
HAL Id: hal-02325033
https://hal.science/hal-02325033

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained Distance Based Clustering for Satellite
Image Time-Series

Thomas Lampert, Baptiste Lafabregue, Thi-Bich-Hanh Dao, Nicolas Serrette,
Christel Vrain, Pierre Gançarski

To cite this version:
Thomas Lampert, Baptiste Lafabregue, Thi-Bich-Hanh Dao, Nicolas Serrette, Christel Vrain, et al..
Constrained Distance Based Clustering for Satellite Image Time-Series. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (11), pp.4606-4621. �10.1109/JS-
TARS.2019.2950406�. �hal-02325033�

https://hal.science/hal-02325033
https://hal.archives-ouvertes.fr


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, XXX 201X1

Constrained Distance Based Clustering for

Satellite Image Time-Series

Thomas Lampert∗, Baptiste Lafabregue∗, Thi-Bich-Hanh Dao†, Nicolas Serrette†,

Christel Vrain†,

and Pierre Gançarski∗
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Abstract

The advent of high-resolution instruments for time-series sampling poses added complexity for the

formal definition of thematic classes in the remote sensing domain—required by supervised methods—

while unsupervised methods ignore expert knowledge and intuition. Constrained clustering is becoming an

increasingly popular approach in data mining because it offers a solution to these problems, however, its

application in remote sensing is relatively unknown. This article addresses this divide by adapting publicly

available constrained clustering implementations to use the dynamic time warping (DTW) dissimilarity

measure, which is sometimes used for time-series analysis. A comparative study is presented, in which

their performance is evaluated (using both DTW and Euclidean distances). It is found that adding

constraints to the clustering problem results in an increase in accuracy when compared to unconstrained

clustering. The output of such algorithms are homogeneous in spatially defined regions. Declarative

approaches and k-Means based algorithms are simple to apply, requiring little or no choice of parameter

values. Spectral methods, however, require careful tuning, which is unrealistic in a semi-supervised

setting, although they offer the highest accuracy. These conclusions were drawn from two applications:

crop clustering using 11 multi-spectral Landsat images non-uniformly sampled over a period of eight

months in 2007; and tree-cut detection using 10 NDVI Sentinel-2 images non-uniformly sampled between

2016 and 2018.
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I. INTRODUCTION

Remote sensing problems are often characterised by large volumes of data and a lack of

reference data [1, 2, 3, 4]. Satellite Image Time Series (SITS) are becoming more readily

available with the introduction of satellite constellations that can capture the same location with

increasingly regular intervals [3].

Spatio-temporal classification opens up new possibilities in remote-sensing—to monitor land

use and its evolution [4, 5, 6, 7, 8, 9, 10]. Nevertheless, it complicates reference data collection

because of the complexity of thematic classes and their lack of formal specification [3, 4]. As

such, unsupervised clustering is often used [4, 9, 11, 12, 10], which offers a solution based upon

the data alone. These approaches, however, ignore expert knowledge and intuition (i.e. potential

thematic classes), and do not allow an expert to propose modifications to the clustering.

We define “intuition” as non-formalised knowledge that may be partial and may be imperfect. In

general, an expert has an objective and an intuition of what they are looking for when analysing

spatio-temporal data. In a supervised setting it is necessary to express this intuition through

examples that are both representative in number (i.e. sufficient examples to fully represent each

class) and quality (i.e. examples sufficiently represent a class’ variance) [3]. This is unrealistic

in satellite image time-series analysis as this type of data is relatively recent in remote sensing

and, as such, an expert may only have a vague idea of the number of classes and their nature.

The work contained herein, nevertheless, allows them to improve the results of unsupervised

clustering in applications that are still to be fully formalised (i.e. they have a lack of nomenclature

and formal description of classes).

Constrained clustering (alias semi-supervised clustering) is the process of introducing back-

ground knowledge (alias side information) to guide a clustering algorithm [13, 14]. The back-

ground knowledge takes the form of constraints that supplement the information derived from

the data—through a distance metric—for a (generally small) subset of the data. The solution of

a constrained algorithm strives to balance the information derived from the data with that from

the constraints.

This article studies semi-supervised approaches due to their potential to ease the burden of

reference data collection required for supervised classification, which is not possible when dealing
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with ‘big data’ and, as discussed above, difficult when dealing with time-series. As such these

approaches offer a tool for remote sensing researchers that is distinctly lacking in the literature

with respect to time-series data.

This is addressed two-fold by presenting an overview of constrained clustering methods and

how they can be adapted to this use case, and a comparative study of their performance on

time-series datasets. The comparative study is achieved by selecting the most representative

algorithms from the literature and adapting them to be suitable for time-series clustering where

necessary. These are compared for crop classification which greatly benefits from the analysis of

spatio-temporal data [5, 15, 16, 17, 18, 19, 20, 21, 22] and tree-cut detection [23, 24]. As such,

this article offers insight into the different formulations of constrained clustering algorithms, how

they can be adapted for use in satellite image time-series, and insight into which algorithms are

suitable for such applications.

In the remainder of this article Section II presents some background information on clustering,

user-constraints, time-series clustering, and presents constrained clustering algorithms that are

prominent in the field. Section III describes the modification of publicly available implementations

for use in remote-sensing time-series clustering and the methodology used during experimentation.

Section IV presents a comparative study of the algorithms for agricultural crop classification and

their application to tree-cut detection. Section V discusses these results and the limitations of

existing approaches when applied to time-series data. And conclusions are drawn in Section VI.

II. BACKGROUND

A. Cluster Analysis

Let O be a set of instances (data points) {o1, . . . , on} and d(oi, oj) a dissimilarity (or a

similarity) measure between any two instances oi and oj . The similarity or dissimilarity between

instances can be computed from their features or given by a similarity graph. Partition clustering

involves finding a partition of O into K non-empty and disjoint groups called clusters, C1, . . . , CK ,

such that instances in the same cluster are very similar and instances in different clusters are

different. Cluster homogeneity is usually formalised by a optimisation criterion, and clustering

aims at finding a partition that optimises the given objective. Different optimisation criteria exist

for distance-based clustering, the most popular being [25]:

(a) minimising the maximal diameter of the clusters,

(b) minimising the maximal radius of the clusters,
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(c) minimising the sum of stars (the sum of the distances between each object and its cluster

centroid),

(d) minimising the within-cluster sum of dissimilarities,

(e) minimising the within-cluster sum of squares.

(f) maximising the minimal split between clusters,

Criteria (a)–(e) bias clusters to contain objects that are similar to each other, and criteria (f)

biases different clusters to represent distinct objects.

B. User Constraints

In practice, a user may have some requirements for, or prior knowledge about, the final solution.

For instance, the user can have some information on the label of a subset of objects [26]. Because

of the inherent complexity of clustering optimisation criteria, classic algorithms always find a

local optimum. Several optima may exist, some of which may be closer to the user requirement.

