sions. The calculi are based on preferential models, a uniform semantics
for conditional logics introduced by Lewis. The calculi are analytic, and
their completeness is proved by means of countermodel construction.
Due to termination in root-first proof search, the calculi also provide a
decision procedure for the logics.
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1 Introduction

In Stalnaker’s and Lewis’s approach, conditional logics are defined as extensions
of classical propositional logic by means of a two-place modal operator, the
conditional, here denoted as >. This intensional operator is intended to express
a more fine-grained notion of conditionality than material implication.

Lewis introduced counterfactual conditional logics to extend formal reason-
ing to counterfactual sentences, i.e., statements of the form If Trump hadn’t won
the elections, Clinton would have been president. Other than counterfactual log-
ics (system V and its extensions) conditional logics include a weaker family of
systems: in this paper, we consider preferential conditional logic PCL and all its
extensions. These latter systems have received attention in artificial intelligence
since the conditional operator can be interpreted as expressing non monotonic
inferences, i.e., sentences of the form Normally, cats are afraid of dogs. In partic-
ular, the fragment of PCL without nesting of the conditional operator is equiva-
lent to system P of [14]. There are other applications of conditional logics in the
fields of knowledge base update [13], causality [8] and, in an epistemic setting,
belief revision [4, 12].

? This work was partially supported by the Academy of Finland research project no.
1308664 and by the project TICAMORE ANR-16-CE91-0002-01.
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The semantics of conditional logics is defined in terms of possible world struc-
tures in which, intuitively, a formula A > B is true at world x if B is true in the
set of worlds at which A is true that are more similar, in a sense to be formalized,
to x. Preferential models were proposed by Lewis and studied, among others,
by Burgess, who proved completeness of PCL with respect to these models [5].
Halpern and Friedman extended the proof to extensions of PCL [7]. On a formal
level, these models explicitly employ the notion of comparative similarity among
worlds: they are defined by adding to a set of possible worlds W a family of
subsets Wx for each x ∈ W , representing the worlds accessible from x, and a
binary relation 6x, expressing similarity among worlds. Thus, y 6x z means
world y is at least as similar as z to world x.

In this article, we define a family of modular labelled calculi G3P∗ for con-
ditional logic PCL and all its extensions, including counterfactual logics, i.e., V
and its extensions. The calculi are based on preferential semantics: following the
well-established methodology proposed by the second author, the calculi import
into the sequent calculus the semantic elements of preferential models by means
of syntactic elements (labels and relational symbols).

In [20], Negri and Sbardolini presented a labelled calculus based on ternary
relations for a system of Lewis’s conditional logic VC (V to which the condition of
Centering is added). The present article stems form a comment in Weiss’s thesis
[22]: the author observes, correctly, that Negri and Sbardolini’s proof system is
actually adequate to capture the stronger system VCU (VC + Uniformity). This
led us to an analysis of labelled calculi based on preferential models. It turns out
that it is possible to define modular proof systems on the basis of these natural
classes of models.

The article is organised as follows. In Section 2, conditional logics and pref-
erential models are introduced. Section 3 presents the rules of the calculi G3P∗

and Section 4 their structural properties. In Section 5, we define a proof search
strategy that ensures termination in root-first proof search for the systems with-
out the semantic conditions of Uniformity and Absoluteness. This allows to prove
completeness of the calculi by extracting a countermodel from failed proof search.
The conclusion (Section 6) gives a comparison of the calculi presented in this
article with other proof systems for conditional logics found in the literature.

2 Conditional logics and preferential models

The language of conditional logics is defined by means of the following grammar,
for p propositional variable, A,B ∈ Lcond, and > the conditional operator:

Lcond = p | ⊥ | A ∧B | A ∨B | A→ B | A > B

An axiomatization of PCL is defined adding to the axioms and inference rules
of classical propositional logic the following:
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RCEA
A↔B

(A>C)↔(B>C) RCK
A→B

(C>A)→(C>B)

R-And (A > B) ∧ (A > C)→ (A > (B ∧ C)) ID A > A

CM (A > B) ∧ (A > C)→ ((A ∧B) > C) RT (A > B) ∧ ((A ∧B) > C)→ (A > C)

OR (A > C) ∧ (B > C)→ ((A ∨B) > C)

An axiomatization of Lewis’s logic V is obtained by adding axiom CV to PCL.
Extensions of both PCL and V are defined by adding the axioms for normality,
total reflexivity, weak centering, centering, uniformity and absoluteness (denoted
below by the corresponding initials). The family of systems is represented in
Figure 1.

CV ((A > C) ∧ ¬(A > ¬B))→ ((A ∧B) > C)

N ¬(> > ⊥) T A→ ¬(A > ⊥)

W (A > B)→ (A→ B) C (A ∧B)→ (A > B)

U1 (¬A > ⊥)→ ¬(¬A > ⊥) > ⊥ U2 ¬(A > ⊥)→ ((A > ⊥) > ⊥)

A1 (A > B)→ (C > (A > B)) A2 ¬(A > B)→ (C > ¬(A > B))

VC

PCLC
PCLW

PCLT
PCLN

PCL

PCLUN
PCLTU

PCLWU PCLNA
PCLTA

PCLWA
PCLCU

PCLCA

PCLU

PCLA

V

VCA

VA

VU
VN

VT
VW

VCU

VNU
VTU

VWU VNA
VTA

VWA

Fig. 1. The conditional logics cube

We use preferential models as the semantics for the conditional logics cube.
Preferential models were studied, among others, by Burgess, who proved the
adequacy of this class of models with respect to preferential logic [5].

