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Abstract
Estimating the relative abundance (prevalence) of different population segments is a 
key step in addressing fundamental research questions in ecology, evolution, and 
conservation. The raw percentage of individuals in the sample (naive prevalence) is 
generally used for this purpose, but it is likely to be subject to two main sources of 
bias. First, the detectability of individuals is ignored; second, classification errors may 
occur due to some inherent limits of the diagnostic methods. We developed a hidden 
Markov (also known as multievent) capture–recapture model to estimate prevalence 
in free‐ranging populations accounting for imperfect detectability and uncertainty in 
individual's classification. We carried out a simulation study to compare naive and 
model‐based estimates of prevalence and assess the performance of our model 
under different sampling scenarios. We then illustrate our method with a real‐world 
case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus fa‐
miliaris) hybrids in a wolf population in northern Italy. We showed that the prevalence 
of hybrids could be estimated while accounting for both detectability and classifica-
tion uncertainty. Model‐based prevalence consistently had better performance than 
naive prevalence in the presence of differential detectability and assignment proba-
bility and was unbiased for sampling scenarios with high detectability. We also 
showed that ignoring detectability and uncertainty in the wolf case study would lead 
to underestimating the prevalence of hybrids. Our results underline the importance 
of a model‐based approach to obtain unbiased estimates of prevalence of different 
population segments. Our model can be adapted to any taxa, and it can be used to 
estimate absolute abundance and prevalence in a variety of cases involving imperfect 
detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of 
breeders, and prevalence of infected individuals).
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1  | INTRODUCTION

The relative abundance (prevalence) of different population seg-
ments is a fundamental piece of information to understand pro-
cesses in ecology, evolution, and conservation. For example, the 
prevalence of infected individuals is critical to understand the mech-
anisms driving disease dynamics (Jennelle, Cooch, Conroy, & Senar, 
2007; Moreno‐Torres, Wolfe, Saville, & Garabed, 2016); the preva-
lence of key demographic categories (e.g., mature females) is needed 
to assess the viability of endangered populations (Caswell, 2000) 
and when hybridization represents a threat, the prevalence of ad-
mixed individuals is needed to evaluate the appropriate management 
option (Allendorf, Leary, Spruell, & Wenburg, 2001).

However, estimating prevalence for wildlife populations is chal-
lenging and the raw percentage of individuals of a class in the sample 
(naive prevalence) is often used as a proxy (Jennelle et al., 2007). 
However, this approach overlooks two main sources of bias. First, 
imperfect and/or heterogeneous detection leads to biased abun-
dance estimates when it is ignored (Cubaynes et al., 2010; Jennelle 
et al., 2007). Second, uncertainty in the classification of individuals 
(e.g., diseased/healthy, breeder/nonbreeder, male/female) is com-
mon in wildlife population studies where individuals are assigned to 
a specific status based on imperfect clues. Examples include deter-
mining sex or breeding status based on the behavior of individuals 
(Genovart, Pradel, & Oro, 2012) or establishing health status from 
the observation of outer symptoms only (Conn & Cooch, 2009). 
Another less explored but intriguing situation is assigning individuals 
to genetic classes (subpopulations) based on a limited number of ge-
netic markers (Vähä & Primmer, 2006).

Reliable estimates of wildlife abundance can be obtained by 
correcting field counts by the proportion of undetected individuals 
(i.e., the ratio between the number of observed individuals and the 
probability of detection; Nichols, 1992). The probability of detection 
is usually estimated by using capture–recapture models (CR) from a 
sample of individual encounter histories (Otis, Burnham, White, & 
Anderson, 1978). In particular, multistate CR models estimate the 
probability of detection for different classes of individuals by as-
signing individuals to static or dynamic states. However, multistate 
CR models assume the correct assignment of all individuals to their 
state (Lebreton, Burnham, Clobert, & Anderson, 1992). Multievent 
models relax this assumption by acknowledging the uncertainty of 
the observation process in the model structure (Pradel, 2005). In 
these models, a hidden biological process (e.g., survival or dispersal) 
is modeled as a Markov chain of states (Pradel, 2005). The observa-
tion process (the data) arises from the underlying states through the 
probability of detection. To include uncertainty in state assignment, 
the observation process is further split into two steps: detection 
and state assignment conditional on detection (Gimenez, Lebreton, 
Gaillard, Choquet, & Pradel, 2012; Pradel, 2005). This formulation 
includes a probability of assignment (besides the probability of de-
tection and the probabilities associated with the biological process), 
allowing for the inclusion of individuals classified with uncertainty 
(Pradel, 2005).