It is therefore important to integrate prior knowledge into the clustering process and several

studies have demonstrated the importance of this kind of domain knowledge in data mining

processes [27]. Prior knowledge is expressed by user constraints to be satisfied by the clustering

solution. The subject of these user constraints can be the instances or the clusters [28].

Instance-level constraints are the most widely used type of constraint and were first introduced

by Wagstaff and Cardie [26]. Two kinds of instance-level constraints exist: must-link (ML) and

cannot-link (CL). An ML constraint between two instances oi and oj states that they must be

in the same cluster: ∀k ∈ {1, . . . , K}, oi ∈ Ck ⇔ oj ∈ Ck. A CL constraint on two instances oi

and oj states that they cannot be in the same cluster: ∀k ∈ {1, . . . , K}, ¬(oi ∈ Ck ∧ oj ∈ Ck).

In semi-supervised clustering, a small amount of labeled data is available to aid the clustering

process. Instance-level constraints can be inferred from class labels: if two objects have the same

label then they are linked by an ML constraint, otherwise by a CL constraint. Supervision by

instance-level constraints is however more general and more realistic than class labels. Using

knowledge, even when class labels may be unknown, a user can specify whether pairs of points

belong to the same cluster or not [13]. Semi-supervised clustering is therefore a transductive

operation because its objective is to define the clusters to explain the processed data and possibly

to label the objects not initially labeled. During semi-supervised clustering, labeled objects

and unlabeled objects are used to construct a clustering function. Thus, the objective is to use

unlabeled objects to better understand the data space.
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Figure 1. Examples of ML, CL, split (minimum separation) δ, maximum diameter γ, and ε (each object oi has in its neighbourhood

of radius ε at least one other object in the same cluster) constraints. A must-link (ML) constraint between two instances states

that they must be in the same cluster and a cannot-link (CL) constraint on two instances states that they cannot be in the same

cluster.

Cluster-level constraints define requirements on the clusters, for example:

• the number of clusters K;

• their absolute or relative maximal or minimal size – allows the user to control the balance of

cluster cardinalities that an image should be clustered into;

• their maximum diameter, i.e. clusters must have a diameter of at most γ – allows the user to

control the amount of similarity between objects in the same cluster;

• their split, i.e. clusters must be separated by at least δ – allows the user to control the level of

difference that separates objects into different clusters;

• the ε-constraint [29] demands that each object oi has in its neighbourhood of radius ε at least

one other object in the same cluster – allows the user to remove small, sparse clusters that

would cause noise in the clustered image.

See Figure 1 for an example of these constraints.

Mechanisms to integrate these constraints into the clustering process can be categorised into
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three different approaches:

• enforcing constraints by guiding clustering algorithms during their process or by modifying

the objective function;

• learning the distance function using metric learning;

• declarative and generative methods.

The requirement to constrain the number of clusters K is inherent in many algorithms (e.g.

COP-KMeans, MIP-KMeans, Spec, and CCSR). In remote sensing problems, however, it is

usually unknown. This is often mitigated by testing a range of K, however, some algorithms,

e.g. SAMARAH and CPClustering, allow for K to be determined automatically, removing this

burden from the user (although constraining it to a specific value is possible).

By far the easiest constraints to be interpreted by a user are must-link and cannot-link constraints

because they do not require in-depth knowledge of the underlying clustering process and feature

space. As such, this work will focus on algorithms that explicitly model these constraints. These

are the most intuitive in remote sensing, as they are simply the expressions of whether a pair

of objects (pixels, segments, time-series, etc.) should belong to the same cluster or not and can

therefore be captured directly from an image.

C. Time-Series Clustering

Time-series increase the complexity of clustering due to the properties of the data. Almost all

clustering algorithms use a distance function based upon the norm of two vectors Lp (Manhattan,

L1; Euclidean, L2; and Maximum, L∞). This implies a fixed mapping between points in two

time-series and as such, norm based distances are sensitive to noise, misalignment in time

(however small) [30], and are unable to correct for sub-sequence, i.e. non-linear, time shifts

[31]. This may be desirable for the intended application, however, Dynamic Time Warping

(DTW) [32, 33] finds an optimal alignment between two time series by non-linearly warping

them. As such, it overcomes these, potentially undesirable, properties of norm based distances

when applied to time-series. Furthermore, certain types of clustering algorithms, for example

k-Means, calculate centroids during their optimisation, which is not a trivial task in the case

of time-series due to the misalignments discussed previously. The DTW Barycenter Averaging

(DBA) algorithm [34] overcomes this limitation by iteratively refining an initial estimate of the

average sequence (usually taken to be a random sample of the time-series being averaged), in

order to minimise its squared DTW measure to the sequences being averaged. As such, classical
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constrained clustering implementations require modification to use DTW and DBA averaging (if

required) before application to time-series. Other considerations when working with time-series

are the dimensionality, which can be very large, meaning a sparse sampling of the input space.

A number of works give an in-depth background on clustering time-series [30, 35, 36, 37, 38,

39, 40]. Keogh and Lin [41] define two categories of time-series clustering:

• Whole Clustering: “The notion of clustering here is similar to that of conventional clustering

of discrete objects. Given a set of individual time series data, the objective is to group similar

time series into the same cluster” [41].

• Subsequence Clustering: “Given a single time series, sometimes in the form of streaming time

series, individual time series (subsequences) are extracted with a sliding window. Clustering

is then performed on the extracted time series subsequences” [41].

They then proceed to demonstrate that subsequence clustering is “meaningless” because “clusters

extracted from these time series are forced to obey a certain constraints that are pathologically

unlikely to be satisfied by any dataset, and because of this, the clusters extracted by any clustering

algorithm are essentially random” [41]. In remote sensing, the typical goal is to cluster time-series

using all the available data, and this is a direct application of existing constrained clustering

approaches. Therefore this work will focus on ‘Whole Clustering’.

It should be noted that DTW is not the only alternative to Euclidean distance for measuring

dissimilarity between time-series. It is, nevertheless, often found that alternative dissimilarity

measures are not significantly better than DTW in real-world datasets [42, 31, 43, 44] (the reader

is referred to these references for a comprehensive review and comparison of the alternatives).

To quantify the benefit (if any) of using DTW, this study will compare the performance of

constrained clustering algorithms modified to use DTW to that using Euclidean.

D. Constrained Clustering

Constrained clustering approaches broadly fall into the following six categories: k-Means,

Metric Learning, Spectral Graph Theory, Ensemble, Collaborative, and Declarative.

In k-Means approaches, the clustering algorithm or the objective function is modified so that

the user constraints guide the algorithm towards a more appropriate data partitioning. Most

of these works consider instance-level ML and CL constraints. The extension is done either

by enforcing pairwise constraints, e.g. COP-COBWEB [26], COP-KMeans [13], Seed-KMeans

[45], and Constrained-KMeans [45], or by using pairwise constraints to define penalties in the
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objective function, e.g. CVQE [29], LCVQE [46], Tabu search [47], and PCK-Means [48]. Each

varies in its optimisation criterion and search strategy, for further detail the reader is referred to

[49]. A limitation of COP-KMeans is that it does not guarantee convergence and will fail if a

constraint is violated.

