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SUMMARY

Smectite-rich clay caps form permeability seals in geothermal systems. The presence of smec-
tite is also responsible for a strong surface (interfacial) electrical conductivity and polarization
due to their electrical double layer properties. We developed new complex conductivity models
using both differential effective medium (DEM) and volume averaging theories accounting
for both conduction and polarization of these high cation exchange capacity (CEC) materials.
These models predict that the chargeability is also a non-linear function of the pore water
conductivity reaching a constant value at pore water conductivity far above the so-called
iso-conductivity point. The iso-conductivity point is characterized by the equality between
the conductivity of the rock and the conductivity of the pore water. We apply the DEM con-
ductivity model (which requires only two textural parameters) to smectite-rich volcanic and
sedimentary rocks using data sets from the literature. When smectite is present in the volcanic
rocks, the CEC of the rock is dominated by the CEC of smectite. The grain conductivity and
the normalized chargeability are related to each other by a dimensionless number R = 0.10
(independent of temperature and saturation) and both are controlled by the excess of charge
per unit pore volume Qy, which can be determined from the CEC and porosity. Our petro-
physical model is also able to predict the permeability of the rock as well from the CEC and
the porosity. It is applied to a 3-D data set at Krafla volcano (Iceland). The porosity, the CEC,
the percentage of smectite, and the permeability of the clay-cap are imaged by 3-D induced
polarization tomography. Electrical conductivity tomography alone does not allow separation
of the contribution of the bulk pore space from the interfacial properties related to alteration
and therefore should be used with caution.

Key words: FElectrical properties; Hydrogeophysics; Hydrothermal systems; Electrical
resistivity tomography (ERT).

2011). In sedimentary basins, the smectite to illite transition starts

I INTRODUCTION at ~50 °C and is expected to be complete at temperatures ranging

Smectite and smectite-illite clays are generally found as alteration
products in geothermal systems in the equilibrium temperature
range from 50 to 200 °C (e.g. Browne 1978; Gunderson et al.
2000; Meunier 2005; Cumming 2009). Such smectite-rich clay
caps form a key-component of geothermal systems because of
their very low permeability, which can efficiently seal geothermal
reservoirs and favour the presence of perched aquifers associated
with water transfer through the vadose zone (Fig. 1). In turn, these
seals can be detected by coupling the self-potential method with
magnetotelluric data (e.g. Aizawa et al. 2009) or CO, soil gas
concentration with electric resistivity tomography (e.g. Revil et al.

from 80 to 140 °C (Colten-Bradley 1987; Freed and Peacor 1989).
In geothermal systems, alteration of the volcanic glass implies the
formation of smectite and mixed-layer illite-smectite clay minerals
typically found at temperatures below ~200-250 °C (Meunier
2005). The difference between the two types of systems is explained
through the completeness of the water—rock interactions and the
ability of ionic species to migrate (Jennings & Thompson 1986).
Incomplete water—rock interactions reflecting low permeability
away from the main groundwater flow paths often results in the
presence of smectites and mixed-layer illite/smectite (I/S) clays in
the rock matrix up to higher temperatures (Gunderson et al. 2000).

1398 © The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society.
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Figure 1. Sketch of a hydrothermal system with a clay cap rich in smectite. The bottom of the clay-cap corresponds usually to an isotherm of 200 °C (modified
from Aizawa et al. 2009). Its low permeability favours the formation of perched aquifers and maintains two phase flow (steam and liquid water) below it.
Our goal is to use induced polarization and conductivity imaging to identify such clay caps and to determine some of its properties including its porosity and

permeability.

The association of smectites and I/S clays with temperature sug-
gests that if smectite could be detected with geophysical methods,
it provides a geothermometer (e.g. Cumming 2009; Cumming &
Mackie 2009; Muioz et al. 2010; Revil et al. 2018b). Because of
the very high cation exchange capacity (CEC) of smectite and mixed
layer illite-smectite clays (typically in the range 10-90 meq/100 g
depending on the mass fraction of smectite), highly altered rocks are
characterized by high electrical conductivity (>0.1 S m~!, because
of surface conduction) and polarization (Ghorbani et al. 2018).
In geothermal systems, it is usually assumed that high conductiv-
ity values correlate with low permeability smectite-rich clay caps,
lying over higher resistivity values (>100 Ohm m), higher tem-
perature and permeable hydrothermal reservoirs (Cumming 2009).
Electrical conductivity-based galvanometric and induction-based
electromagnetic methods are routinely used to map the 1-0.1 S m™!
smectite clay alteration cap of geothermal systems (e.g. Bibby ez al.
1995; Pellerin et al. 1996; Meju 2002; Cumming & Mackie 2009;
Spichak & Manzella 2009; Muiioz 2014; He et al. 2016). However,
caution should always be used in interpreting electrical conductivity
data alone. Indeed, electrical conductivity cannot distinguish these
clay caps from the presence of hypersaline fluids generally close
to the magmatic chambers. Counter-examples exist. Revil et al.
(2011) discussed indeed the presence of a clay cap at Stromboli
volcano evidenced by the absence of soil diffuse degassing in the
upper part of the edifice (Fossetta area). The permeability barrier
(clay-cap) is located in a resistive body overlying a conductive hy-
drothermal system (Fig. 2). Great care should therefore be applied

in interpreting electrical conductivity imaging alone. In this pa-
per, we show that induced polarization provides a complementary
tool useable for the characterization of smectite and mixed layer
illite—smectite clay caps in order to image some of their key prop-
erties such as the percentage of smectite, their porosity and their
permeability.

A number of papers have already focused on describing the elec-
trical conductivity of various types of smectites, such as montmoril-
lonites, for a broad range of porosity from colloidal suspensions to
consolidated materials (e.g. Sauer et al. 1955; Spiegler et al. 1956;
van Olphen 1957; van Olphen & Waxman 1958; Fripiat et al. 1965;
Cremers & Laudelout 1966; Gast 1966; Jorgensen & Low 1970;
Shainberg & Levy 1975). A non-linear relationship between the
conductivity of the material and the conductivity of the pore water is
expected for high CEC materials at least at low pore water salinities.
Such non-linear behaviours have been recognized in the literature
for both synthetic cation exchangers (e.g. Revil 1999), smectite-rich
soils (e.g. Shainberg et al. 1980), colloidal suspensions of smectite
(e.g. Shainberg & Levy 1975; Lockhart 1980; Leroy et al. 2017) and
shales (e.g. Wyllie & Southwick 1954; Vinegar & Waxman 1984).
These experimental evidences have prompted the development of
non-linear conductivity models (Sauer et al. 1955; Spiegler et al.
1956). A review regarding such non-linear behaviours of rocks with
high cation exchange capacities can be found in Friedman (2005).