Multievent models have been used to estimate a variety of popu-
lation parameters in the presence of uncertainty in state assignment. 
Examples of that include the rates of entry and exit from disease states 
(Conn & Cooch, 2009), the probability of skipping reproduction (Sanz‐
Aguilar et al., 2011), and the probability of survival of different age 
classes (Gervasi et al., 2017). However, multievent models have never 
been used to estimate the abundance of individuals in different states 
because the numerator of the abundance estimator (the number of 
observed individuals) is contaminated by uncertain observations.

Here, we develop a capture–recapture approach to estimate the 
prevalence of admixed individuals (hereafter “hybrids”) in a population 
while simultaneously accounting for both imperfect detection and clas-
sification uncertainty. Specifically, we show how to use the multievent 
CR framework to estimate abundance of individuals in different states 
(i.e., “Parental,” “Hybrid,” “Dead”) in the presence of uncertainty in 
state assignment. We first use multievent models to estimate survival 
and detection parameters; second, we use the Viterbi algorithm to as-
sign the uncertain observed individuals to the most likely state (Rouan, 
Gaillard, Guédon, & Pradel, 2009; Zucchini, MacDonald, & Langrock, 
2009), and lastly, we estimate prevalence via a Horvitz–Thompson‐like 
estimator combined with a bootstrapping procedure to produce stan-
dard error and confidence intervals (Davison & Hinkley, 1997).

We assess the importance of incorporating detectability and 
uncertainty in state assignment by comparing the performance of 
model‐based and naive prevalence under different scenarios. The ac-
curacy of CR parameters’ estimators depends on the recapture rate 
and on the number of capture occasions (Otis et al., 1978). Increasing 
the detectability and/or the number of occasions requires different 
sampling strategies and generates different costs in terms of financial 
and human resources (Lieury et al., 2017). Therefore, we also explore 
how different sampling strategies may affect the model performance.

Despite the increasing attention that researchers are devoting to 
hybridization cases (Schwenk, Brede, & Streit, 2008; Todesco et al., 
2016), there have been only few attempts to estimate prevalence 
of hybrids in wild populations (Vaz Pinto, Beja, Ferrand, & Godinho, 
2015). We illustrate our method with a case study by estimating the 
prevalence of wolf (Canis lupus) × dog (Canis lupus familiaris) hybrids 
in a wolf population in northern Italy. This is a case of anthropogenic 
hybridization (i.e., the interbreeding of individuals from genetically 
distinct populations due to human action; Allendorf et al., 2001) 
and is considered a major threat to wolf genomic integrity (Boitani, 
2000). Therefore, accurately estimating the prevalence of hybrids 
in wolf populations is a priority to elaborate conservation strate-
gies (Hindrickson et al., 2017). We show that in this case using naive 
prevalence as a proxy underestimates the prevalence of hybrids.

2  | METHODS

2.1 | Hidden Markov model

We assumed that animals are individually recognized at discrete en-
counter occasions, therefore obtaining an encounter history for each 
individual. Individuals can be in one of three possible nonobservable 
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states: alive and parental (P), alive and hybrid (H), or dead (D). We 
underline that hereafter the term “hybrid” refers to all categories of 
admixture and not only to first‐generation hybrids. Upon its first en-
counter, an individual has a probability πp to be a parental and the 
complementary probability πh = 1 − πp to be a hybrid. The initial state 
probabilities describe the probability that an individual is in one or 
another state when first encountered. Then, the states change over 
time according to a first‐order Markov process, with the state pro-
cess being governed by apparent survival probabilities φp and φh. 
More specifically, the state process, which summarizes the underly-
ing biological process, is represented by a transition probability ma-
trix with states at time t in rows (“Parental,” “Hybrid,” “Dead”) and 
t + 1 in columns (“Parental,” “Hybrid,” “Dead”):

where parameter φp (resp. φh) is the probability that an individual 
alive and in state “Parental” (resp. “Hybrid”) at time t is still alive in 
the study area and in state “Parental” (resp. “Hybrid”) at time t + 1 
and corresponds to the apparent survival probability of parental 
(resp. “Hybrid”) individuals.