Metric learning approaches aim to automatically learn a metric measure from training data that

best discriminates the data samples. To achieve this in a constrained clustering setting, similar

and dissimilar pair sets are constructed using the ML and CL constraints respectively. These

are then used as the training data to learn the metric. Examples of this approach using different

distance metrics are: Euclidean and shortest path [50], Mahanalobis [51, 52, 53], Kullback-Leibler

divergence [54], string-edit [55], and the Laplacian regularizer metric learning (LRML) method

for clustering and imagery [56, 57]. As these algorithms are tied to a distance metric, novel

algorithms are required for DTW.

Spectral clustering is a non-supervised method that takes as input a pre-calculated similarity

matrix and aims to minimise the ratio cut criterion [58] or the normalised cut criterion [59].

Spectral clustering is often considered superior to classical clustering algorithms, such as k-

Means, because it is capable of extracting clusters of arbitrary form [58]. It has also been shown

that algorithms that build partitions iteratively (like k-Means and EM) are prone to be overly

constrained [60]. Moreover, spectral clustering has polynomial time complexity. Algorithms of

this type have been proposed by Kamvar et al. [61], Alzate and Suykens [62], Wang and Davidson

[63, 64], Wang et al. [65], and Rangapuram and Hein [66].

The abundance of clustering methods found in the literature can be explained by the ill-

posed nature of the problem. Indeed, each clustering algorithm is biased by the objective

function used to build the clusters. Consequently, different methods can produce very different

clustering results from the same data. Furthermore, even the same algorithm can produce different

results depending upon its parameters and initialisation. Ensemble clustering methods have the

objective of improving the overall quality of the clustering by reducing the bias of each single

classification [67]. An ensemble clustering is composed of two steps. First, multiple clusterings

are produced from a set of methods having different points of view. These methods can be based

on different clustering algorithms [68] or from the same algorithm with different parameter values

or initialisations [69]. The final result is derived from the independent results by a consensus

function. Constraints can be integrated in two manners: each learning agent integrates them in

its own fashion [70, 71, 72]; or applying them in the consensus function [73, 74, 75].



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, XXX 201X9

Collaborative clustering is similar to ensemble clustering, but it considers that the information

offered by different sources and different clusterings are complementary [76]. Moreover, an

important problem encountered by ensemble clustering is the difficulty of computing a consensual

result from different results with a wide range of cluster numbers—the correspondence between

each cluster is not a trivial problem [77]. Collaborative clustering consists in making multiple

clustering methods collaborate to reach an agreement on data partitioning. While ensemble

clustering focuses on merging clustering results, collaborative clustering focuses on iteratively

modifying the clustering results by sharing information between them [78, 79, 80]. Consequently it

extends ensemble clustering by adding a refinement step before the unification of the results. Thus,

making the unification easier. In collaborative clustering, three main stages for user constraint

integration can be identified [77]: (1) generation of the final result (by labeling the clusters of

the final result using label constraints); (2) directly in the collaborative clustering (in order to

guide the collaborative process); and (3) using constrained agents.

Declarative approaches offer the user a general framework to formalise the problem by choosing

an objective function and explicitly stating the constraints. They enable the modeling of different

types of user constraints and the search for an exact solution—a global optimum that satisfies

all the user constraints. These frameworks are usually developed using a general optimisation

tool, such as integer linear programming (ILP) [81, 82], SAT [83], or constraint programming

(CP) [84]. While the other approaches usually focus on instance-level ML and CL constraints,

declarative approaches using CP or ILP allow direct integration of cluster-level constraints. They

also allow for the integration of different optimisation criteria within the same framework, while

other approaches are usually developed for one particular optimisation criterion.

For an in-depth review of the literature on constrained clustering the reader is referred to [14].

III. CONSTRAINED CLUSTERING FOR SATELLITE IMAGE TIME-SERIES

A subset of the algorithms present in the literature were chosen based upon whether imple-

mentations are publicly available (these typically use the Euclidean distance measure) and their

ability to be modified to use DTW. The initial implementations were taken from the original

authors and all modifications were validated with the authors where possible.

Spectral clustering algorithms take as their input a similarity matrix. This simplifies their

modification to use DTW as the similarity matrix can be pre-computed using any distance

measure and the methods require no, or little, modification. In the case of spectral methods, the
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form of the Laplacian matrix needs consideration. In the presented evaluation, fully connected

graphs were used and similarity was calculated using the Gaussian function, such that

sij = exp

(
−dij
2σ2

)
, (1)

where dij is the DTW dissimilarity between points i and j and σ controls the widths of the

neighbourhoods, its value was optimised on each training set using grid search (as were the

number of principal components). The algorithms modified in this way were: Adjacency Matrix

Modification [61], Constrained 1-Spectral Clustering (C1-SC) [66], Constrained Clustering via

Spectral Regularization (CCSR) [85], CSP [65], and Guaranteed Quality Clustering [86].

Declarative approaches can take as their input either the data points or a dissimilarity matrix,

depending upon the objective function used. The declarative approach found for this study is

CPClustering [84], which takes the pre-computed DTW dissimilarity matrix and therefore does

not need modification.

k-Means based algorithms are more involved to apply to time-series as they iteratively calculate

distances to cluster centroids and update these centroids. This implies that the algorithm itself

needs to be modified to integrate the DTW measure and to use DBA to calculate the cluster

centroids. The COP-KMeans [13], LCVQE [46], MPCK-Means [87], Tabu search [47], and

MIP-KMeans [82] were found and modified to incorporate these changes.

Collaborative approaches offer several means to integrate constraints. In this study, SAMARAH

[77] was modified to use DTW k-Means agents (see above) and pairwise constraints in the

collaborative process through its quality criterion, such that

Q(C(i)) =
Nc∑
c=1

qc(C(i))pc, (2)

where Nc is the number of constraints to satisfy, qc(C(i)) ∈ [0, 1] is the criterion used to evaluate

the result for the c-th constraint and pc is the weight given by the expert for the c-th constraint

(p1 + p2 + · · ·+ pNc = 1). By default each constraint has the same weight, 1/Nc.

Of these modified implementations, only a few were found to be suitable to include in the

study due to various reasons. The implementation by Wang et al. [65] is formulated for two class

problems (although authors describe how the method can be extended to multi-class problems in

their article). That by Cucuringu et al. [86] was modified but did not converge on all the datasets.

Constrained 1-Spectral Clustering [66], Tabu search [47], and MIP-KMeans [82] were too slow

once modified to use DTW and DBA. The method by Pelleg and Baras [46] updates the centroids
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heuristically using a formulation which does not have an obvious extension to DTW. Similarly,

it is unclear how probabilistic methods such as the constrained EM algorithm [88] could be

modified to use alternative distance measures and averaging techniques as it is not obvious

how these would affect the probability estimates needed for their application. MPCK-Means

[87] implements metric learning, as such is intrinsically tied to norm based distance metrics.