Induced polarization describes the ability of porous rocks to store
reversibly electrical charges under the influence of a primary electri-
cal field (e.g. Olhoeft 1985). In the two previous papers of this series
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Figure 2. Example of clay cap evidenced at Stromboli using CO; soil degassing and dc conductivity imaging. (a) CO; soil concentration (in ppm). (b)
Interpreted electrical conductivity tomogram of Stromboli. The conductive body corresponds to the hydrothermal system. ‘NST” stands for NeoStromboli
crater. N41 and N64 correspond to two major fault zones. Data are from Revil et al. (2011). The conductivity scale corresponds to the logarithm of the
conductivity comprised between ~10~! and ~10~* Sm~!.
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Figure 3. Smectite and electrical double layer. (a) TOT structure of the smectite particle (T: tetrahedral layer, Si; O: octahedral layer, Al). (b) The charge on
the edge of the crystals (110 and 010 planes) is pH-dependent and due to both silanol and aluminol sites while the charge on the basal surface (001 plane) is
due to the isomorphic substitutions in the crystalline framework. (c¢) The electrical double layer around the smectite comprises the diffuse and Stern layers,
which screen the charge in the particle (due to isomorphic substitutions) and on its surface (amphoteric sites). M+ denotes the metal cation (e.g. Na™) while
A~ denotes the anion (e.g. C17). The groups X— denotes the negative sites on the mineral surface. This electrical double layer is central in defining both surface
or grain conductivity and to understand the polarization of the grains and the porous material.

(Revil et al. 2017a,b), we have developed a comprehensive database
of experimental data for induced polarization of volcanic rocks. In
absence of metallic particles, one of the key properties used to de-
scribe induced polarization is the normalized chargeability, which
is defined as the difference between the instantaneous conductivity
of the rock and its direct current (dc) conductivity. As a side note,
the term ‘instantaneous’ (in time-domain induced polarization) is
synonymous with high frequency. In a similar way, the term dc (or
steady state) is synonymous of low frequency in frequency-domain
induced polarization. High and low frequencies are of course defined
with respect to the main relaxation times describing the polarization
process and typically associated with grain sizes. The normalized
chargeability and the quadrature conductivity (a quantity propor-
tional to the normalized chargeability) are proportional to the CEC
(e.g. Vinegar & Waxman 1984). Therefore smectite-rich rocks are
characterized by high normalized chargeability values because of
their high CEC. In addition, a linear relationship has been observed
between surface conductivity and normalized chargeability (Revil
et al. 2017a,b).

Our goal here is to go further by providing a consistent model
of electrical conductivity and normalized chargeability accounting
for the effect of the water content and CEC and to connect the
CEC to both the mass fraction of smectite and permeability. In
Section 2, we develop the non-linear relationship between the com-
plex conductivity of the rock and the pore water conductivity using
the differential effective medium (DEM) theory. In Section 3, we
revisit an alternative non-linear petrophysical model between the
complex conductivity of the rock and the pore water conductivity
based on the volume-averaging technique. The two approaches are
extensively compared with experimental data and we present the

advantages and drawbacks of the two approaches. Then, we apply
this model in Section 4 to a 3-D data set of induced polarization data
recorded in the Summer 2017 at Krafla volcano, Iceland We show
how the combination of the petrophysical model and the geophysical
tomograms can be used to image the water content, the CEC, and
the permeability. Krafla has already been broadly explored using
geophysical methods and drilling operations (e.g. Mortensen et al.
2009). We believe that this model can be used to avoid a number of
pitfalls in using electrical conductivity alone as already discussed
in a number of papers (e.g. Bibby et al. 2005; Mufioz 2014).

2 DEM THEORY

Our first goal is to model the complex conductivity of rocks that
are rich in smectite in order to apply induced polarization to map
the clay cap usually found in geothermal systems (Fig. 1). The
model should be however versatile enough to accommodate various
alteration facies in hydrothermal systems including fresh (unaltered)
volcanic rock samples. This work is a direct continuation of the
works published in our two previous papers (Revil ef al. 2017a,b),
where we developed a model of induced polarization for volcanic
rocks.

Smectite is a clay mineral characterized by very high CEC (typ-
ically around 90 meq/100 g). The CEC reflects the amounts of
exchangeable surface sites (on all the crystalline planes including
between the basal surface in the open interlayer porosity, Fig. 3). The
charge on the mineral surface is compensated in the electrical dou-
ble layer as well as by counterions populating the interlayer space
of smectite (Fig. 3). The electrical double layer is composed by a
Stern layer of sorbed counter-ions plus a diffuse layer in which the
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Figure 4. Polarization and conduction in smectite. (a) Conduction occurs both in the electric double layer and through the interlayer porosity. Such conduction
is called ‘surface conduction’ at the scale of a representative elementary volume. Similarly, the polarization of smectite involves the mobilization of the ionic
charge carriers of both the electrical double layer (shown in Fig. 3) and interlayer space. The migration of the cationic counterions in the direction of the
electrical field lets the negative charge of the clay mineral imbalanced behind. This charge separation confers a non-dielectric dipole moment to the particle
generating, in turn, a secondary electrical field. This is the essence of induced polarization. (b) Dependence of the CEC with the percentage (weight per cent)

of smectite obtained from XRD measurements for volcanic rocks. We have

also added the case of the pure smectite end-member. The residual CEC is due to

other minerals such as clay minerals (chlorite and illite) and zeolites. This figure shows that clay-cap rich in smectite are expected to be characterized by high

value of the CEC, and therefore high surface conductivity and polarization.

counter- and co-ions concentrations are controlled by Boltzmann
statistics in the Coulombic field created by the mineral surface
charge. We will see that this high CEC of smectite is of paramount
importance to understand the conductivity and polarization of
smectite-rich clay caps (Fig. 4a).