Definition 1. A preferential model 〈W, {Wx}x∈W , {6x}x∈W , J K〉 consists of a
non-empty set of worlds, W , and for every world x ∈ W , a set Wx of worlds
accessible from it, and a binary relation 6x over W . The propositional evaluation
J K : Atm → P(W ) selects the worlds at which an atomic formula is true. The
relation 6x satisfies the properties of
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– Reflexivity, for all w ∈W , w 6x w, and
– Transitivity, for all w, y, z ∈W , if w 6x y and y 6x z then w 6x z.

The truth condition for the conditional operator within preferential models is:

x  A > B ≡ for all z ∈Wx, if z  A, then there exists y ∈Wx such that
y 6x z, y  A, and for all k ∈Wx, if k 6x y then k  A→ B.

Extensions of preferential models are specified by adding conditions on the re-
lation 6x. These models are adequate for the logics in the conditional cube [7].

Definition 2. Extensions of preferential models are defined as follows:

– Normality: For all x ∈W , Wx is non-empty;
– Total reflexivity: For all x ∈W it holds that x ∈Wx;
– Weak centering: For all x ∈W , for all y ∈Wx, it holds that x 6x y;
– Centering: For all x ∈ W , for all y ∈ Wx, it holds that x 6x y and if there

is w ∈Wx such that for all y ∈Wx, w 6x y, then w = x;
– Uniformity: For all x ∈W , for all y ∈Wx it holds that Wy = Wx;
– Absoluteness: Uniformity plus for all w1, w2 ∈Wx, w1 6x w2 iff w1 6y w2;
– Nesting: For all x ∈W , for all w1, w2 ∈Wx, either w1 6x w2 or w2 6x w1.

Some of the above conditions are incremental: total reflexivity implies normality,
weak centering implies total reflexivity, centering implies weak centering and
absoluteness implies uniformity.

3 Labelled proof systems

In this section we shall define a family of modular calculi for the conditional
cube. To this aim, we enrich our language with a sets of labels x, y, z, . . . de-
noting worlds in preferential models. Furthermore, we allow the following ex-
pressions to occur in sequents: labelled formulas x : A, denoting x  A, and
relational atoms y ∈ Wx, y 6x z and x = y, having the same meaning as their
semantic counterparts. Following [20] we introduce an indexed modal operator,
and reformulate the truth condition of A > B in terms of this operator:

w  �xA ≡ for all k ∈Wx, if k 6x w then k  A

(∗)x  A > B ≡ for all z ∈Wx, if z  A, then there exists y ∈Wx such that
y 6x z, y  A, and y  �x(A→ B).

Following [19], we introduce an indexed conditional operator to treat the second
disjunct of the truth condition of the conditional operator:

Czx(A,B) ≡ there exists y ∈Wx such that y 6x z, y  A and y  �x(A→ B)

Thus, the truth condition for the conditional operator can be stated as follows:

(∗∗)x  A > B ≡ for all z ∈Wx, if z  A, then Czx(A,B).
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Observe that the extension of the language is only at the level of the labelled rules
and produces, in the course of proof search, only formulas of a certain specific
form. Formulas containing the new operators never occur as proper subformulas
of other formulas and an indexed modality can have only an implication in its
scope.

The rules of the labelled proof systems are defined by analysing the truth
conditions of the above operators (Figure 2). Rules Ref and Tr express reflex-
ivity and transitivity of 6x; rule Ref= and Repl express reflexivity of equality
and the property of replacement of equals. We call G3P the calculus for PCL;
calculi for extensions are defined in a modular way by adding to PCL the rules
corresponding to the semantic properties of 6x. We denote by G3P∗ the whole
family of calculi. The condition of freshness of a variable y in a rule is indicated
by (y!).

In order to prove soundness of the rules of the calculus we have to provide a
definition of realization in a preferential model. The definition uses the operators
of the extended language, and to guarantee its non-circularity we need to define
a notion of weight of formulas:

Definition 3. Given a labelled formula F of the form x : A, let the pure part of
F be defined as p(x : A) = A, and the labelled part as l(x : A) = l(x : �kA) = x.
The weight of a labelled formula is an ordered pair 〈w(p(F )),w(l(F ))〉 where

– for x world label, w(x) = 0
– w(p) = w(⊥) = 1; w(A◦B) = w(A)+w(B)+1, for ◦ conjunction, disjunction

or implication; w(x : �kA) = w(A) + 1; w(Czx(A,B)) = w(A) + w(B) + 3;
w(A > B) = w(A) + w(B) + 4.