A declarative approach using ILP [81] is publicly available and was modified however, it uses

a C++ implementation of the COP-KMeans algorithm to pre-compute an initial clustering and

currently no C++ implementation of DBA exists in order to modify this implementation.

Implementations of these modified algorithms are available from https://sites.google.com/site/

tomalampert/code.

After modification and initial evaluation, the following algorithms were found to be suitable

for the remainder of this study: COP-KMeans [13], MIP-KMeans [82], Spec [61] (spectral),

CCSR [85] (spectral), CPClustering [84] (declarative), and SAMARAH (using 3 k-Means agents)

[77] (collaborative).

A. Complexity

The problem of clustering while fully satisfying constraints is NP-Hard [29]. Indeed the problem

of graph colouring, which is NP-Complete, can be reduced in polynomial time to the problem of

satisfying cannot-link constraints. Methods such as COP-KMeans, Spec, CCSR, and SAMARAH

try to solve the problem heuristically and can therefore violate some constraints (Spec, CCSR,

SAMARAH) or get stuck trying to satisfy all the constraints (COP-KMeans). The complexity of

COP-KMeans is the complexity of K-means, plus a factor for checking constraint satisfaction.

So it is O(NKtc), where N is the number of points, K the number of clusters, t the number

of iterations, and c the number of constraints. Spec and CCSR use eigendecomposition so their

complexity is O(KN2). The complexity of SAMARAH is O(K2Na(a−1)tc)*, where a the number

of agents, and c the number of conflicts covered (in these experiments it typically ranged from

200 to 800). Declarative approaches such as CPClustering and MIP-KMeans consider the problem

in its entire combinatorial configuration and use general optimisation tools to solve it. Note that

CPClustering not only uses the constraint propagation and branch-and-bound mechanisms of CP

but it also improves search space pruning by designing dedicated global constraints. Furthermore,

*when using the Wemmert-Gançarski cluster quality evaluation metric [89].
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Figure 2. Real-world image time-series clustering data: 12 classes, and 11 time points (t4 displayed here).

when using DTW, the methods MIP-KMeans, COP-KMeans, and SAMARAH use DBA therefore

its complexity is an additional factor: O(InT 2), where I is the number of iterations, n is the

number of sequences to be averaged, and T is their length.

B. Out-of-Sample Classification

Since constrained clustering is a relatively expensive process, it may not be possible to cluster

all available data. Using the clustering derived from a subset of the data, out-of-sample data

points can be classified using, for example, a k-NN classifier. This allows the generalisation from

a randomly selected subset of the data to the whole dataset. If the clustering is to be generalised

beyond this, however, the user should be aware of problems arising from distribution mismatches

between different domains [90, 91].
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IV. EXPERIMENTAL COMPARISON

This section demonstrates the application of constrained clustering to crop classification and

tree cut detection. To allow systematic and objective comparison of the algorithms described

above, constraints are generated from the ground truth data for crop classification, and the use

of user derived constraints is demonstrated in the tree cut problem.

A. Crop Classification

Agricultural practices are a major concern because of their environmental impact, the amount

of water they use and the quantity of food they are able to supply [7]. Since satellite data

offers observations with a high spectral, spatial and temporal resolution, applications of crop

monitoring, identification of agricultural practices, or estimation of yield and crop parameters

are numerous [92, 93, 94]. Therefore a dataset that covers cultivated landscape characterised by

mixed farming with a wide variety of irrigated and non-irrigated crops is used for evaluating the

algorithms. The study area is located near Toulouse (Southwest France). The dataset represents

11 multispectral images non-uniformly sampled over a period of eight months in 2007 (t1 15th

February, t2 23rd February, t3 20th April, t4 30th June, t5 7th July, t6 4th August, t7 11th August,

t8 8th September, t9 15th September, t10 13th October, and t11 20th October). One of the images

in the time-series is presented in Figure 2a. The multipsectral images (green, red, and near-

infrared bands) are captured by the Formosat-2 satellite and were provided by Centre d’Études

Spatiales de la Biosphère (CESBIO) Unité Mixte de Recherche CNES-CNRS-IRD-UPS, Toulouse,

France2. A random subset of a 1000× 1000 region of the image time-series are sampled (within

regions for which reference data are available, see Figure 2c) such that the training and test sets

contain 1974 and 9869 samples respectively, and where a sample is the evolution of a pixel’s

spectral values over the 11 images. The training set is used to optimise parameters using grid

search for algorithms that require this (Spec and CCSR), and is performed for each experimental

setup presented in this section. The experimental results presented are calculated on the test set.

2It is noted that more recent time-series image data is available, i.e. from the Sentinel-2 satellite; however, at the time of

writing, there exists no associated reference data created using temporal evolution. Reference data such as carte d’occupation

des sols (COS) exist but are created using supervised methods and therefore make an unfair comparison. This work, therefore,

relies on the RPG (registre parcellaire graphique) reference data, for which there are currently no releases that coincide with

complete years of Sentinel-2 data. Nevertheless, the methods described are general and their application is not restricted to the

type of data used in this evaluation.
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Reference data is the farmer’s declaration of crops grown to the European Environment Agency

for the Common Agricultural Policy.

1) Constraint Generation: To systematically and objectively compare the algorithms, con-

straints were generated by taking pairs of points randomly and generating a must-link or cannot-

link constraint depending upon whether they belonged to the same class or not. Intuitively this

is equivalent to a user defining points/regions within the image time-series that contain the same

thematic class (corn, for example) and different thematic classes. Different sizes of constraint

sets were considered: 5%, 10%, 15%, and 50% of the number of points N in the sampled

subsets (they represent a very small fraction of the total number of possible constraints, which is
1
2
N(N − 1)). Ten repetitions of each constraint set size were generated, as such each experiment

was repeated ten times, each with a different random subset of constraints (all algorithms are

evaluated using the same random constraint sets). Finally, the algorithms were executed with no

constraints for comparison.

2) Parameter Tuning and Preprocessing: To fully explore the capabilities of the parameterised

algorithms, parameter values were optimised by grid search on the training sets (except for

CPClustering, which is parameterless). Parameter optimisation is an unrealistic use-case as in

real-world applications as a training set is unlikely to be obtainable, however, it demonstrates the

theoretical benefits of each algorithm. All the evaluated algorithms, except CPClustering, require

the number of clusters K to be set a priori and this was taken from the reference data such that

K = 12, see Figure 2d (CPClustering relaxes this assumption by accepting a range of K and

determining the best value automatically, however in these experiments K was fixed as with the

other algorithms).

All samples were normalised to unit length. The adjusted Rand index (ARI) [95] and constraint

satisfaction (Sat., the proportion of satisfied constraints) metrics are used to evaluate performance.

The presented results represent the mean of ten repetitions of each experiment (each with a

different random set of constraints) and are rounded to three decimal places.