The second time series (or event process) is generated from 
the states at each occasion and describes the observation pro-
cess. Individuals are detected at time t with probability of detec-
tion pp for parental and ph for hybrid individuals. Upon detection, 
an attempt is made of assigning the individuals to a hybridization 
state based on genetic and/or morphologic diagnostic features 
and there is a probability δ that an individual is assigned to the 
state “Parental” or “Hybrid”. If the diagnostic clues are not suf-
ficient to ascertain the hybridization state, the individual is clas-
sified as uncertain with the complementary probability 1−δ. The 
observation process is summarized by a matrix with states in rows 
(“Parental,” “Hybrid,” “Dead”) and events in columns (0 = “Not 
detected,” 1 = “Detected as parental,” 2 = “Detected as hybrid,” 
3 = “Detected as uncertain”):

In the first row, the (1 − pp) term is the probability that an 
individual in state “Parental” is not detected, and phδh is the 
probability that an individual in state “Parental” is detected 
and assigned to the category “Parental” while pp(1 − δp) is the 
probability that an individual in state “Parental” is detected (pp) 
and not assigned to any category (1 − δp). Note that an individ-
ual in state “Parental” cannot be detected as a hybrid; hence, 
the corresponding probability is 0. The second row is similar to 
the first one, except that it refers to the hybrid individuals. In 
the third row, all individuals are nondetected because they are 

dead. Equivalently, the event process can be decomposed as the 
product of a detection matrix by an assignment matrix which ex-
presses the probability that an individual is assigned to a state 
given that it has been detected:

when an animal is first encountered, the capture process is not 
modeled because an animal must be encountered at least once to 
enter the dataset, but the state ascertainment remains valid.

To illustrate the calculation of an encounter history, let us con-
sider the case of a 3‐year CR experiment. For instance, the en-
counter history “303” denotes an individual encountered at the 
first and third occasions but not at the second occasion. The state 
of this individual is never assigned. Assuming parameters are con-
stant, we have

On the right side of the equation, the first element of the 
sum is the probability of the observed history if the underlying 
state is “Hybrid”, while the second element is the probability of 
the observed history given that the underlying state is “Parental”. 
The likelihood of the entire dataset is obtained as the product 
of the probabilities of all individual encounter histories assum-
ing independence. In this paper, estimates of initial states (πp 
and πh), apparent survival (φp and φh), detection (pp and ph), and 
assignment probabilities (δp and δh) are obtained by maximizing 
the likelihood function. Different models can be built by allowing 
the parameters to vary according to, for example, state, time, or 
group of individuals classified based on discrete variables (e.g., 
age class or sex).

2.2 | Abundance and prevalence estimation

Naive prevalence (Pnaive) at a given occasion is calculated as the pro-
portion of observed hybrids in the sample:

where nh is the number of observed hybrids and np is the number of 
observed parentals.

Here, we propose a model‐based prevalence estimate (Pmodel) as 
the ratio between hybrids’ abundance in the population and total 
population abundance. Assuming that marked and unmarked indi-
viduals have the same probability of detection, total abundance at a 
given occasion ( ̂Ntot) is then estimated with the Horvitz–Thompson 
estimator (McDonald & Amstrup, 2001) as:
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where nh is the number of observed hybrids, and np is the number 
of observed parental individuals, p̂h is the recapture probability of 
hybrids, and p̂p is the recapture probability of parental individuals. 
Model‐based prevalence is then estimated as: 

The main difficulty is therefore in determining the number of 
observed parental individuals and hybrids, because the uncertain 
individuals have to be assigned to one of the two states (“Hybrid” 
or “Parental”). To do so, we use the Viterbi algorithm (Zucchini et al., 
2009) which, given any observation sequence (here, the encoun-
ter histories) and the parameters estimated by the hidden Markov 
model, finds the most probable underlying sequence of states that 
has generated the observed data (Rouan et al., 2009). Once the 
uncertain observations are assigned to the most likely state, the 
number of observed hybrid and parental individuals can be recon-
structed and the formula can be used to estimate prevalence. We 
obtain confidence intervals for the hybrids’ prevalence by using a 
nonparametric bootstrap procedure (Davison & Hinkley, 1997).