Definition 4 (Realization). Given a modelM = 〈W, {Wx}x∈W , {6x}x∈W , J K〉,
and a set P of world labels, a P -realization over M is a function ρ : P → W
that assigns to each world label x ∈ P an element ρ(x) ∈ W . Satisfiability of a
formula F ∈ Lcond is defined by cases as follows: M �ρ y ∈Wx if ρ(y) ∈Wρ(x);
M �ρ y 6x z if ρ(y) 6ρ(x) ρ(z); M �ρ x : p if ρ(x) ∈ JpK, for p atomic;4

M �ρ w : �xA if for all y ∈Wρ(x), if y 6ρ(x) ρ(w), then y  A; M �ρ Czx(A,B)
if there exists y ∈ Wρ(x) such that y 6x ρ(z), y � A and y � �x(A → B);

M �ρ x : A > B if for all k ∈ Wρ(x), if k � A, then k � Ckx(A,B). A sequent
Γ ⇒ ∆ is valid inM under the ρ realization iff wheneverM �ρ F for all F ∈ Γ ,
thenM �ρ G for some G ∈ ∆. A sequent is valid in a class of preferential models
if it is valid under any realization for any model of that class.

The above definition immediately yields:

Theorem 1 (Soundness). If a sequent is derivable in G3P∗, then it is valid
in the corresponding class of preferential models.

Remark 1. The sequent calculi of Figure 2 are fully modular. However, by drop-
ping the requirement of modularity, it is possible to define simpler versions of

4 The definition can be extended to the propositional formulas of the language in the
standard way [17].
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Initial sequents

x : p, Γ ⇒ ∆,x : p x : ⊥, Γ ⇒ ∆

Propositional rules (standard)

Conditional rules

k ∈Wx, k 6x w,w : �xA, k : A,Γ ⇒ ∆

k ∈Wx, k 6x w,w : �xA,Γ ⇒ ∆
L�x

k ∈Wx, k 6x w, Γ ⇒ ∆, k : A

Γ ⇒ ∆,w : �xA
R�x(k!)

y ∈Wx, y 6x z, y : A, y : �x(A→ B), Γ ⇒ ∆

Czx(A,B), Γ ⇒ ∆
LC(y!)

y 6x z, y ∈Wx, z ∈Wx, Γ ⇒ ∆,Czx(A,B), y : A y 6x z, y ∈Wx, z ∈Wx, Γ ⇒ ∆,Czx(A,B), y : �x(A→ B)

y 6x z, y ∈Wx, z ∈Wx, Γ ⇒ ∆,Czx(A,B)
RC

z ∈Wx, x : A > B,Γ ⇒ ∆, z : A z ∈Wx, x : A > B,Czx(A,B), Γ ⇒ ∆

z ∈Wx, x : A > B,Γ ⇒ ∆
L >

z ∈Wx, z : A,Γ ⇒ ∆,Czx(A,B)

Γ ⇒ ∆,x : A > B
R >(z!)

Relational rules

w 6x w, Γ ⇒ ∆

Γ ⇒ ∆
Ref

w 6x z, w 6x y, y 6x z, Γ ⇒ ∆

w 6x y, y 6x z, Γ ⇒ ∆
Tr

x = x, Γ ⇒ ∆

Γ ⇒ ∆
Ref=

x = y,At(x), At(y), Γ ⇒ ∆

x = y,At(y), Γ ⇒ ∆
Repl

Rules for extensions

y ∈Wx, Γ ⇒ ∆

Γ ⇒ ∆
N(y!)

x ∈Wx, Γ ⇒ ∆

Γ ⇒ ∆
T

x 6x y, y ∈Wx, Γ ⇒ ∆

y ∈Wx, Γ ⇒ ∆
W

x = y, y 6x x, y ∈Wx, Γ ⇒ ∆

y 6x x, y ∈Wx, Γ ⇒ ∆
C

z ∈Wx, y ∈Wx, z ∈Wy, Γ ⇒ ∆

y ∈Wx, z ∈Wy, Γ ⇒ ∆
U1

z ∈Wy, y ∈Wx, z ∈Wx, Γ ⇒ ∆

y ∈Wx, z ∈Wx, Γ ⇒ ∆
U2

y 6x z, y ∈Wx, z ∈Wx, Γ ⇒ ∆ z 6x y, y ∈Wx, z ∈Wx, Γ ⇒ ∆

y ∈Wx, z ∈Wx, Γ ⇒ ∆
Nes

y 6k z, y 6x z, Γ ⇒ ∆

y 6x z, Γ ⇒ ∆
A

At(y) denotes any atoms of the form y : p, y ∈Wx, x ∈Wy, y 6x z, x 6y z.

G3P = Initial sequents, propositional rules, conditional rules, relational rules

G3PN = G3P + N; G3PT = G3PN + T; G3PW = G3PT + W; G3PC = G3PW + C

G3PU = G3P + U1 + U2; G3PNU/TU/WU/CU = G3PN/T/W/C + U1 + U2

G3PA = G3P + A; G3PNA/TA/WA/CA = G3PN/T/W/C + A

G3PV = G3P + Nes; G3PVN/VT/VW/VCU = G3PN/T/W/C + Nes

G3PVNU/VTU/VWU/VCU = G3PNU/TU/WU/CU + Nes;

G3PVNA/VTA/VWA/VCA = G3PNA/TA/WA/CA + Nes

Fig. 2. Rules of G3P∗

the calculi for some subfamilies of the logics. In systems with uniformity it holds
that for all x ∈ W and y ∈ Wx, Wx = Wy. Thus, we can avoid specifying
the relational atoms y ∈ Wx in the rules (with this reformulation, the rules
of uniformity would become superfluous). Similarly, in logics with absoluteness,
uniformity holds, and moreover w1 6x w2 iff w2 6y w1. Thus, we can avoid spec-
ifying the subscript x in relational atoms y 6x z, and the rule of absoluteness
becomes superfluous. Finally, in the presence of nesting the truth condition for
the conditional operator can be stated in a simpler way:

x  A > B ≡ if there exists z ∈Wx such that z  A, then there exists y ∈Wx

such that y  A and y  �x(A→ B).