To measure the amount of agreement between the objective function and bias of the algorithms

and the constraints (referred to as consistency or Con.—the inverse of inconsistency [96] or

informativeness [97])—the algorithms were evaluated in an unconstrained setting and the fraction

of satisfied constraints determined using the 50% constraint sets.

3) The Value of Time-Series: An algorithm independent measure of cluster (as defined by the

reference data) distribution can be evaluated using the mean silhouette score [98]. This score
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varies between −1 and 1 and evaluates cluster overlap such that

s(oi) =
b(oi)− a(oi)

max{a(oi), b(oi)}
, (3)

where a(oi) is the average dissimilarity of point oi to all other points within the same cluster and

b(oi) is the minimum, taken over all the clusters Ck not containing oi, of the average dissimilarity

of oi to all points of Ck. Averaging this over all points in a dataset gives its silhouette score,

such that

S =
1

|O|
∑
oi∈O

s(oi). (4)

Higher scores indicate that points belong to clusters in which the other points are similar, and

are dissimilar to the points in the next closest cluster.

To assess the impact of using a pixel’s temporal evolution in agricultural land cover classi-

fication, the first analysis is concerned with the pixel values from each individual image (i.e.

with no information of their temporal evolution). The Silhouette scores are first assessed. The

values for the training sets of individual images are as follows: t1 −0.191, t2 −0.148, t3 −0.054,

t4 −0.314, t5 −0.272, t6 −0.003, t7 −0.010, t8 0.072, t9 −0.002, t10 −0.247, and t11 −0.195.

Resulting in a mean Silhouette score of −0.124. The same measure applied to the time-series

(and for each distance measure) results in values of: t1,...,11 0.239 (Euclidean) and t1,...,11 0.181

(DTW). It becomes obvious that the information gained by forming a time-series of images

results in better separation between the classes and it is expected that the same pattern will be

observed in clustering performance.

To verify the above finding, each algorithm is applied without constraints to each of the 11

images in the time series (using the Euclidean distance and training where necessary). The mean

ARI achieved in each of the 11 images for each algorithm is presented in Table I. These results

demonstrate that Spec results in the best performance in 8 of the 11 images, and when the

performance over all images is averaged.

Table II presents the results of unconstrained clustering applied to the time-series (t1,...,11)

using Euclidean and DTW difference measures in terms of ARI and constraint satisfaction (with

respect to the 50% constraint sets) averaged over 10 random sets. This allows the impact of

adding a pixel’s temporal information into the clustering process to be assessed. It confirms

that, in the application of agricultural classification, using a time-series of images outperforms

individual image classification by a large margin: ARI is improved by 0.249 when applying the
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Table I

UNCONSTRAINED ARI ON THE SUD DATASET USING INDIVIDUAL IMAGES (t1, . . . , t11)—BEST PERFORMANCE FOR EACH

IMAGE HIGHLIGHTED IN BOLD.

Method t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 Mean

COP-KMeans 0.256 0.252 0.283 0.142 0.217 0.361 0.357 0.267 0.225 0.158 0.166 0.244

MIP-KMeans 0.232 0.251 0.296 0.147 0.215 0.407 0.350 0.275 0.217 0.151 0.169 0.246

Spec 0.567 0.588 0.659 0.220 0.453 0.676 0.674 0.693 0.525 0.172 0.139 0.488

CCSR 0.354 0.392 0.511 0.254 0.295 0.532 0.510 0.446 0.332 0.142 0.348 0.374

CPClustering 0.348 0.412 0.437 0.215 0.400 0.642 0.588 0.492 0.347 0.199 0.149 0.385

SAMARAH 0.313 0.286 0.373 0.130 0.198 0.410 0.322 0.222 0.208 0.151 0.177 0.254

Spec algorithm to a time-series compared to the average of all individual images. These results

also show that Euclidean distance outperforms DTW in most cases, a result that will be discussed

further in the next section.

These results highlight one pitfall of using individual images. Clustering performance is highly

dependent upon the time of acquisition. The best performance is observed when the contrast

between crops is high (for instance between corn and wheat in August, t6 and t7). Lower

performance is observed in t10 and t11 (October) when harvesting has taken place and soil is

bare. The best performance is always observed during the period of maximal vegetation (between

June and August) and decreases before and after these periods. These trends can also be observed

in the corresponding Silhouette scores.

4) The Benefit of Constraints: The unconstrained time-series ARIs (Table II) will serve as a

baseline to gauge any improvements when introducing constraints. The mean ARIs and Constraint

Satisfaction results for the constrained clustering experiments are presented in Table III. Again,

Spec results in the highest mean ARI when using the DTW distance measure, however, SAMARAH

sees the largest increase in performance when constraints are integrated and surpasses Spec in

two constraint fractions when using the Euclidean distance measure. CPClustering offers the

greatest constraint satisfaction and clustering performance.

Generally, the performance of clustering time-series is improved by integrating constraints,

however, it is not universally observed to be true. The most consistent improvements in ARI

(irrespective of distance measure) are observed with methods that do not guarantee constraint

satisfaction (Spec, CCSR, and SAMARAH). Those that do (COP-KMeans, MIP-KMeans, and
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CPClustering) improve their rate of constraint satisfaction when compared to the unconstrained

case. More often than not this leads to a reduction in ARI as the algorithms struggle to balance

what is assumed to be conflicting information from the constraints and the distance measure,

also explaining why ARI improvements are observed with algorithms that can violate constraints.

The conflict between constraints and the distance measure will be further explored in the next

subsection.

Table II

UNCONSTRAINED ARI & CONSISTENCY ON THE SUD DATASET. EACH MEASURE’S BEST PERFORMANCE IS BOLD AND

OVERALL UNDERLINED.

Method Distance ARI Sat.

COP-KMeans
DTW 0.426 0.812

Euclidean 0.420 0.807

MIP-KMeans
DTW 0.398 0.805

Euclidean 0.407 0.803

Spec
DTW 0.531 0.840

Euclidean 0.737 0.885

CCSR
DTW 0.359 0.797

Euclidean 0.450 0.817

CPClustering
DTW 0.437 0.803

Euclidean 0.681 0.413

SAMARAH
DTW 0.406 0.802

Euclidean 0.463 0.817

5) Out-of-Sample Classification: The methodology described in Section III-B allows us to

classify all the labelled points in the 1000× 1000 pixel time-series (i.e those presented in Figure

2c) using the output of the constrained clustering process applied to the test sets. To this end,

the output of SAMARAH (which achieves the highest performance without requiring parameter

tuning) with the median ARI for both distances were determined. These represent a realistic

expectation of applying the algorithm with an arbitrary constraint set, and as such formed

training sets for a k-NN classifier, where k = 3. The results obtained (represented as an image)

are presented in Figure 3, along with the contingency tables associated with the clusterings used

as training sets. This process does result in a loss of accuracy when compared to the original
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Table III

CONSTRAINED ARI AND CONSTRAINT SATISFACTION ON THE SUD DATASET. THE BEST PERFORMANCES FOR EACH

MEASURE, CONSTRAINT FRACTION, AND DISTANCE MEASURE ARE HIGHLIGHTED IN BOLD.