2.3 | Evaluation of model performance and 
sampling strategy

To test the model performance, we generated encounter histo-
ries with known prevalence mimicking our case study on wolves 
and dogs in the Northern Apennines (see next section) and com-
pared model‐based prevalence and naive prevalence. Using the 
R (R Core Team, 2017) package HMM (Himmelmann, 2010), we 
simulated a cohort of 100 individuals that we split into 2 states 
“Hybrid” and “Parental”. For all the scenarios, we set the initial 
proportion of wolves πp = 0.7 and initial proportion of hybrids 
πh = 1 − πp = 0.3 as in our case study sample (see next section). 
Using values estimated by Caniglia et al. (2012) for the same wolf 
population, we considered state‐dependent survival (constant 
over time) with parental survival (φp = 0.8) higher than hybrid sur-
vival (φh = 0.7). We then considered three hypothetical scenarios 
for detectability and assignment probability: (see Supporting in-
formation Table S1 for a complete list of parameters for the three 
scenarios) (1) state‐dependent detectability (pp > ph) and homo-
geneous assignment probability, (2) homogeneous detectabil-
ity and state‐dependent assignment probability (δp > δh) and (3) 
homogeneous detectability and assignment probability. Within 
these three main scenarios, we evaluated the effect of lower 
and higher sampling intensities by comparing sampling strate-
gies with low and high detectability and with 5 and 10 capture 
occasions. We simulated 100 datasets for each combination of 
parameters within the three main scenarios. We fitted constant 
and state‐dependent models to the simulated data, and we cal-
culated the relative bias and the root mean squared error (RMSE) 
for the model‐based and the naive prevalence estimators. We 

also calculated the confidence interval coverage for the model‐
based estimator of prevalence.

2.4 | Case study

We collected fresh wolf scats in the Appennino Tosco‐emiliano 
National Park from August 2016 to May 2017. We extracted, 
amplified and sequenced DNA from the scats following the pro-
cedures described in Caniglia, Fabbri, Galaverni, Milanesi, and 
Randi (2014). We identified wolves, dogs and putative hybrids 
based on the analysis of molecular markers listed in Randi et al. 
(2014) and using Bayesian genetic clustering procedures imple-
mented in STRUCTURE 2.3.4 (Falush, Stephens, & Pritchard, 
2003; Pritchard, Stephens, & Donnelly, 2000). We distinguished 
wolves, hybrids, and uncertain individuals based on their mem-
bership proportions to the wolf cluster (qwolf) and 90% Bayesian 
credible intervals (BCI). We set the thresholds for the three cat-
egories based on the genetic clustering analyses performed on 
simulated genotypes by Pacheco et al. (2017), see Fig. S1 in the 
Supplementary Materials of Pacheco et al. (2017). We considered 
as pure wolves those individuals whose qwolf was included in the 
range of qwolf values of simulated pure wolves genotypes and did 
not overlap with that of simulated backcrosses (hybrid × paren-
tal). We classified as uncertain those individuals whose qwolf was 
included in the range in which the qwolf values of simulated pure 
wolves and backcrosses to wolves (first and second generation) 
overlapped. Finally, we considered as hybrids those individuals 
whose qwolf overlapped with the range of qwolf values of simulated 
backcrosses (first and second generation) and/or hybrids (first and 
second generation). We additionally considered as hybrids those 
individuals which presented a Y haplotype of canine origin or the 
deletion at the K‐locus (Caniglia et al., 2013; Randi et al., 2014) 
regardless of their qwolf values.

The CR data were pooled in 2‐month capture occasions, with 
a total of five capture occasions. Thirty‐nine individuals were 
sampled (19 wolves, 12 hybrids, 8 uncertains based on their qwolf 
value). We applied the multievent CR model described above to 
test for differences in detectability and assignment probability 
between hybrid and parental individuals and to estimate preva-
lence of wolf × dog hybrids in the population. Since the hybrid-
ization assessment is performed only once for each genotype, 
we constrained the assignment probability to be estimated only 
upon first capture (see the models details in the Supporting in-
formation). We fitted models with state‐dependent and constant 
parameters and a combination of the two. The models were fitted 
in the E‐SURGE software (Choquet, Rouan, & Pradel, 2009) and 
the Viterbi algorithm was implemented using the R (R Core Team, 
2017) package HMM (Himmelmann, 2010). We used the Akaike 
Information Criterion (AIC) for model selection, considering mod-
els within ΔAICc ≤ 2 as the most supported and used model aver-
aging to account for uncertainty in model selection (Burnham & 
Anderson, 2002).