Rules based on this truth condition, in addition to the simplification explained
for uniformity, i.e., no relational atoms y ∈ Wx and no rules U1,U2, yield the
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calculus proposed in [20], a proof system sound and complete with respect to
the conditional logic VCU.

4 Structural properties

The height of a derivation is the number of nodes of the longest derivation branch,
minus one. We recall that a rule is height-preserving admissible if whenever its
premiss is derivable, the conclusion is also derivable with no greater derivation
height. A rule is height-preserving invertible if whenever its conclusion is deriv-
able, the premisses are derivable with no greater derivation height. Derivability
with height bounded by n is denoted by `n.

In order to prove admissibility of the structural rules we need a notion of
label substitution given by, for instance, x : A > B[y/x] = y : A > B and
w : �xA[y/x] = w : �yA, extended component-wise to sequents, and a property
of height-preserving substitution: If `n Γ ⇒ ∆, then `n Γ [y/x] ⇒ ∆[y/x].
Admissibility of generalized initial sequents (i.e., sequents of the form x : A,Γ ⇒
∆,x : A in which A is not necessarily atomic) is shown by induction on the weight
of A. We omit the routine proofs, the details of which are similar to those in
[20].

The structural rules of weakening, contraction, and cut of G3P∗ are the
following:

Γ ⇒ ∆
F , Γ ⇒ ∆

WkL
Γ ⇒ ∆
Γ ⇒ ∆,F WkR

F ,F , Γ ⇒ ∆

F , Γ ⇒ ∆
CtrL

Γ ⇒ ∆,F ,F
Γ ⇒ ∆,F CtrR

Γ ⇒ ∆,F F , Γ ′ ⇒ ∆′

Γ, Γ ′ ⇒ ∆,∆′
cut

where F is a relational atom, a labelled formula, or a formula of the form
Czx(A,B). Observe that for WkR, CtrR, and cut we can without loss of generality
omit the case of relational formulas since they never occur in the right-hand side
of sequents. The calculi G3P∗ have the following structural properties:

Theorem 2.

i. All the rules are height-preserving invertible.
ii. The rules of weakening and contraction are height-preserving admissible.

iii. The rule of cut is admissible.

Proof.
i. By induction on the height of the derivation. Invertibility of relational rules,

rules for extensions, L�x, RC and L > immediately follows from admissibility of
weakening. Invertibility of the propositional rules and of R�x is proved as in [17];
invertibility of LC is similar to that of the corresponding rule in [19].

ii. By induction on the height n of the derivation. If n = 0, the premiss of
the contraction rule is an initial sequent, and so is its conclusion. If n > 0, we
look at the last rule (R) applied. If F is not principal in the rule, it suffices to
apply the inductive hypothesis to the premiss of (R), and then (R). If F is the
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principal formula of R, or was introduced by R, we distinguish two subcases. If
(R) is a rule in which the principal formula appears also in the premiss apply
the hypothesis to the premiss, and then the rule. If (R) is a rule in which the
active formulas are subformulas of the principal formula, apply invertibility to
the premiss(es) of the rule, then the inductive hypothesis, and (R).

iii. By primary induction on the weight of the cut formula, and secondary
induction on the sum of heights of the derivations of the premisses of cut. As
usual, we proceed with a case distinction according to the last rule applied. If
at least one of the premisses is an initial sequent, the conclusion of cut is also
a sequent, or can be obtained by easy rule permutations. Similarly, if the cut
formula is not principal in the last rule R applied to one of the premiss of cut,
the conclusion of cut can be obtained by permuting the cut upwards on the
premiss of R, and then applying R again. Finally, if the cut formula is principal
in both rules applied to the premisses of cut, some more complex permutations
are needed. Propositional cases can be found in [20]. We show only the case in
which R > and L > are the rules applied to the left and right premiss of cut
respectively. Consider a derivation ending with

y ∈Wx, y : A,Γ ⇒ ∆,Cyx(A,B)

Γ ⇒ ∆,x : A > B
R >

z ∈Wx, x : A > B,Γ ′ ⇒ ∆′, z : A z ∈Wx, x : A > B,Cyx(A,B), Γ ′ ⇒ ∆′

z ∈Wx, x : A > B,Γ ′ ⇒ ∆′
L >

z ∈Wx, Γ, Γ
′ ⇒ ∆,∆′

cut

Let D1, D2, D3 be the derivations ending with the topsequents above. The cut
is transformed into four cuts of reduced rank as follows. First we have two
cuts, to topmost of reduced height, the second of reduced weight, where D1[z/y]
denotes the derivation resulting from D1 by application of an height-preserving
substitution:

Γ ⇒ ∆,x : A > B z ∈Wx, x : A > B,Γ ′ ⇒ ∆′, z : A

z ∈Wx, Γ, Γ
′ ⇒ ∆,∆′, z : A

cut D1[z/y]

z ∈W 2
x , Γ

2, Γ ′ ⇒ ∆2, ∆′, Czx(A,B)
cut

Second we have the cut of reduced height

Γ ⇒ ∆,x : A > B D3

z ∈Wx, Γ, Γ
′, Czx(A,B)⇒ ∆,∆′

cut

Finally, by cut their conclusions through a fourth cut of reduced weight and
obtain the sequent z ∈W 3

x , Γ
3, Γ ′2 ⇒ ∆3, ∆′2. Admissible weakening steps give

the conclusion of the original cut.
The case of principal cut formula of the form Czx(A,B) is reduced in a similar

way through four cuts, the uppermost of reduces height, and the lowermost of
reduces weight. For principal formula of the form of an indexed modality, the
conversion is the standard one for the necessity modality of labelled calculi.