2.1 Complex electrical conductivity

Electro-diffusion processes are at the heart of induced polarization
phenomena (Leroy & Revil 2009). Indeed, uder the action of an
applied (primary) electrical field, ions migrate and eventually accu-
mulate at some polarization lengths scales such as at the edges of
mineral grains. If the primary field is shut down, the ions that have

accumulated want to diffuse back in their concentration field until
equilibrium is again reached (Fig. 4a). In the frequency domain,
induced polarization is responsible for a phase lag between the cur-
rent and the electrical field. The amplitude and phase lag of the
electrical conductivity can be captured by introducing a complex
conductivity written as,

o*x(w)=0"+io", (1)

where o’ and o” denote the in-phase and quadrature conductivity
contributions, respectively. The first quantity o’ quantifies the ability
of the rock to conduct current while the second quantity o” measures
the ability of the rock to reversibly store electrical charges, that is
its capacitance (Olhoeft 1985). As shown in Fig. 4(a), grains act as
leaky capacitances.
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Figure 5. Conductivity curve for a soil sample (soil sample AE from Revil ez al. 2017b). Best fit in a log—log space of the DEM (differential effective medium)
used to represent the conductivity of a soil sample (sandy clay, Sample AE) as a function of the pore water conductivity. CEC = 19.1 meq/100 g and porosity
0.522 (measured). Using 1 meq/100 g = 963.20 C kg~!, we obtain Oy = 45.5 x 10 C m~> and m = —In F/In ¢ = 3.34. (a) Linear space. (b) Log-log space.
These figures show that for volcanic rocks characterized by high CEC values, the relationship between the conductivivity of the rock and the conductivity of
the pore water is non-linear.
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Sandstone Sample #26 (Waxman and Smits, 1968)
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Figure 6. Best fit in a log—log space of the DEM (differential effective medium) model used to represent the conductivity of shaly sands (sample #26 from
Waxman & Smits 1968). The clay fraction of this sandstone is 100 per cent Montmorillonite. CEC ~ 14.0 meq/100 g (porosity 0.229). The dashed line
corresponds to the isoconductivity line. Using 1 meq/100 g = 963.20 C kg~', we obtain Oy = 120.3 x 10 C m~3 and m = —In F/In ¢ = 2.62. (a) Linear
space. (b) Log—log space. This figure shows the ability of the DEM approach to fit the conductivity data of smectite-rich materials.
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kg~!, we obtain Qy = 295 x 109 C m~3 and m = —In F/In ¢ = 3.12. This figure shows the ability of the DEM approach to fit the conductivity data of volcanic
rocks.

6L0Z dUN( /| UO Jsn uolunay e o a)sIaAuN Ag £79581S/86€ L/2/81 Z/10elsqe-ajoieB/woo dno owepese//:sdny wolj papeojumoq



1406  A. Revil etal.

First Archie’s law

10*

5:)0
T
+
_-H.—
¥

Formation Factor
o

Archie's law:
F=¢ (r2=0.42)
m=2.57+0.10
@ Hawaii basalt
@ Kilauea basalt
@ Kilauea basalt
(@ B + Krafla basalt

—_
o

10° e
107

10 10°

Porosity (-)

Figure 8. Key material properties controlling the electrical conductivity of volcanic rocks. (a) Formation factor versus connected porosity. The intrinsic
formation factor F versus the connected porosity ¢ for the volcanic rocks of Hawaii and Kilauea (Revil e al. 2017d) and 10 core sample from Krafla in Iceland.
Six samples corresponding to the filled circles are from the study of Revil et al. (2018b), nine samples corresponding to the filled squares are from the study
of Flovenz et al. (2005) and finally the 88 crosses are from the study of Lévy et al. (2018). We fit the complete data set with Archie’s law F' = ¢~ ™ (Archie
1942) where the fitted cementation exponent is m = 2.57 £ 0.10 (dimensionless). This figure provides a universal relationship for volcanic rocks between the
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field.

The DEM theory offers a powerful upscaling scheme to deter-
mine the effective properties of granular media (e.g. Bruggeman
1935; Hanai 1960a,b; Cosenza et al. 2009). The DEM model ex-
tends the linear model developed in our two previous papers (Revil
et al. 2017a,b) to the case of high smectite contents and non-linear
conductivity behaviour. The solution of the DEM scheme yields
the following expression for the electrical conductivity of granular
materials (e.g. Sen, Scala & Cohen 1981; Bussian 1983; Lima &
Sharma 1990),

1—2\"
ot = aw¢"’<1 ) ; @)

where o, (in S m~") denotes the conductivity of the pore water, ¢
(dimensionless) denotes the connected porosity, 7 (dimensionless)
is the porosity exponent of Archie’s law (cementation exponent) and
where the complex and frequency-dependent grain conductivity o,
(Sm™!) is given by (Niu & Revil 2016)

h(t)

1+ (iwr)'? ®)

o) =0y — (o7 — o) /

where 62 and ¢ denote the instantaneous and dc grain conduc-
tivity (see d1scuss1on in Ghorbani et al. 2018, for volcanic rocks),
h(t) denotes a normalized probability density (kernel) for the re-
laxation times t, which can be related in turn to the grain sizes or
the pore sizes (Revil & Florsch 2010; Niu & Revil 2016). The grain
conductivity should not be mixed with the surface conductivity that
will be defined below; they are however proportional to each other.
In this paper, we will not discuss further the relaxation times or the
relaxation time distribution. We just assume this distribution to be
broad enough (over 3 orders of magnitude) and consequently the
in-phase and quadrature conductivity spectra are rather flat leading
to the so-called constant phase model (Vinegar & Waxman 1984;
Revil et al. 2017¢).