Pmodel=

̂Nh

̂Np+
̂Nh
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3  | RESULTS

3.1 | Evaluation of model performance

Naive prevalence had higher RMSE and percent relative bias than 
model‐based prevalence in scenario 1 (state‐dependent detectabil-
ity and homogeneous assignment probability; Figure 1, Tables 1,2). 
The same occurred in scenario 2 (homogeneous detectability and 
state‐dependent assignment probability; Supporting information 
Figure S1 and Tables S2, S3). Naive and model‐based prevalence 
had similar RMSE and relative bias only in scenario 3 (homogeneous 
detectability and assignment probability; Supporting information 
Figure S1 and Tables S4, S5).

The bias associated with model‐based prevalence tended to 0 in 
scenarios with high detectability (Tables 1,2; Supporting information 
Tables S2, S5). Interestingly, the bias associated with naive preva-
lence had the opposite behavior, as it increased at higher detectabil-
ity (Tables 1,2; Supporting information Tables S2–S5). The negative 
bias in naive prevalence is due to the simulation settings for the true 
detection and assignment probabilities, and in particular to the fact 
that pp > ph for scenario 1 and δp > δh for scenario 2. Switching the 
true values for detectability in scenario 1 and for assignment prob-
ability in scenario 2 would cause naive prevalence to be positively‐
biased. The bias associated to the estimates of apparent survival, 
detectability, and probability of assignment was negligible for all sce-
narios (Figures 2–4; Supporting information Figures S3–S9), while 

the estimates of the initial state probability were slightly biased 
for scenario 1 (Figure 5). Estimates of parameters for the category 
with fewer individuals (in this case, the hybrids) were less precise, as 

F I G U R E  1   Scenario 1 of simulation (state‐dependent detectability and homogeneous assignment probability). Sampling strategies with 
5 (upper panels) versus 10 (lower panels) capture occasions and low (left‐column panels) versus high (right‐column panel) detectability. True 
prevalence is represented as a dashed line while the 100 values of naive and model‐based prevalence are displayed in the white and gray 
boxplots, respectively

TA B L E  1   Scenario 1 of simulation (state‐dependent 
detectability and homogeneous assignment probability)

Occ. 1 Occ. 2 Occ. 3 Occ. 4 Occ. 5

Root mean squared error

Low detectability

Naive 0.07 0.14 0.23 0.23 0.30

Model‐based 0.30 0.15 0.06 0.07 0.02

High detectability

Naive 0.26 0.36 0.48 0.41 0.48

Model‐based 0.04 0.02 0.00 0.01 0.00

Percent relative bias

Low detectability

Naive −0.03 −0.04 −0.05 −0.05 −0.05

Model‐based 0.05 0.04 0.03 0.03 0.01

High detectability

Naive −0.05 −0.06 −0.07 −0.06 −0.07

Model‐based 0.02 0.01 0.00 0.01 0.00

Note. Root mean squared error and relative bias of naive and model‐
based prevalence for sampling strategies with 5 capture occasions (Occ).
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showed by the boxplot larger ranges (Figures 2–4; Supporting infor-
mation Figures S2–S10).

Confidence interval coverage was always ≥0.89 for all scenarios 
with 5 sampling occasions (Table 3; Supporting information Tables 
S6, S7). For scenarios with 10 occasions (Table 4; Supporting infor-
mation Tables S8, S9) coverage decreased after the 7th–8th occa-
sion. This is because the low number of individuals present at the 

end of the study (due to a low apparent survival) affects the accuracy 
of the estimates (Figure 1; Supporting information Figures S1, S2).