Thanks to admissibility of cut, it is possible to prove the following:

Theorem 3 (Completeness). If a formula A is valid in preferential models
and extensions, then sequent ⇒ x : A, for an arbitrary label x, is derivable in
the corresponding G3P∗ calculus.
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Proof. By using the known completeness result for extensions of PCL w.r.t.
preferential models and showing that the inference rules of PCL are admissible
in G3P, and that the axioms of PCL and its extensions are derivable in the
corresponding proof system of G3P∗. The proof for PCL is similar to the proof
in [20]. By way of example, we show the derivation of Axiom U1 in G3PVU,
omitting the derivable left premiss of L >.

y : ⊥ · · · ⇒ . . . . . . y : ¬A⇒ y : ¬A . . .
y 6x y, y 6x w, y ∈Wx, . . . , y : ¬A, y : ¬A→ ⊥⇒ . . .

L→

k 6x k, k 6x w, k ∈Wx, w ∈Wx, w ∈Wz, z ∈Wx, w : ¬A,w : ¬A, k : ¬A, k : �x(¬A→ ⊥), x : (¬A > ⊥)⇒ . . .
L�x

k 6x w, k ∈Wx, w ∈Wx, w ∈Wz, z ∈Wx, w : ¬A,w : ¬A, k : ¬A, k : �x(¬A→ ⊥), x : (¬A > ⊥)⇒ . . .
Ref

w ∈Wx, w ∈Wz, z ∈Wx, w : ¬A,w : ¬A,Cwx (¬A,⊥), x : (¬A > ⊥)⇒ . . .
LC

w ∈Wx, w ∈Wz, z ∈Wx, w : ¬A, x : (¬A > ⊥)⇒ . . .
L >

w ∈Wz, z ∈Wx, w : ¬A, x : (¬A > ⊥)⇒ Czx(¬(¬A > ⊥),⊥), Cwz (¬A,⊥)
U1

z ∈Wx, x : (¬A > ⊥)⇒ z : ¬A > ⊥, Czx(¬(¬A > ⊥),⊥)
R >

z ∈Wx, z : ¬(¬A > ⊥), x : (¬A > ⊥)⇒ Czx(¬(¬A > ⊥),⊥)
R¬

x : (¬A > ⊥)⇒ x : ¬(¬A > ⊥) > ⊥ R >

⇒ x : (¬A > ⊥)→ ¬(¬A > ⊥) > ⊥ R→

By Theorem 1, Theorem 3, and the known completeness results for PCL and its
extensions with respect to preferential models, we have:

Corollary 1. Formula A is provable in any of the systems of the conditional
logics cube if and only if ⇒ x : A is derivable in the corresponding labelled
system.

5 Termination and completeness

In this section, we shall give an alternative direct proof of completeness for the
calculi G3P, G3PN, G3PT, G3PW, G3PC and G3PV, G3PVN, G3PVT,
G3PVW, G3PVC (from now on G3PV/N/T/W/C), i.e., the systems without
uniformity and absoluteness.5 The proof proceeds by showing how to construct
a countermodel from failed proof search. We first need to prove that root-first
proof search, which in general is not terminating because of loops, terminates
under the adoption of a suitable strategy.

Example 1. Loop generated by repeated applications of rule L > and LC (only
the right premisses of L > are shown).

...
y 6x z, y ∈Wx, z 6x z, z ∈Wx, y : A, y : �x(A→ B), x : A > B, x : C > D,Czx(C,D), Cyx(C,D)⇒

y 6x z, y ∈Wx, z 6x z, z ∈Wx, y : A, y : �x(A→ B), x : A > B, x : C > D,Czx(C,D)⇒ L >

z 6x z, z ∈Wx, x : A > B, x : C > D,Czx(A,B), Czx(C,D)⇒ LC

z ∈Wx, x : A > B, x : C > D,Czx(A,B), Czx(C,D)⇒ Ref

z ∈Wx, x : A > B, x : C > D,Czx(A,B)⇒ L >

z ∈Wx, x : A > B, x : C > D ⇒ L >

5 The proofs of termination and completeness for systems with Uniformity and Abso-
luteness can be given adopting the reformulation of the calculi from Remark 1. The
proofs for the current versions of the calculi would be unnecessarily complex.
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To ensure termination we introduce the notion of saturated sequent, a sequent to
which all the rules have been applied in a non-redundant way. We then specify a
proof search strategy, blocking the application of the rules to a saturated sequent.