One of the key intrinsic induced polarization parameters is the
normalized chargeability (). The normalized chargeability (in Sm™")
is defined as,

M, = oy — 09, “4)

where 0, and oy denote the instantaneous and dc-conductivity
of the rock, respectively. The chargeability (dimensionless) is de-
fined as M = M, /0. The introduction of this terminology for the
normalized chargeability (in S m~') may seem inappropriate. In
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Figure 9. Reduced surface conductivity (defined as the ratio Fog/m in which og denotes the surface conductivity) versus the excess of charge per unit pore
volume determined from the porosity and the CEC. The trend is fitted according to a linear trend passing through the origin of the coordinates. The slope
represents the apparent mobility of the counterions B entering the equation of the surface conductivity. This figure provides a universal relationship for volcanic
rocks between the (reduced) surface conductivity and the excess of charge per unit pore volume determined from the CEC and the porosity. This relationship
is of prime importance to interpret conductivity and induced polarization data in the field.

hydrogeophysics however, it is common to normalize chargeability
by resistivity 7o remove the fingerprint of resistivity on the inverted
chargeability tomograms (see discussions in Slater & Glaser 2003).
This is the chargeability that is directly imaged in time-domain in-
duced polarization but the normalized chargeability is the property
of interest in petrophysics for the reasons that will be exposed be-
low. The instantaneous conductivity describes the conductivity right
away after the introduction of a primary electrical field (transient
electromagnetic induction effects being neglected). All the charge
carriers are mobile. The dc conductivity corresponds to the conduc-
tivity measured after a long application of the electrical field (i.e.
much a time longer than the relaxation times contained in the re-
laxation time distribution 4(7)). Some of the charge carriers are not
available anymore for polarization because they have accumulated
at some polarization length scales (such as the grain size in Fig. 4a).
The difference between the two conductivities is due to the disper-
sion of the conductivity curve (i.e. its variation with the frequency),
which is itself associated through the Kramers—Kronig relation-
ships with the existence of the quadrature conductivity and hence
polarization (de Kronig 1926; Kramers 1927; de Kronig 1942).
We assume below that the influence of semi-conductors (pyrite,
magnetite) can be safely ignored at least for the altered volcanic
rocks (see Ghorbani et al. 2018, for an extended discussion on this
subject).

2.2 Instantaneous electrical conductivity

From eq. (2), we can extract the instantaneous conductivity o, of
the porous material as a function of the instantaneous conductivity
of the solid phase ¢3° (e.g. Bussian 1983)

1—2\"
Goo=a1lz¢m(1 :o‘o> . (5)

In absence of grain conductivity, i.e. for o, = 0, we recover
Archie’s (1942) definition of the formation factor:

. ow
Iim o = —, (6)
ooy —0
where F = ¢~ denotes the first Archie’s law (Archie 1942). The
first Archie’s law is valid whatever the grain conductivity values. In
saturated conditions and above the so-called isoconductivity point
(i.e. for o, < 03), the grain conductivity is dominated by the con-
ductivity of the smectite particles and their CEC. Revil et al. (2018a)
showed that the grain conductivity can be related to their volumetric
charge density Q, by
1

o~ —=BQ0y, 7

X~ ZBOy )
where B (m?s~'V~!) denotes the apparent mobility of the counteri-
ons in the double layer (actually a composite of the mobility of the
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and the excess of charge per unit pore volume. This relationship is of prime importance to interpret conductivity and induced polarization data in the field.

counterions in the Stern layer and in the diffuse layer, Fig. 3¢c), and
where the total volumetric charge density Oy (in C m™3) is written
as a function of the CEC as (e.g. Waxman & Smits 1968),

1—¢
Oy = pg (7) CEC, (®)

where the CEC is expressed in C kg=' (1 meq/100 g = 963.20
C kg™!) and p, denotes the mass density of the grains (typically
between ~3000 kg m™3 for volcanic rocks). The CEC of the rock
can be written as a function of the weight content of smectite as
(Revil ez al. 1998, 2002b)

CEC = ¢y (S)CEC(S) + [1 — ¢ (S)] CEC,. ©)

where CEC(S) denotes the CEC of smectite (approximately 80—100
meq/100 g, for example Waxman & Smits 1968), ¢j(S) denotes the
weight fraction of smectite (including the mass fraction of smec-
tite in the mixed layer clays), and CEC, denotes the residual CEC
associated with the other minerals such as illite, chlorite and zeo-
lites. Eq. (5) has the following closed-form solution (Revil ez al.
1998; Revil 2000),

1
oo ™ "7'” [FXOO + 51— Xo) (1 — Xoo + /(1 = Xoo)? +4Fxoo)] ,

(10)

where the (high frequency) Dukhin number (dimensionless) is de-
fined by (Revil e al. 1998),
X, =% (11)
611)
A high salinity asymptotic limit (X, << 1) can be obtained
directly from eq. (5) using Newton binomial expansion (Bussian
1983)

Ooo R % +mo. (12)

So the surface conductivity o¢° defined in Waxman & Smits
(1968) as 0o = 0,/ F 4 0§ is related to the grain conductivity by
0 =moao Note that for Xo, = 1 (defining the isoconductivity
point), eq. (5) yields,

0Xeo = 1) =0, =07 (13)

In other words, the isoconductivity point is characterized by an
equality between the (instantaneous) conductivity of the medium
filled with pore water and the conductivity of the solid phase (smec-
tite grains) coated by the electrical double layer. Below the isocon-

ductivity point (i.e. o, < 0), eq. (5) can be also be written as (see

w —

details in Revil et al. 2018a),

w (1=0,/02\T7
Ono = gwd)l—m (ﬂ) . (]4)

1 - JOC/QYC;'O
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Bangkok clay, porosity at 50 per cent) and the other data are from Howard (1992) (sandstones at 20 per cent porosity). This relationship implies that if the CEC
can be determined in the field by using conductivity and induced polarization imaging, its values can be used to determine the permeability of the clay cap.
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from Ghorbani ez al. (2018) with the permeability data originally from Heap et al. (2017). This relationship implies that the permeability of rock formations

can be determined from electrical conductivity and induced polarization imaging.

A low-salinity closed-form solution of eq. (14) for the instanta-
neous electrical conductivity is obtained by taking the root of eq.
(14) when m ~2 in the power of the argument in parenthesis in
eq. (14) (see Revil 2000, for a complete demonstration). This closed-
form solution is,

aw@(’l[ xw+%(1_xw)(1—xw+m)]a
g
(15)

with a low salinity formation factor g = ¢™/(!=") = Fl/m=1 > 1
(with m = 2, g = F). When surface conductivity dominates, we
obtain

lim o, = goy, [1 + O0(X ! ], (16)

X>>1

1 1 m 1
li — ) =— |1+ —(g - D—+0XD|,
Xoolr>n>l<croo) goy, |: +m—1(g )Xoo +O( ]
(17

where eq. (17) can also be obtained directly from eq. (14) using
Newton binomial expansion (Lima & Sharma 1990). In these equa-
tions ‘O’ (Big O) denotes the Bachmann—Landau notation for the
expansion describing the limiting behaviour of a function when the
argument tends towards a particular value.