Method Distance 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans
DTW 0.416 1.000 0.398 1.000 0.407 1.000 0.436 1.000

Euclidean 0.406 1.000 0.414 1.000 0.443 1.000 0.369 1.000

MIP-KMeans
DTW 0.381 1.000 0.390 1.000 0.366 1.000 0.433 1.000

Euclidean 0.428 1.000 0.416 1.000 0.431 1.000 0.532 1.000

Spec
DTW 0.683 0.867 0.784 0.922 0.725 0.888 0.786 0.911

Euclidean 0.671 0.854 0.730 0.900 0.702 0.875 0.781 0.916

CCSR
DTW 0.578 0.858 0.536 0.843 0.528 0.838 0.527 0.840

Euclidean 0.658 0.878 0.535 0.843 0.535 0.842 0.503 0.835

CPClustering
DTW 0.469 1.000 0.513 1.000 0.510 1.000 0.589 1.000

Euclidean 0.650 1.000 0.562 1.000 0.542 1.000 0.510 1.000

SAMARAH
DTW 0.597 0.870 0.657 0.876 0.637 0.867 0.681 0.878

Euclidean 0.691 0.884 0.682 0.884 0.714 0.890 0.702 0.885

clustering: ARI decreases by 0.172 (0.154) and 0.191 (0.173) when using the DTW and Euclidean

distances respectively (figures in brackets include the original clustering results). This is to be

expected when generalising to unseen data. It is clear that the clustering-classifications result in

homogeneous regions without having any information regarding spatial proximity nor constraints

preserving spatial smoothness. The contingency tables of the clusterings used as training data,

Figures 3c (DTW) and 3d (Euclidean), indicate that, while the classes are generally distinctly

separated into specific clusters, several classes may be represented by single clusters. For example

in Figure 3c cluster 2 contains high proportions of the Irrigated Corn, Soybean, and Rapeseed

classes. This tendency appears to be reduced when using the Euclidean distance (Figure 3d) and

it is hypothesised that this is because DTW attempts to find an optimal warping between two

time-series, which may distort the distances between thematic classes.

Figure IV-A5 focuses on one region of the image classification using the highest ARI clusterings

for each algorithm. It reiterates that SAMARAH results in regions that are homogeneously classified

as does the Spec algorithm, which also achieves high ARIs. This is confirmed by measuring
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(over the whole image, not just the crop displayed in Figure IV-A5) the ratio of the number

of pixels of the largest class in each region (defined by the reference data) to that of all other

classes in the same region (therefore a value of 1/N , where N is the number of classes, means

that all the classes are evenly distributed in a region, and 1 means that a region is made up of

only one class, the value for each region is weighted relative to its size): COP-KMeans 0.602,

MIP-KMeans 0.694, Spec 0.913, CCSR 0.663, SAMARAH 0.802, and CPClustering 0.525.

A more detailed view of the clustering can be seen in the contingency tables presented in

Figures 3c and 3d. These indicate that the clusterings are similar whether taking the maximum

or median ARI, indeed the difference between the maximum and median ARIs is 0.074 when

using Euclidean distance and 0.051 when using DTW.

It should be noted that the reference data used in the problem was not perfect, as is common

in large scale remote sensing problems. Figures 3e–3l highlight this by focusing on one region of

the reference data. It can be observed that although the reference data indicates one homogeneous

region, the data does not—what appear to be paths and tracks cross the field. This complicates

the clustering algorithm’s objective function and causes a conflict between the constraints and

the information derived from the distance measure. This is particularly disadvantageous for

algorithms that satisfy all constraints (CPClustering, COP-KMeans, and MIP-KMeans), and

could have contributed to their lower ARI scores (a pre-processing stage to remove conflicting

constraints may help to avoid this). This conflict contributes to the confusion between clusters

and classes observed in the contingency tables.

B. Tree Cut Detection

Thus far the process of obtaining constraints has been simulated using ground truth data. This

section demonstrates the use of user derived constraints and another real-world application that

uses the more recent Sentinel-2 data.

There is currently a high demand for ecologically derived timber and there is a large amount

of tree felling in European forests. Even though a large number of trees remain, replanting

operations are essential for sustainability and the time scale associated with tree growth requires

early detection of felling activities. A body of the literature dedicated to detecting tree ‘clear-

cuts’ [23, 24] exists and there is recent political interest in monitoring such activities, e.g. the
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RegioWood II initiative3.

An area of the Vosges Mountains (Alsace, France), 724× 337 pixels in size, was selected for

this study, see Figure 4a. The time-series is composed of 10 images sampled over 3 years: t1 23rd

August 2016, t2 26th August 2016, t3 10th May 2017, t4 19th June 2017, t5 23rd August 2017, t6

25th September 2017, t7 8th May 2018, t8 2nd July 2018, t9 24th July 2018 and t10 16th August

2018. The dataset contains 10 areas of clear-cut: 8 appear at t3 and 2 at t7. The images are

composed of one band that contains the computed NDVI (normalised difference vegetation index)

values. The images were computed from Copernicus Sentinel-2 data (tile T32ULU) processed

at level 2A/3A by CNES for Theia Land Data Centre.

A subset of the area was selected by randomly sampling 30, 000 pixel time-series. The ground

truth locations of clear-cuts used for validation was manually created by remote sensing experts

and validated in the field by forestry rangers, see Figure 4b, one of the challenges here being

that clear-cuts represent only 0.3% of the dataset. Furthermore, as is typical of remote sensing

problems, the number of clusters that represent the non-clear-cuts part of the image is unknown.

As such, the number of clusters is arbitrarily set to k = 15. The evaluation is only concerned with

clusters that include clear-cuts (this is selected by choosing the cluster the overlaps the clear-cut

ground truth the most). As before, SAMARAH was used with both the DTW and Euclidean

distance measures.

The constraints were given by an expert in remote sensing after viewing an out-of-sample

classification of the whole image based on the unconstrained clustering of the subset described

above, see Figure 4c. One set was given using the DTW metric, and another using the Euclidean

metric (the number of constraints remained constant). If the added constraints concerned a sample

that was not in the original dataset, the sample was added in order to guide SAMARAH to extract

meaningful information (which resulted in 30, 037 samples for DTW and 30, 034 for Euclidean).

The average recall and precision (of 10 repetitions, standard deviations are presented in brackets)

of the unconstrained clusterings for DTW was 0.367 (0.138) and 0.018 (0.009) respectively and

for Euclidean was 0.558 (0.141) and 0.040 (0.012) respectively.