Definition 5. Given a G3PV/N/T/W/C derivation, let B = S0, S1, . . . be a
derivation branch, with Si sequent Γk ⇒ ∆k for k > 0, and S0 sequent⇒ x0 : A0.
Let ↓ Γk/ ↓ ∆k be the union of the antecedents / succedents occurring in the
derivation from S0 up to Sk. A sequent Γ ⇒ ∆ is saturated if it is not an
instance of an initial sequent, and the following conditions are satisfied:

(L→) If x : A→ B occurs in ↓Γ , x : B occurs in ↓Γ or x : A occurs in ↓∆;
(R→) If x : A→ B occurs in ↓∆, x : A occurs in ↓Γ and x : B occurs in ↓∆;6

(Ref) If y occurs in Γ , then y 6x y occurs in Γ ;
(Tr) If y 6x z and z 6x k occur in Γ , y 6x k occur in Γ ;
(L >) If x : A > B and z ∈ Wx occur in ↓Γ , then either z : A occurs in ↓∆ or

Czx(A,B) occurs in ↓Γ ;
(R >) If x : A > B occurs in ↓∆, then z ∈Wx and z : A occur in ↓Γ , for some

z;
(LC) if Czx(A,B) occurs in Γ , then either for some y y 6x z, y ∈ Wx, y :
�x(A → B) occur in ↓ Γ , or for some w such that z 6= w, z 6x and
Cwx (A,B) occur in ↓Γ ;

(RC) If y 6x z, y ∈Wx, z ∈Wx occur in ↓Γ and Czx(A,B) occurs in ↓∆, then
either y : A or y : �x(A) occurs in ↓∆;

(L�x) If y : �xA occurs in ↓Γ , z 6x y and z ∈Wx occur in Γ , and z : A occurs
in ↓Γ ;

(R�x) If y : �xA occurs in ↓∆, then either for some z, z 6x y occurs in Γ and
z : A occurs in ↓∆, or for some w 6= y, y 6x w occurs in Γ and w : �xA
occurs in ↓∆;

(N) If x occurs in Γ , y ∈Wx occurs in Γ , for some y;
(T) If x occurs in Γ , x ∈Wx occurs in Γ ;
(W) If y ∈Wx occurs in Γ , x 6x y occurs in Γ ;
(C) If y 6x x and y ∈Wx occur in Γ , y = x occurs in Γ ;
(Ref=) If x occurs in Γ , then x = x occurs in Γ ;
(Repl) If y = x occurs in Γ , and if some formulas At(y) occur in Γ , formulas

At(x) occur in Γ ;
(Nes) If y ∈Wx and z ∈Wx occur in Γ , y 6x z or z 6x y occur in Γ .

In Example 1, the saturation condition (LC) blocks the application of the rule
to formula Cyx(C,D), since y 6x z and Czx(C,D) occur in the antecedent. In-
tuitively, rule LC is not applied to a formula Cyx(C,D) if y has been generated
by a previous application of LC to the same Cx(C,D), possibly labelled with a
different label, i.e., if for some z, formulas y 6x z and Czx(C,D) occur in a lower
antecedents. A similar saturation condition is needed for R�x.

Definition 6. In root-first proof search for ⇒ x0 : A0, apply the following:

6 The saturation conditions for the other propositional rules are standard [20].
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1. Rules which do not introduce new labels are applied before rules which do
introduce new labels;

2. A rule R cannot be applied to a sequent if the sequent already satisfies the
saturation condition associated to R.

We need to show that every branch of a derivation starting with ⇒ x0 : A0 and
built in accordance with the strategy is finite. Since labels can be attached only
to the finitely many subformulas of formula A0, it suffices to prove that only
a finite number of labels can occur in the branch. To this aim, we construct
an acyclic graph with the labels occurring in the derivation, and show that the
graph is finite: more precisely, that every node of the graph has a finite number
of immediate successors, and that each branch of the graph is finite.

Definition 7. Given a derivation branch as in Definition 5, let x, y be labels
occurring in Γ . Let k(x) = min{t | x occurs in Γt}. We say that “x generates
y”, in symbols xRy, if for some t > k(x), k(y) = t and y ∈Wx occurs in Γt.

By inspection on the rules of G3PV/N/T/W/C and by definition of R we have
that the relation R does not contain any cycles and forms a graph having at the
root label x0, and that all the labels occurring in the derivation occur in the
graph. The notion of conditional degree, needed to prove Lemma 2, corresponds
to the level of nesting of the conditional operator >.

Definition 8. The conditional degree of a formula A is defined as: d(⊥) =
d(p) = 0; d(A ◦ B) = d(Cyx(A,B)) = max(d(A), d(B)) for ◦ = {∧,∨,→};
d(�kA) = d(A), and d(A > B) = max(d(A), d(B)) + 1. For x a label in a
derivation, d(x) = max{d(C) | x : C occurs in ↓Γ ∪ ↓∆}.

Lemma 1. Every node in the graph generated by the relation R has a finite
number of immediate successors.

Proof. By definition, label y is generated from x if there exists a t such that y
does not occur in Γs for any s < t, and y ∈ Wx occurs in Γt. We need to prove
that only a finite number of formulas y ∈Wx can be introduced from x.