Similar expressions can be derived for the dc conductivity oy by
substituting X, by X

al 1
Xo= =~ ——(B-10y, (18)
Oy Fo,

in eq. (10). In eq. (18) A (in m*V~'s™!) denotes the mobility as-
sociated with the Stern layer (e.g. Vinegar & Waxman 1984). The
mobilities B and A can be related to the intrinsic mobilities of the

counterions in the diffuse and Stern layers shown in Fig. 3 (see
Revil et al. 2017a and Ghorbani ez al. 2018 for instance for further
details).

The dependence of the instantaneous conductivity on the tem-
perature is controlled by the influence of this parameter on both the
conductivity of the pore water and the mobility B through eqs (7),
(10) and (11). The temperature dependence of these to quantities
can be modeled by an Arrhenius equation (e.g. Soueid Ahmed et al.
2018; Ghorbani et al. 2018),

1
0u(T) = 0,(Tp) exp [— kf;V (% — ?0>1| s (19)
1 1
B(T) = B(Ty)exp [— et (; - 70)] , (20)

where T and T are expressed in degree Kelvin (K) (7o = 298 K
denotes the reference temperature, that is 25 °C), k, N = 8.314J
mol~' K1), E,=16KkJ Mol~!, 6,,(Tp)) depends on the salinity, and
the value of B(Na*, 25 °C) will be determined below. The temper-
ature dependence of the mobility A(7') entering the dc conductivity
(and the normalized chargeability, see next section) is also modeled
by an Arrhenius equation,

E, /1 1
MT) = M(To) exp [— = (; _ 70)] ,

where E, = 16 kJ Mol™! and A(Na™, 25 °C) will be determined
below from a comparison between the data and the model (Ghorbani
et al. 2018). The other parameters m, Qy, CEC and ¢ entering our
model are temperature independent for a given porous material.

(2]
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Figure 12. Permeability as a function of the inverse of the ratio of the product of the formation factor F by the volumetric charge density Qy. Data from: Niu
et al. (2016) (Portland sandstone), Revil ef al. (2017b, Hawaiian basalts), Ghorbani et al. (2018) and Heap et al. (2017) (volcanic rocks from White Islands),
and Sen et al. (1990) (sandstones). The dependence described in the main txt captures both the effect of the porosity and the CEC. The linear fit (least-square
regression) yields k = 10%3° (1/F 0)>% (#> = 074). This relationship implies that the permeability of rock formations can be determined from electrical

conductivity and induced polarization imaging like in Fig. 11(b).

2.3 Normalized chargeability

Starting with the definition of the normalized chargeability, eq. (4),
we obtain the following expression of the normalized chargeability
in the high salinity non-linear regime (i.e. above the isoconductivity
point) as,

o | FXoo = Xo) + (1 = Xx0) (1 = Xoo + /(1 = X )? +4Fxoo)
F —21(1—X0)<l—Xo+,/(1—X0)2+4FXO>

M, ~

22)

In the high salinity (superscript HS) asymptotic linear regime, eq.
(12) (and a similar expression for the dc conductivity) taken to-
gether with eq. (4) yield the following expression for the normalized
chargeability,

M, = m(oy — ), (23)

S8

1
MWHS%mF)\QV. (24)

Similar equations can be obtained for the low salinity (super-
script LS) regime. The asymptotic behaviour (using eq. 16) of the
normalized chargeability at very low salinities is

MES ~ 0, (25)

Therefore the normalized chargeability is an increasing function
of the pore water conductivity until a constant asymptotic limit is

reached at high salinity and is null at low salinities. The reason of this
behaviour are discussed in Revil e al. (2018a, their fig. 14b) is that
at very low salinities (i.e. much below the isoconductivity point),
the electrical field avoids the grains and their electrical double layer
and therefore cannot polarize them.

In the high salinity limit, the relationship of the normalized
chargeability to the surface conductivity is given by
MAS )

_—=R’ 26
o B (26)

where R is a dimensionless universal constant on the order of § to
10 x 1072 independent of the temperature and water content (since
B and X have the same temperature and water content dependences,
e.g. Ghorbani et al. 2018).

2.3 Prediction of permeability

One of the key goal in hydrogeophysics is to image permeability
thanks to geophysical methods (e.g. Binley et al. 2015). This is
always a challenging task since the permeability can vary over 12
orders of magnitudes in rocks and soils. Revil ef al. (2002) showed
that at a constant porosity, the permeability follows a power-law
relationship with the CEC:

k = koyCEC™?, (27
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Figure 13. Application of the volume averaging model. (a) Conductivity curve for a soil sample (data from Revil et al. 2017b). Best fit in a log—log space of
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Figure 15. Localization of the Krafla caldera in Iceland. The map shows also the approximate position of the Krafla caldera according to Jonasson (1994) and
the two test sites labeled as Site 1 and Site 2 and the position of the two boreholes where the temperature is measured. The dots correspond to the position
of the electrodes. Insert: position of Krafla in Iceland. The grey areas correspond to the Northern Volcanic Zone (NVZ), Eastern Volcanic Zone (EVZ) and

Western Volcanic Zone (WVZ).

where kj and b will be determined below and the CEC is expressed
in meq/100 g. Eq. (27), however, does not capture the influence of
the porosity upon the permeability. Sen et al. (1990) proposed the
following relationship,

k= ko(1/FQy)", (28)

where kj and ¢ are two fitting parameters. Eq. (28) extends an equa-
tion proposed by Goode & Sen (1988) in which the permeability
was predicted from Q.

2.4 Comparison with experimental data

First, we check the relationship between the CEC and the smectite
content of volcanic rocks (Fig. 4b) and a comparison with made
with the prediction of eq. (9). Since the CEC of smectite is much
larger than the CEC of other clay materials, it is not surprising that
a small amount of smectite dominates the CEC response of the
whole material.

‘We check now if the proposed model can explain the non-linearity
of the conductivity curve. We first fit two data sets on soils (Fig. 5)
and a sandstone (Fig. 6), both rich in smectite. In both cases, the
non-linear model is able to fit the data. We use two volcanic core
samples characterized by very high CEC values (from the studies
by Revil et al. 2017b, and Lévy et al. 2018, Fig. 7). Our model is
able to capture the non-linear behaviour of the conductivity data
with only two fitting parameters.