The low precision is evident in Figure 4c, in which it can be seen that the unconstrained DTW

clustering confuses harvested meadows with tree cuts because both exhibit a sharp decrease in

NDVI (the Euclidean version of these figures are omitted due to space restrictions). The expert

3http://www.regiowood2.info
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is able to use his background knowledge to identify this confusion and add CL constraints to

reduce it, see Figure 4d. Examples of the samples that are bound by these CL constraints are

presented in Figure 4f, which show the similarities between the tree-cut samples (dashed lines)

and those of harvested meadows (solid lines).

When 19 constraints are added, the average recall and precision (of 10 repetitions) increase

to 0.634 (0.123) and 0.294 (0.145) respectively for DTW and 0.578 (0.0769) and 0.421 (0.304)

respectively for Euclidean. DTW achieves a better recall at the expense of precision, and Euclidean

the inverse. Notably, the standard deviation of precision increases when using Euclidean. This

is because 7 of the 10 repetitions had a cluster containing the cuts occurring at t3, which are

the majority of the cuts, giving good recall (0.534 on average) and precision (0.567 on average);

but the remaining 3 were not meaningful for the task at hand (a precision of 0.081 on average).

Another experiment was conducted using the Euclidean version to try to merge the cuts occurring

in both dates into one cluster by modifying 3 ML constraints (out of 9). This was successful in

most (9 out of 10) of the clusterings and increased recall to 0.698 (0.0122), but also caused a

large amount of noise to be introduced into the cluster, resulting in a precision of 0.136 (0.216).

This is because the algorithm is forced to try to resolve the conflicting information derived from

the distance measure and data, with that given by the user, and highlights the necessity to select

the correct distance measure for the problem to be tackled.

Assuming that this is the case, it can be observed that relatively few constraints lead to a large

increase in performance. This is in contrast to the previous experiments, and is a result of the

expert having the opportunity to choose constraints that are meaningful to the algorithm being

used. For example, these constraints are more effective than adding CL constraints between tree

cuts and road or water as these are easily separated by the algorithm’s objective function. This

type of constraint is referred to as being ‘consistent’ [14], although there is no way to predict

consistency a priori.

The false positives observed in Figure 4f can be grouped into three sources: the northern limit

of forested areas, because shadows and canopy variation between seasons can be misinterpreted

in a pixel based approach; the exact border of regions of tree cuts is not well defined and so

the algorithm may detect variances that are not covered by the GT; and some harvested meadow

pixels remain in the tree cut cluster because their NDVI signals are similar.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, XXX 201X22

V. PRACTICAL CONSIDERATIONS

This section offers further analysis of the results and discusses their implications. Since the

objective function of each method is different, comparisons are based on several different aspects:

the facility of use, the adaptability of the method, quality of the returned solution, and run time.

A. Parameter Values

The choice of parameter values for each algorithm is an important factor to their performance.

By using CPClustering this choice is avoided as it is parameterless. Algorithms based on k-

Means (COP-KMeans, MIP-KMeans, and SAMARAH) are relatively simple to apply as it is only

necessary to choose a sufficiently large number of iterations. Spectral methods, on the other

hand, require at least two parameter values to be chosen: σ, which controls the connectivity in

the similarity graph, and the number of eigenvectors used for clustering. These parameters are

not intuitive to the user and the algorithm’s performance is highly dependent upon their choice

[58].

Figure 5 presents the variation of training ARI in the Crop Classification problem when

different parameter combinations are chosen during the grid search for the Spec and CCSR

algorithms, and explains the high ARIs the spectral methods achieved in the previous section.

These were largely due to good parameter values. Without the prior knowledge that is offered

by a training set (i.e. in an semi-supervised setting) a user is unlikely to choose these ‘optimal’

values, and straying from these results in a large reduction in clustering performance. The mean

ARI obtained for each algorithm are 0.367 and 0.297 (Spec and CCSR respectively), which are

considerably lower than the maximum values of 0.720 and 0.466 (Spec and CCSR respectively).

It should be noted that works exist to remove these parameter choices for unconstrained spectral

clustering [99, 100].

B. Distance Measure

It was found in the Crop Classification dataset that the Euclidean distance offers the highest

unconstrained performance in almost all of the algorithms. This is due to the relatively coherent

nature of the data. The images are cloud free, which means that the feature vectors are noise free.

The problem also lends itself to the Euclidean distance: the time-series are aligned in the time

domain and the area of interest is spatially coherent, meaning that crops grow and are harvested
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in the same time-frame within different parts of the image. If these assumptions do not hold,

DTW may offer better performance.

From the Tree Cut dataset it can be concluded that if the phenomenon to be clustered has a

temporal signature that varies between samples (e.g. cuts occurring at different dates) and these

should be combined, DTW would be a better choice, otherwise (if the signals are temporally

correlated and/or the uncorrelated signals should be separated) Euclidean can give better results.

To the best of our knowledge, however, the theoretical guarantees of the K-Means algorithm

only hold when using the Euclidean distance. DTW barycenter averaging is a stochastic process

and therefore the same guarantees are unlikely to hold when using it, nor does DTW satisfy the

triangle inequality.

C. Run-Time

Table IV

EXECUTION TIME (IN SECONDS) OF THE CROP CLASSIFICATION DATASET MEASURED USING AN INTEL® CORE™ I5-4670

CPU @ 3.40GHZ PROCESSOR WITH 32GB RAM. ∗ INDICATES THAT THE METHOD’S TIMES EXCLUDE THE DISTANCE

MATRIX COMPUTATION. THE NUMBER OF CPCLUSTERING’S GLOBALLY OPTIMAL SOLUTIONS ARE IN BRACKETS (FOUND

WITHIN 30 MINUTES).

Method Distance 0% 5% 50%

COP-KMeans
DTW 1203.093 1185.972 1318.606

Euclidean 23.552 19.278 19.698

MIP-KMeans
DTW 667.945 660.196 819.458

Euclidean 56.343 121.086 226.788

Spec∗
DTW 214.443 217.662 215.985

Euclidean 206.655 205.387 213.805

CCSR∗ DTW 234.380 233.741 235.311

Euclidean 219.648 223.818 231.761

CPClustering∗ DTW 1745.491 (0) 98.333 (0) 35.767 (1)

Euclidean 732.185 (0) 294.982 (0) 62.722 (1)

SAMARAH
DTW 1547.156 1237.635 1274.350

Euclidean 229.509 130.655 114.876

An important aspect of the usability of these methods is the time taken to obtain a clustering.

Table IV presents the time taken to execute the clustering algorithm for each implementation
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in the Crop Classification problem, averaged over 10 repetitions (each with different random

constraint sets) for the unconstrained, 5% and 50% constraint sets. It should be noted that not all

algorithms are implemented in the same language, and the timings are taken using each language’s

built-in timing. Finally, these timings only include the execution of the clustering algorithm itself

and, as such, exclude processes such as reading data files. Furthermore, it excludes the training

phase needed to select parameter values for Spec and CCSR and the time taken to calculate the

distance matrix that is the input for Spec, CCSR, and CPClustering. CPClustering guarantees

that the solution does not violate any constraints, it also attempts to find the globally optimal

solution by branch and bound, as such a timeout is given (in these experiments 30 minutes) at

which point the current best solution is returned. We therefore report the mean time taken to

find the returned solution, and the number of globally optimal solutions returned.