Formulas y ∈ Wx are introduced in root-first proof search by application
of rules for semantic conditions, R >, LC or R�x. In the first cases, y ∈ Wx is
introduced by N or T.7 By the saturation conditions, these rules can be applied
at most once to a label x; thus, they generate at most 2 new labels. If y ∈Wx is
introduced by R >, the rule must have been applied to some x : C > D occurring
in ∆t−1. By the saturation condition, rule R > can be applied at most once to
each formula x : C > D, and the number of such formulas linearly depends on
d(A0), the degree of formula A0 at the root of the tree. Similarly, rule R�x is
applied to some w : �A in ↓Γt−1, generating a new y ∈ Wx. Formulas w : �A
are introduced by RC and R >, which do not generate loops. The saturation

7 Observe that Repl does not introduce new labels; however, it could introduce new
link between the nodes of the graph. In the presence of Repl the structure generated
by R is a graph; otherwise, it is a tree.
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condition (R�x) ensures that no loops arise with formulas L�x. Thus, only a
finite number of labels can be introduced. In case y ∈Wx is introduced by LC the
situation is more complex. As shown in Example 1, rule LC might interact with
rule L > generating a large number of new labels, however, thanks to the proof
search strategy, their number is finite. We consider a case of loop more complex
than the one in Example 1: suppose formulas x : E1 > F1, . . . , x : Ek > Fk occur
in the succedent of a sequent. Then, for some z ∈ Wx in the antecedent, we
can apply k times rule L >, generating k formulas Czx(E1, F1), . . . , Czx(Ek, Fk).
Then, rule LC can be applied to these formulas, generating k new labels z1 ∈
Wx, . . . , zk ∈ Wx, with z1 6 z, . . . , zk 6x z. Moreover, the rule introduces in
the antecedent formulas z1 : E1, . . . , zk : Ek and z1 : �x(E1 → F1), . . . , zk :
�x(Ek → Fk). Rule L > can be applied to these labels, generating k · k new
formulas:

Cz1x (E1, F1), . . . , Cz1x (Ek, Fk)
...

...
Czkx (E1, F1), . . . , Czkx (Ek, Fk)

Application of LC to these formulas would in principle generate k ·k new labels;
however, the saturation condition (LC) blocks the application of the rule to all
formulas. For 1 6 i 6 k and 1 6 j 6 k, consider formula Czix (Ej , Fj). It holds
that formulas zi 6x z and Czx(Ej , Fj) occur in lower antecedents/succedents,
satisfying the saturation condition. Thus, for each y ∈Wx, and for k >-formulas
occurring in the antecedent k · k new labels are generated. ut

Lemma 2. Every branch in the graph generated by the relation R is finite.

Proof. By induction on d(x), for x a label in the graph. We show that the length
of an arbitrary chain starting from x is bounded by the degree of the formula it
labels. If d(x) = 0, the formulas labelled with x are all atomic or propositional
formulas, and no formula y ∈ Wx needs to be introduced. If d(x) > 0, there
must be some formula x : A > B occurring in ↓ Γ ∪ ↓ ∆. Thus, there is at
least one chain of length greater than zero in the branch, and some label y such
that xRy. Observe that y can occur only as label of formulas of smaller degree
than the formulas labelled with x. More precisely, for all formulas x : A > B
with d(A > B) 6 d(x) occurring in ↓ Γ ∪ ↓ ∆, it holds that for all formulas
y : �x(A → B), d(y) < d(x), i.e., all labels introduced by combination of R >,
L >, LC, RC and R�x are label of formulas with a smaller degree than formulas
labelled with x. ut

It follows from Lemmas 1 and 2 that the acyclic graph is finite. Since the formulas
occurring in a derivation are subformulas of the formula A0, and since the number
of labels occurring in a derivation is finite, proof search terminates.

Theorem 4 (Termination). Proof search in G3PV/N/T/W/C built in accor-
dance with the proof search strategy for a sequent ⇒ x0 : A0 always comes to
an end in a finite number of steps, and each sequent occurring as a leaf of the
derivation tree is either an initial sequent or a saturated sequent.
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Termination of proof search allows to prove completeness by constructing a coun-
termodel from a saturated sequent.

Theorem 5. Let Γ ⇒ ∆ be a saturated sequent in a G3PV/N/T/W/C deriva-
tion. There exists a finite countermodel MB satisfying all formulas in ↓Γ and
falsifying all formulas in ↓∆.

Proof. The countermodelMB is constructed as follows:WB = {x | x occurs in ↓
Γ∪ ↓∆}; for all x ∈ WB, Wx = {y | y ∈ Wx occurs in Γ}; 6x= {〈y, z〉 | y 6x
z occurs in Γ}; for p atomic, JpK = {x ∈WB | x : p occurs in Γ}.

It is immediate to verify that the relation 6x satisfies the properties of re-
flexivity and transitivity; thus, MB is a model for PCL. In the presence of N,
T, W, C and Nes, the saturation conditions associated to these rules ensure that
the model MB is a model for the corresponding logic.8

Let ρ be the realization ρ(x) = x. We show that 1) if F occurs in ↓ Γ ,
MB �ρ F , and 2) if F occurs in ↓∆,MB 2ρ F .9. The two claims are proved by
cases, and by induction on the weight of F . If F is a relational atom y ∈Wx or
y 6x z or a formula x : p, claim 1 (and claim 2) hold by definition of the model.
The propositional cases and the cases of F = x : A > B and F = y : �xA
follow applying the inductive hypothesis. By way of example, we prove claim 2
for F = x : A > B. Suppose that formula x : A > B occurs in ↓ ∆. By the
saturation condition associated to R >1, for some label z, z ∈ Wx and z : A
occur in ↓ Γ . Thus, by inductive hypothesis, MB �ρ z : A. Moreover, by the
saturation conditions associated to Ref and R >2, either z : A occurs in ↓∆, or
z : �x(A → B) occurs in ↓∆. By inductive hypothesis, either MB 2ρ z : A or
MB 2ρ z : �x(A→ B). Thus, by definition MB 2ρ x : A > B. ut