There are two predictions of our DEM model we can further test
regarding the dependence of the surface conductivity and normal-
ized chargeability with the CEC: (1) The product of the formation
factor by the grain conductivity (divided by the porosity exponent
m) is linearly related to the excess of charge per unit pore volume
(indeed 0§° = m oY and 0 is given by eq. 7). (2) The product of
the formation factor by the normalized chargeability (divided by the
porosity exponent ) is linearly related to the excess of charge per
unit pore volume (see eq. 24). We first plot the intrinsic formation
factor as a function of the connected porosity (Fig. 8). The intrinsic
formation factor and grain conductivity are determined by fitting eq.
(10) to the conductivity data obtained at different salinities. The data
are fitted by using Archie’s law and we obtain m = 2.57 (Fig. 8), a
value that will be used below.

To test the two predictions discussed above, we use the database
of 205 core samples: 27 samples from Kilauea (Hawaii, see Revil
etal 2017a,b), 42 samples from Kilauea (unpublished), 16 samples
from Papadayan volcano and 16 samples from Merapi volcano, both
in Indonesia (Ghorbani ef al. 2018), 5 samples from Furnas volcano
(Azores Islands, Portugal, Ghorbani et al. 2018), 50 samples from
Yellowstone (Ghorbani et al. 2018), 22 samples from White Island
volcano (Ghorbani ez al. 2018), 6 samples from Krafla (unpublished)
and 21 volcaniclastic samples rich in zeolites (Revil e al. 2002). The
slope of the linear trend between the reduced surface conductivity
and the excess of charge data can be used to determine the value
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Figure 16. Acquisition of the time-domain induced polarization data. (a) The primary current injected in the ground between electrodes A and B corresponds
to a box signal of period 7. The potential difference between the voltage electrodes M and N is the sum of a primary voltage ¥, and a secondary voltage
Y0-¥ 0. Once the primary current is shut down (for # > 0), only the secondary voltage persists and is decaying over time while the charge carriers are coming
back to their equilibrium position (see Fig. 4a). This decaying secondary voltage is measured into windows (W, W, etc.) separated by characteristic times
(t, t1, t, . .. ). The partial chargeabilities are determined for each of these windows by integrating the secondary voltage over time. The chargeability can be
defined as (0-¥ 0 )/¥o. (b) Spatial configuration for the induced polarization measurements. We used two sets of 32 electrodes for the current and voltage
electrodes. These two sets are located on two distinct cables (each 1240-m-long). The numbers 1-64 correspond to the labels of the electrodes in the protocol.

of B(Na™, 25 °C). We obtain B(Na®, 25 °C) = 3.1 £ 0.3 x 107’
m~2s~'V~! (Fig. 9). The slope of the linear trend can be used
to determine the value of A(Na‘t, 25 °C). We obtain A (Na*, 25
°C) =3.0 £ 0.7 x 1071 m~2s~'V~! (Fig. 10). The dimensionless
number entering eq. (27) is given by A/B = R = 0.10, close to the
value obtained in Ghorbani et al. (2018) (8 x 1072).

Finally, we test the permeability predictors developed above. We
correlate the permeability as a function of the CEC for different
types of clays and sandstones (Fig. 11a). For a porosity of ~0.50,
the permeability is very dependent on the CEC. A power law fit (least
square regression) applied to these data yields k = 10733 CEC 33
(r* = 0.92) where the CEC is expressed in meq/100 g. Permeability
is therefore a very strong function of the CEC of the material. This
is because the inverse of the CEC can be used as a proxy or the pore
size (Revil et al. 2002b, see Fig. 11b). To go one step further, we test
the validity of eq. (28). We see that eq. (28) captures the combined
effects of the porosity and CEC (in reality F and Qy) upon the
permeability (Fig. 12). A linear fit (least square regression) applied

to the data yields k = 10*3° (1/F Qy)*% (> = 074) where Qy is
expressed in C m~>.

3 VOLUME AVERAGING THEORY

As mentioned above, non-linear behaviours between the rock con-
ductivity and the pore water conductivity were recognized from very
early (e.g. van Olphen & Waxman 1958; Gast 1966; Jorgensen &
Low 1970; Shainberg & Levy 1975). These evidences prompted
the development of a specific non-linear conductivity model in
geophysics called the ‘three layers resistor model’ by Wyllie &
Southwick (1954). The three layers resistor model has since being
extensively used and discussed in the literature (Sauer et al. 1955;
Spiegler e al. 1956; Gast 1966; Bussian 1983; Mitchell 1993; Lima
et al. 2010) and extended to partially saturated media by Rhoades
etal. (1989) and Revil e al. (2018a). Fig. 1 by Rhoades ez al. (1989)
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Figure 17. Secondary voltage decay curve recorded in the field. For the inversion, we use only the first window W1 of the data. (a) Examples of decay curves
for Site 1. (b) Examples of decay curves for Site 2. A and B denotes the current electrodes and M and N the voltage electrodes. These trends show the high

quality of the recorded data set.

provides a good illustration of this approach. The three layers re-
sistor model has three components in parallel, one of which has its
elements in series. In this model, the conductivity of the rock o (S
m~") can be expressed as,

1 oo,
o= — Coy+ —>2——!, 29
o 7 +Cloy + Ao + Bloy (29)

where o, (S m™!) denotes the pore water conductivity, F denotes the
(intrinsic) formation factor of the porous material (dimensionless),
and 4, B’ and C’ (keeping the same notations as in Revil ez al. 2018a)
are three textural parameters. We will show below that 4, B’ and
C’ can be derived properly from a very fundamental theory. In eq.
(29), the conductivity o’ denotes the instantaneous conductivity
of the grains and is given by eq. (7). Eq. (29) can be compared to
eq. (15) of Lévy et al. (2018),

1 szfw
Opo = —0y + by + —————.
= F 2T H (er)dy)o

These equations are strictly identical. A comparison between the
two expressions yields

(30)

by=Clo7, G

o =1/4, (32)

d,=0>/B, (33)