These timings demonstrate that the speed of spectral methods (Spec and CCSR) are constant

relative to the number of constraints (this is expected as the same computation is performed

whether constraints are included or not). The K-Means based algorithms (COP-KMeans, MIP-

KMeans, and SAMARAH) are much quicker when using the Euclidean distance, however, because

of the repeated distance calculations and averaging, become very slow when using the DTW

dissimilarity measure. There is also a slight trend for the timings of MIP-KMeans to increase

as more constraints are added. SAMARAH’s run time is, however, reduced when constraints

are added. This is because any constraints that become unsatisfied cause the solution’s quality

to degrade, which may halt the algorithm and cause the current best solution to be returned.

CPClustering finds an initial solution very quickly, however, it did not find the global optimum

in most of the experiments within the timeout. To put this into perspective, CPClustering is the

only method that searches for a global optimum and therefore this should not be regarded as a

drawback. The large timings in the unconstrained experiments, which reduce when constraints are

added, are due to the added complexity of finding solutions that do not violate the constraints. In

CPClustering’s case the figures represent the time taken to find the solution that is returned at the

end of the time out. When constraints are added it is more difficult to update the (rapidly found)

initial solution, meaning that it is returned. When the problem is unconstrained the solution is

frequently updated, resulting in longer run times. With such quick computation it still offers

better quality solutions than the K-Means based algorithms and comparable quality to CCSR

(with parameter optimisation) in most cases.
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D. Additional Challenges

This study has focused on using constraints in satellite image time-series clustering, however

there exist numerous challenges related to capturing these constraints. For example, it is necessary

to study and detail the thematic constraints (i.e. the opinions of the expert) to be captured to

guide the process.

These thematic constraints can be extremely broad and have to be translated into actionable

constraints. In the current state of knowledge, a limited number of actionable constraints into

which thematic constraints can be translated exist: ML, CL, label, number of clusters k, and size.

The following observations are therefore translatable: “these two objects seem to be of the same

nature”; “these two ensembles of objects are of the same nature” (ML constraints between all the

pairs of objects of the two sets); “these three sets are completely different” (CL constraint on all

the pairs of objects from the three sets); “this object is of type X” (labeling constraint); and “a

cluster cannot represent more than 20% of the data” (cluster size constraint). Nevertheless, only

a small subset of constrained clustering algorithms can handle all such actionable constraints

(e.g. declarative and SAMARAH).

Furthermore, generating actionable constraints from a set of data points can rapidly lead to

a significant increase in both combinatorial complexity and the scope of the constraints. For

example, a constraint “of the same nature” on two sets of size N1 and N2 respectively will,

using the naive approach, generate N1(N1 − 1) +N2(N2 − 1) +N1 ×N2 ML constraints. These

are transitive [13] however, and therefore the number of constraints needed to satisfy the user

requirement can be reduced to (N1 + N2) − 1 under the assumption of guaranteed constraint

satisfaction. Nevertheless, this can still result in a very large number of constraints, which could

prevent the use of declarative methods. Another example is a constraint that states two sets of

size N1 and N2 are “of different nature”. Depending on the context this constraint can correspond

to a disjunction of several sets of constraints.

The following two problems are therefore identified. For each problem we give some direction

on how it can be tackled.

• How should algorithms be modified for large constraint sets?

– Reduce the model’s size through the number of considered objects, e.g. sampling or removing

irrelevant objects.

– Relax the solution’s optimality via an execution time threshold (with no guarantees of the
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result’s quality).

– Searching locally, instead of globally (already possible with CPClustering but not obvious

for the others).

• How can the number of constraints be reduced/limited without loss of quality (i.e. define a

minimal set of constraints)?

– Sample the constraints and/or the objects under constraint.

– Identification of informative constraints.

VI. CONCLUSIONS

To recapitulate, this manuscript has presented a background of constrained clustering and

data analysis for satellite image time-series clustering. Limitations of publicly available imple-

mentations have been discussed, and those which are able to be modified to use the DTW

dissimilarity measure and DBA averaging method were evaluated. A comparative study of these

approaches applied to agricultural classification has been conducted and the results analysed.

This investigation has been concluded by a discussion of the issues raised.

It has been shown that the effectiveness of the Euclidean and DTW distance measures depend on

the problem being tackled and the user’s requirements. K-Means based algorithms do not achieve

state-of-the-art performance and require modification to use DTW dissimilarity. Collaborative

algorithms (e.g. SAMARAH) improve upon this by guiding several unsupervised algorithms.

Spectral clustering algorithms, although achieving the highest performance, are limited by the

requirement of carefully choosing parameter values, which is unrealistic in semi-supervised

settings. This problem is mitigated by declarative approaches, which are parameterless and

provide solutions that satisfy all the constraints. They are, therefore, more sensitive to conflicts

between the data and constraints.

Challenges in obtaining and using constraints in remote-sensing have been discussed, partic-

ularly the explosive nature of constraints being derived from expert opinions and several areas

for algorithm development have been outlined.
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(a) DTW (classification ARI = 0.507, overall ARI

= 0.525, training constraint fraction = 15%)

(b) Euclidean (classification ARI = 0.522, overall

ARI = 0.540, training constraint fraction = 5%)
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(c) DTW clustering contingency table (χ2 =

25231.030, p = 0.000, clustering ARI = 0.679,

constraint fraction = 15%)
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(d) Euclidean clustering contingency table (χ2 =

34104.814, p = 0.000, clustering ARI = 0.713,

constraint fraction = 5%)
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Figure 3. SAMARAH (a) & (b) out-of-sample classification (see text for details); (c) & (d) clustering contingency tables (rows

have been normalised to emphasise the distribution of each class over the clusters); (e)–(l) subset of the image highlighting the

noise present in the data and image classification using the maximum ARI clusterings (DTW distance measure).
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(a) Image (b) Ground Truth

(c) Unconstrained Clustering (d) Constraints

(e) CL Samples
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Figure 4. (a) Clear-cuts NDVI time-series image (t10 displayed here), (b) tree cut ground truth locations, (c) DTW unconstrained

clustering result (green - true positive, red - false negative, blue - false positive), (d) user selected constraints, (e) four of the

sample pairs under CL constraints (the dashed lines are tree-cuts samples), and (f) DTW constrained clustering results. Images

in (c), (d), (f) have been darkened to highlight the clustering results.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, XXX 201X38

Spec

CCSR

0.0 0.2 0.4 0.6
ARI

Figure 5. Distribution of spectral method training ARIs when different parameter values are chosen during the grid search. Spec

— mean: 0.367, min: 0.001, max: 0.720, standard deviation: 0.184. CCSR — mean: 0.297, min: −0.050, max: 0.466, standard

deviation: 0.139.