As a consequence of Theorem 4 and 5 we have that any underivable sequent
originates, in a finite number of steps, a saturated sequent which is used to
define a countermodel. We therefore have:

Corollary 2 (Strong completeness). Any sequent Γ ⇒ ∆ is either derivable
in G3PV/N/T/W/C or has a (finite) countermodel in the corresponding class of
models.

Completeness of the proof systems is an obvious consequence:

Theorem 6 (Completeness). If A is valid in one of the logics without uni-
formity and absoluteness, sequent ⇒ x : A is derivable in the corresponding
G3PV/N/T/W/C calculus.

8 In case of centering it is convenient to define worlds as equivalence classes, to account
for formulas x = y. Thus, [x] = {y | x = y occurs in ↓ Γ} and W c = {[x] |
y occurs in ↓Γ∪ ↓∆}. Centering follows from the saturation condition (C).

9 In case of centering, we also need to show that if [x] �ρ A and y ∈ [x], then [y] �ρ A,
and that if [x] �ρ A then x : A occurs in ↓ Γ . The proof follows from admissibility
of Repl in its generalized form [20]
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Completeness, along with termination, allow to define a decision procedure for
the logics based on the labelled calculi. However, the resulting decision proce-
dure would be of at least NEXPTIME complexity - thus, far from the known
complexity bounds for the logics.10

6 Conclusion and related work

In this work, we introduced a family of uniform labelled calculi that capture in a
modular way the conditional logic PCL and its extensions, including Lewis’ coun-
terfactual systems. The calculi internalise the semantics of preferential models.
This semantics, studied, among other, by Lewis and Burgess [15, 5], makes ex-
plicit reference to the comparative plausibility ordering among worlds, implicitly
assumed in Lewis’s sphere models.

Several labelled proof system for conditional logics have been defined in the
literature. A recent approach, based on the methodology of neighbourhood se-
mantics of [18] and [19], is presented in [10] and gives a uniform family of labelled
calculi for PCL and its extensions. Neighbourhood semantics is a generalization
of Lewis’s sphere semantics; whereas the latter is adequate for V, neighbourhood
semantics covers also weaker conditional logics. When compared to labelled cal-
culi based on neighbourhood semantics, the calculi G3P∗ appear to be simpler:
they use just one set of labels, whereas the calculi based on neighbourhood se-
mantics need two sets of labels, for worlds and for neighbourhoods. It turns out
that the preferential semantics already used to define labelled sequent calculi for
Lewis’s conditional logic VC in [20], is sufficiently expressive to treat uniformly
also the weaker extensions of PCL.

Preferential models have already been used in [9] to define tableau calculi
for PCL and all its extensions, but with the important difference, with respect
to our approach, of the addition of the Limit Assumption11 and the use of a
strict relation of comparative similarity. Another semantically inspired approach
can be found in [21], presenting a sequent calculus for system CK and some of
its extensions. These logics are the weakest conditional systems, and they are
weaker than the logics considered in this article.

Internal calculi (i.e., proof systems in which sequents have a direct formula
interpretation) for conditional logics have also been defined: in [2] nested sequent
calculi for CK and some of its extensions are devloped, whereas in [1] a nested
and optimal calculus for counterfactual logic V can be found (refer to [11] for
cases of extensions). Finally, display calculi for CK have been introduced recently
in [6].

With respect to the labelled proof systems G3P∗, the internal calculi are
less modular: they capture weaker logics, such as CK, or subfamilies of the
logics considered in this article, such as V and its extensions. In particular, the
definition of internal calculi for PCL seems challenging: up to now, the only
internal proof system known for it is the resolution calculus presented in [16].

10 Refer to [7] for complexity results for conditional logics.
11 The Limit Assumption states that there are no infinite descending 6x-chains.
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The labelled approach treats in a modular way both PCL and V. The challenge of
defining labelled calculi on the basis of preferential semantics lies in identifying a
decomposition of the conditional operator in terms of simpler operators directly
treatable by the sequent calculus rules. Here, this is done by introducing the
indexed operator �xA, similarly to [9, 20], and the binary operator Czx(A,B).

As underlined in Remark 1, by dropping the requirement of modularity it
is possible to have simpler labelled calculi for sub-families of logics. We plan
to define such calculi and analyse their termination in root-first proof search,
to investigate the possibility of a better complexity bound for the correspond-
ing logics. Furthermore, following [9], simpler rules could be defined also for
G3P with the introduction of Limit Assumption on preferential models. Fi-
nally, we plan to study the relationship of G3P

∗
with labelled sequent calculi

for conditional logics based on neighbourhood models [10]. Via the correspon-
dence between neighbourhood and preferential structures [3], we conjecture that
the two families of calculi can be proved equivalent. It would be interesting to
know which family of calculi allows for the optimal decision procedure.
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