The approach developed however by Wyllie & Southwick (1954)
and Lévy et al. (2018) is phenomenological, so no clear meaning
could be found in Lévy et al. (2018) between the three parameters
by, ¢; and d, and the characteristics of the core samples. The re-
cent modeling approach adopted by Revil et al. (2018a) provides,
however, a clear physical meaning to these parameters in terms
of textural parameters defined for any microstructure. In short, a
rigorous physics-based model has been developed in the literature
based on volume averaging concepts of the Joule dissipation of en-
ergy (Johnson et al. 1986; Johnson & Sen 1988; Bernabé & Revil
1995; Revil & Glover 1997). The model developed by Johnson ez al.
(1986) and Johnson & Sen (1988) is based on developing rigorous
high and low-salinity asymptotic limits for the instantaneous con-
ductivity and connecting these linear asymptotic limits using a Padé
approximant (i.e. a ratio of polynomials, see Johnson et al. 1986;
Johnson & Sen 1988). The final result can be written as (see details
in Johnson et al. 1986; Johnson & Sen 1988; Bernabé & Revil 1995;

610Z 8unp /| UO Jasn uolunay e aq alsIsAlun Aq £49587S/86€ 1/2/8 1 ZAoensqe-ajonie/ilB/woo dno-oiwspese//:sdny wolj papeojumoq



1416  A. Revil etal.

(@)

© o o
© NN
N N RA O

RMSE of resistivity
o
®

o
—
»

1

1 2 3

: i -
4 5

lteration number

0.0185

o
o
pe
o]

0.0175

RMSE of chargeability

1

0.017

5 6 7 8

lteration number

Figure 18. Convergence of the data misfit function for the apparent resistivity and apparent chargeability data for Site 1. Electrical resistivity has converged
at the 6th iteration while chargeability has converged at iteration 9. RMSE stands for root mean square error.

Revil et al. 2018a)

O = Uwg(xoo)’ (34)

b+ cxoo + dxs?
gl = T (35)
+ axo

where xo, = X§° /0, X (in S) denotes the (instantaneous) spe-
cific surface conductivity of the clay minerals. It is defined as the
difference between the conductivity in the range of the double layer
and that in the bulk solution integrated over the thickness of the
double layer (Revil & Glover 1997). It can be related to the CEC
and the mobility of the counterions in the Stern and diffuse layers
(see details in Revil ef al. 2018a). For Na*™, T'= 25 °C, Xg is on
the order of 4 x 10~° S for montmorillonite, CEC = 90 meq/100 g
(see Cremers & Laudelout 1965, Cremers ef al. 1966) and g ~
5 x 107° S in Revil et al. 2018a). Eqs (8) and (9) should satisfy the
two asymptotic limits,

= —1+2 +o(2 ’ (36)
GOO - UlL’ F AFXOO AXOO ’

A + ! + O r 1y (37)
Oco =0y | 777 —Xoo N s
2f  f 2 Xeo

at high (2xo/A =2XEF/o,A << 1) and low (2xo/A =
2% /o, A >> 1)salinities, respectively, and where the Bachmann—
Landau notation is again used for the asymptotic developments.
High and low salinities are defined with respect to the isoconductiv-
ity point. The intrinsic formation factor is defined as F = [g(0)]™".
The four parameters entering this fundamental model can be related
to the four fundamental textural parameters, which are F' (dimen-
sionless), A (m), f(m) and A (m) as,

a= 5t o (38)
2/
2
c=—"57 39)
b=1/F," (40)
d=alf. (41)

The quantity 1/F and A appear as an effective porosity and the
size of the pore throats in the porous material, respectively (see
details in Bernabé & Revil 1995; Revil et al. 2018a).

Egs (34) and (35) accurately capture the non-linear behaviour of
smectite-rich rocks very well ( Figs 13 and 14). Since this model
is derived from fundamental physics (i.e. the upscaling of Joule
dissipation), it is very general with four well-defined fundamental
parameters describing the effect of the texture on the conductivity
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Figure 19. Convergence of the data misfit function for the apparent resistivity and apparent chargeability data for Site 2. Electrical resistivity has converged
at the 6th iteration while chargeability has converged at iteration 8. RMSE stands for root mean square error.

curve (see Johnson et al. 1986; Johnson & Sen 1988; Bernabé &
Revil 1995 for a discussion on the meaning of these parameters).
No assumption has to be made regarding the microstructure. Revil
et al. (2018a) demonstrated the equivalence between the three re-
sistors model and the general Padé approximant model described
above. Such equivalence leads to (see Revil et al. 2018a, for the
mathematical details),

1

A=5—T" (42)
TF
B = ! ! (43)
m1— ‘;—f
,  mAF
C'== (44)

and where m is the porosity (cementation) exponent found in
Archie’s first law F' = ¢~ ™ (Archie 1942). Therefore the parameters
in Lévy et al. (2018) are related to the most fundamental textural
parameters F, A, fand A of a porous material by

mAF
by= "o, 45
2 2/ O (45)
A 1
o= (46)

d=m (1 - ﬂ) oo, (47)
2/ )%

The same type of equations (see eqs 34—37) can be written for the
dc conductivity oy as a function of the dc conductivity of the grains
o . In the context of the dynamic Stern layer model, the specific
surface conductivity has low and high frequencies asymptotic limits
given by

lim Tgx = £ = OB, (48)
lim Tk = ¢ = 0s(B— 1), (49)

where Xgx (in S) described the complex specific surface conduc-
tivity of the electrical double layer, @ denotes the angular frequency
of the applied electrical field, Qs (in C m~?) denotes the surface
charge density on the mineral surface (Stern and diffuse layers in-
cluded). With eq. (4), the high salinity (HS) and low salinity (LS)
asymptotic limits are given by,

12 12

M = 2= (TF = 25) = £+ 0sh, (50)
LS 1 0 0 1

MES = 7 (2 —%9) = 7Q5A. (51
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Figure 20. Tomograms at Site 1. (a) 3-D electrical conductivity tomogram (see position in Fig. 15). (b) 3-D normalized chargeability tomogram.