3.2 | Evaluation of sampling strategies

The performance of model‐based prevalence improved more at 
higher detectability than with an increasing number of capture 

TA B L E  2   Scenario 1 of simulation (state‐dependent detectability and homogeneous assignment probability)

Occ. 1 Occ. 2 Occ. 3 Occ. 4 Occ. 5 Occ. 6 Occ. 7 Occ. 8 Occ. 9 Occ. 10

Root mean squared error

Low detectability

Naive 0.14 0.22 0.21 0.33 0.33 0.30 0.40 0.36 0.26 0.78

Model‐based 0.1 0.04 0.05 0.01 0.01 0.00 0.00 0.00 0.02 0.02

High detectability

Naive 0.23 0.51 0.37 0.45 0.49 0.50 0.39 0.36 0.16 0.16

Model‐based 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Percent relative bias

Low detectability

Naive −0.04 −0.05 −0.05 −0.06 −0.06 −0.05 −0.06 −0.06 −0.05 −0.03

Model‐based −0.03 −0.02 −0.02 −0.01 −0.01 −0.00 −0.00 −0.01 −0.01 −0.01

High detectability

Naive −0.05 −0.07 −0.06 −0.07 −0.07 −0.07 −0.06 −0.06 −0.04 −0.04

Model‐based 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00

Note. Root mean squared error and relative bias of naive and model‐based prevalence for sampling strategies with 10 capture occasions (Occ).

F I G U R E  2   Scenario 1 of simulation 
(state‐dependent detectability and 
homogeneous assignment probability). 
Boxplots of 100 simulated survival 
estimates for parentals (left two panels) 
and hybrids (right two panels) for each 
sampling strategy. Sampling strategies 
with low detectability are in the top 
row, and sampling strategies with high 
detectability are in the bottom row. 
Estimates obtained with sampling 
strategies with 5 and 10 capture occasions 
are compared in each panel
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occasions. Specifically, in scenario 1 the RMSE and the relative 
bias approached 0 for both sampling strategies with 5 (Table 1) 
and 10 capture occasions (Table 2) when detectability changed 

from low to high. In contrast, in sampling strategies with low 
detectability, the RMSE and the relative bias of model‐based 
prevalence decreased less rapidly from 5 to 10 capture occa-
sions (Figure 1, Tables 1,2). We observed the same pattern both 
in scenario 2 (Supporting information Figures S1, S2, Tables S2, 
S3) and in scenario 3, although in the latter the bias was small re-
gardless of the sampling strategy (Supporting information Tables 
S4, S5).

3.3 | Case study

The best‐supported model had constant parameters (Table 5). 
Models with state‐dependent apparent survival, detectability, 
and probability of assignment were also supported (ΔAICc < 2). 
The models with state‐dependent probability of assignment were 
not identifiable due to the reduced sample size, and we discarded 
them (see Supporting information Table S10 for a complete list 
of fitted models). According to the model‐averaged estimates of 

F I G U R E  3   Scenario 1 of simulation 
(state‐dependent detectability and 
homogeneous assignment probability). 
Boxplots of 100 simulated detectability 
estimates for parentals (left two panels) 
and hybrids (right two panels) for each 
sampling strategy. Sampling strategies 
with low detectability are in the top 
row, and sampling strategies with high 
detectability are in the bottom row. 
Estimates obtained with sampling 
strategies with 5 and 10 capture occasions 
are compared in each panel

F I G U R E  4   Scenario 1 of simulation (state‐dependent 
detectability and homogeneous assignment probability). Boxplots 
of 100 simulated assignment probability estimates. Sampling 
strategies with low detectability are on the left panel, and sampling 
strategies with high detectability are on the right panel. Estimates 
obtained with sampling strategies with 5 and 10 capture occasions 
are compared in each panel

TA B L E  3   Scenario 1 of simulation (state‐dependent 
detectability and homogeneous assignment probability)

Confidence interval coverage 5 occasions

Occ. 1 Occ. 2 Occ. 3 Occ. 4 Occ. 5 Average

Low p 0.94 0.97 0.96 0.94 0.89 0.94

High p 1.00 0.98 0.95 0.95 0.99 0.97

Note. Confidence interval coverage for sampling strategies with 5 cap-
ture occasions (Occ.).
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parameters (Table 6), model‐based prevalence was consistently 
higher (range: 0.23–0.53) than naive prevalence (range: 0.20–
0.46), with the latter always included in the confidence interval of 
the former (Table 7).

4  | DISCUSSION

We presented a hidden Markov model to estimate prevalence in 
wildlife population taking into account the imperfect detectability 
and uncertainty in individuals’ classification. We compared model‐
based and naive prevalence showing that the latter can be severely 
biased when detectability is state‐dependent, in agreement with 
Jennelle et al. (2007). In addition, we identified another source of 
bias in naive prevalence which was related to the state‐dependent 
probability of assignment. We demonstrated that, if naive prevalence 
has to be used as a proxy for population prevalence, the burden of 
proof should be placed on demonstrating homogeneity in detection 
and assignment probabilities (Jennelle et al., 2007; MacKenzie & 
Kendall, 2002).

4.1 | Model assumptions

Our approach provides a framework to statistically test differences 
in detectability and probability of assignment and take them into 
account to produce unbiased estimates of prevalence. However, a 
series of assumptions must be met (Lebreton et al., 1992; Otis et al., 
1978): (a) parameter and processes estimated for the marked indi-
viduals can be applied to the unmarked ones. In particular, because 
multievent CR models are conditional on first capture, we assume 
that capture probability is the same for unmarked and marked in-
dividuals in order to obtain abundance estimates, (b) marks do not 
affect the behavior of the individuals, (c) marks are not lost, and 
they are correctly recognized, (d) individuals alive in the population 
at time t have homogeneous detectability and apparent survival 
probability, (e) individuals are independent from each other, and 
(f) no births, deaths, emigration, or immigration occur during the 
capture occasions. The assumption of homogeneous detectability 
and survival can be relaxed by including different sources of het-
erogeneity in the model structure (Cubaynes et al., 2010; Pradel, 
1993; Pradel, Hines, Lebreton, & Nichols, 1997). In particular when 

F I G U R E  5   Scenario 1 of simulation 
(state‐dependent detectability and 
homogeneous assignment probability). 
Boxplots of 100 simulated initial state 
probabilities estimates for parentals (left 
two panels) and hybrids (right two panels) 
for each sampling strategy. Sampling 
strategies with low detectability are in 
the top row, and sampling strategies 
with high detectability are in the bottom 
row. Estimates obtained with sampling 
strategies with 5 and 10 capture occasions 
are compared in each panel

TA B L E  4   Scenario 1 of simulation (state‐dependent detectability and homogeneous assignment probability)

Confidence interval coverage 10 occasions

Occ. 1 Occ. 2 Occ. 3 Occ. 4 Occ. 5 Occ. 6 Occ. 7 Occ. 8 Occ. 9 Occ. 10 Average

Low p 0.98 0.95 0.97 0.96 0.94 0.92 0.84 0.65 0.62 0.64 0.84

High p 1.00 0.99 0.97 0.97 0.95 0.91 0.92 0.85 0.91 0.75 0.92

Note. Confidence interval coverage for sampling strategies with 10 capture occasions (Occ.).
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estimating abundance attention must be paid to unaccounted for 
heterogeneity in capture probabilities, which is known to bias esti-
mates of abundance (Pollock, Winterstein, Bunck, & Curtis, 1989).

4.2 | Limitations of the model

A potential drawback of our approach lies in convergence issues that 
might occur when there is a high proportion of uncertain individuals 
in the sample (Pradel et al., 2007). This problem can be overcome 
by confirming the state of just a handful of individuals with some 
error‐free method. Specifically, Pradel et al. (2007) showed that in a 
case study in which the sex of about 80% of the individuals was un-
certain, adding few genetic confirmations (24 individuals over 4,025) 
greatly improved the shape of the likelihood and hence the conver-
gence of the optimization algorithm. This is particularly relevant be-
cause the model does not handle assignment errors, so having a high 
proportion of uncertain individuals is preferable to taking the risk of 
making assignment errors to reduce such proportion.

4.3 | Sampling guidelines

Through the simulations we showed that the precision of model‐
based prevalence increased proportionally more by enhancing 

detection probability than by increasing the number of sampling 
occasions. The precision of survival estimates increased by the 
same amount with increasing detectability and number of occa-
sions, confirming that a cost‐effective sampling strategy should 
maximize detectability within capture occasions instead of sam-
pling more frequently. For a specific study, our simulation frame-
work can be used to determine the best trade‐off to obtain a 
cost‐effective level of accuracy and precision of parameter esti-
mates (Lieury et al., 2017).

4.4 | Case study

For the hybridization case study, potential differences in 
the detectability of parental and admixed individuals gener-
ate bias in naive prevalence and can originate from various 
reasons. For example, differences in vocalization behavior 
(Derégnaucourt, Guyomarc'h, & Spanò, 2005), migratory ten-
dency (Derégnaucourt, Guyomarc'h, & Belhamra, 2004), and 
social status (Battocchio, Iacolina, Canu, & Mori, 2017) were 
documented between admixed parental individuals of different 
species and may cause differential detectability. In wolf packs, in 
particular, differences in detectability through scat sampling are 
related to social status and marking behavior (Cubaynes et al., 
2010; Marucco et al., 2009).

Previous hybridization studies on wolves (Godinho et al., 2011; 
Pacheco et al., 2017) acknowledged that, due to uncertainty of 
classification, a proportion of backcrosses was assigned to the pa-
rental cluster (i.e., wolves), leading to an underestimation of their 
prevalence in the population. With our approach, a conservative 
qwolf threshold can be used for the parental cluster, greatly reduc-
ing the chance of type II errors (erroneously classifying hybrids 
as parentals), as showed by the higher model‐based prevalence 
values in the case study (Table 7). These results should be consid-
ered as a warning that relying on naive prevalence underestimates 
the hybridization‐related risks for the conservation of the parental 
populations.

Model npar Deviance QAICc ΔQAICc

π(i)φ(i)p(i)δ(a1 + a2_fix) 4 183.48 192.16 0

π(i)φ(f)p(i)δ(a1 + a2_fix) 5 181.41 192.44 0.28

π(i)φ(i)p(f)δ(a1 + a2_fix) 5 181.76 192.79 0.63

Note. The notation (.) indicates constant parameters while (state) indicates state‐dependent param-
eters. π = initial state probability, φ = survival probability, p = detection probability, δ = assignment 
probability, npar = number of parameters. The term (a1 + a2_fix) indicates that we constrained the 
model to have fixed assignment probabilities after first capture.

TA B L E  5   Model selection results for 
the case study on wolf × dog hybridization

TA B L E  6   Model‐averaged parameter estimates for the case 
study on wolf × dog hybridization

Parameter Estimate 95% C.I.

Initial proportion of individuals in 
state “Wolf” πw

0.60 0.43–0.76

Detection probability of wolves pw 0.42 0.17–0.67

Detection probability of hybrids ph 0.50 0.26–0.77

Survival probability of wolves φw 0.72 0.39–0.91

Survival probability of hybrids φh 0.84 0.46–0.99

Assignment probability δ 0.79 0.64–0.89

Prevalence Occ. 1 Occ. 2 Occ. 3 Occ. 4 Occ. 5

Naive 0.27 0.33 0.20 0.46 0.27

Model‐based 0.32 0.42 0.23 0.53 0.43

95% CI 0.07–0.55 0.09–0.63 0.06–0.48 0.12–0.72 0.09–0.67

TA B L E  7   Naive and model‐based 
prevalence of hybrids for the case study 
on wolf × dog hybridization
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4.5 | Model extensions and broader 
applications of the model

The current model formulation contains two states (“Hybrid” 
and “Parental”). It might be desirable, however, to further 
split the “Hybrid” state into two distinct states “Hybrid” and 
“Backcross,” or to include not just one but both parental spe-
cies. This can be done by increasing the number of states and 
corresponding parameters depending on the available data 
and the power of the genetic tests. However, attention should 
be paid to avoid over‐parameterization (Gimenez, Choquet, & 
Lebreton, 2003). Multievent models can quickly become pa-
rameter‐rich and thus result in nonidentifiability in studies with 
small sample sizes.

The Viterbi algorithm has been previously applied in the mul-
tievent CR framework to reconstruct the reproductive life of indi-
vidual roe deers (Capreolus capreolus; Rouan et al., 2009). We used 
the Viterbi algorithm to reconstruct the abundance of individuals in 
different states. This approach can be used in any case study that 
requires the estimation of abundance and prevalence of individu-
als in the presence of imperfect detection and uncertainty in state 
assignment, for example, the estimation of sex ratios in monomor-
phic species (Genovart et al., 2012; Pradel et al., 2007). Moreover, 
the model can be extended to include dynamic states by adding a 
transition probability matrix in the formulation. Such extension 
would expand its applications to other fields such as epidemiology 
(e.g., the estimation of the number of infected individuals in a pop-
ulation; Marescot et al., 2018) or reproductive biology studies (e.g., 
the number of breeders in a population; Desprez, McMahon, Hindell, 
Harcourt, & Gimenez, 2013).
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