We can now demonstrate that the low salinity asymptotic limit
of the normalized chargeability is necessarily smaller than its high
salinity asymptotic limit. This is easily proven using the inequality
discussed in Revil ef al. (2018a) for the conductivity model, that
is 2/FA > 1/f (see also Revil & Glover 1997). It follows that
the normalized chargeability is expected to be an increasing func-
tion of the pore water conductivity as we found for the DEM. In
order to analyse how the normalized conductivity increases with
the pore water conductivity, we first look at the Padé approxi-
mant. We use the following values for the four textural parame-
ters A = 3 nm, A = 60 nm, F = 10 and f'= 30 nm. This yields
A =1.11 (dimensionless), B = 30 nm and C = 0.033 nm~'. We use
also from Revil et al. (2017a,b), Os = 0.81 C m~2 and we obtain

T =Q0sB=334x10"7Sand £} = O5(B —A)=2.11 x 107°
S and therefore £° — %% =1.23 x 10~ S. We observe that around
the isoconductivity point, the normalized chargeability is an increas-
ing function of the pore water conductivity (Fig. 14).

While the equations developed in this section are more general
than the one used in the DEM theory presented in Section 2, the
drawback of the volume averaging approach (or equivalently the
three resistors model) is to use four textural parameters to capture
the non-linear behaviour of the conductivity curve rather than two
parameters used in the DEM approach. The reasons for this differ-
ence have been explored in details in Revil e al. (2018a). Therefore,
for practical applications, we prefer to use the DEM approach to
interpret field data.
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Figure 21. Tomograms at Site 2. (a) 3-D electrical conductivity tomogram of Site 2 (see position in Fig. 15). (b) 3-D normalized chargeability tomogram. The
data show a layer characterized by high conductivity and normalized chargeability values at depth corresponding to the clay-cap.

4 FIELD APPLICATION

4.1 Data acquisition

The data used in this section were acquired at the end of the Sum-
mer 2017. Two field sites (named 1 and 2 below) were investigated
(Fig. 15). The sites were chosen because they are close to wells in
which a relatively shallow clay cap was recognized at a depth of
few hundred meters (see Arnason et al. 2010; Levy et al. 2018,
for details). Site 1 consists of 4 parallel profiles separated by a dis-
tance of 100 m. Each profile (1240 m long) is characterized by a

set of 32 x 2 electrodes (32 electrodes for the current injection and
32 for the voltage measurements) with a separation of 40 m. Site
2 comprises 5 profiles parallel to each other. The profile interval
is 50 m and the same electrode configuration than Site 1 is used
here too. The data were acquired using time-domain induced po-
larization measurements (Fig. 16a). For each profile and following
the strategy of Dahlin ez al. (2002), we used two cables parallel to
each other and separated by a distance of 5 m. One of these cable
comprises the electrodes used to inject the electrical current and
the second cable is used for the electrodes measuring the voltage
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Figure 22. Sensitivity analysis of the petrophysical parameters to the choice of the pore water conductivity for a point of coordinates (x = 900, y = 120,
z = 240 m) (inside the clay cap, Site 1). The initial pore water conductivity is chosen in the range 0.05 to 0.3 S m~!. We see that a value of 0.3 Sm~! yield a
reasonable estimate of the porosity. This value is used to interpret the conductivity and normalized chargeability tomograms. (a) Porosity. (b) Cation exchange

capacity. (¢) Mass fraction of smectite. (d) Permeability.

differences (Fig. 16b). Such configuration avoids two issues: (1)
When the wires in one cable are used for both current injection and
voltage measurement, electromagnetic cross-talks interfere with the
measurements. (2) An electrode that has been used as current elec-
trode in a high contact resistance environment generates spurious
unstable voltages for several minutes after shutting down the pri-
mary current. Therefore it cannot be used as a voltage electrode
during that time.

The data were acquired with an ABEM SAS4000 with a 4-
channels capability and an ABEM LS instrument (8-channels).
Multigradient arrays were adopted for the collection of the ap-
parent resistivity and apparent chargeability data. We acquired 920
apparent resistivities and apparent chargeabilities for Site 1. A total
of 1179 apparent resistivity and apparent chargeability data were
obtained at Site 2. The data sets were inverted with the codes de-
veloped in Soueid Ahmed ef al. (2018), Ghorbani ef al. (2018)
and Qi et al. (2018) taking into account the topography. During
the modeling, unstructured tetrahedrons were used to discretize the
models for their good ability to emulate the topography. 86460
and 85074 tetrahedral elements were generated for the core do-
mains in site 1 and 2, respectively. For both sites, the topography
is considered during inversion. For site 1, the maximum z-axis is
532 m and the minimum is 451 m, while for site 2 the maximum
is 507 m and the minimum is 456 m. The characteristic secondary
voltage decay curves (plotted as apparent chargeabilities) indicate

the quality of the data (Fig. 17). We consider a dead time of 0.085 s
before starting recording the secondary voltages. For the inver-
sion, we use only the first window W1 (see Fig. 16a for its defini-
tion) with a duration of 0.025 s. The inversions of the geophysical
data converge well as shown in Figs 18 and 19 for Sites 1 and 2,
respectively.

The apparent resistivity data are first inverted in terms of a 3-D
tomogram of electrical conductivity (Fig. 20). Then, this final 3-D
conductivity model is used to invert the apparent chargeability data
in order to get a 3-D tomogram of chargeability. The tomogram
of chargeability is finally converted to a tomogram of normalized
chargeability by multiplying the chargeability tomogram by the
conductivity tomogram cell-by-cell. At both sites, a ~500-m section
was imaged (Fig. 20). At the two sites, we observe a shallow layer
characterized by a low conductivity (107> S m~!) and of normalized
chargeability (107> S m~") (see Figs 21 and 22), with values that
are typical of poorly altered volcanic rocks containing smectite
(Ghorbani et al. 2018). A deeper layer is characterized by a higher
conductivity (107" S m™') and a higher normalized chargeability
(1072 S m™"). These values of the second layer are typical of very
altered rocks likely associated with smectite (Ghorbani ez al. 2018).
Actually, we know from XRD analysis on core samples from Wells
KH-01 and KH-03 that at these depths, a high proportion of smectite
(up to 10-20 weight per cent) is present in the volcanic rocks (Lévy
etal. 2018).
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Figure 23. Sensitivity analysis of the petrophysical parameters to the choice of the pore water conductivity for a point of coordinates (coordinates x = 1200 m,
y =120 m, z =20 m, that is just above the clay cap in the unaltered portion of the investigated domain, Site 2). The initial pore water conductivity is chosen in
the range 0.05-0.3 S m~!. (a) Porosity. (b) Cation exchange capacity. (c) Mass fraction of smectite. (d) Permeability.

4.2 Petrophysical modeling approach

We can now use the tomograms of conductivity and normalized
chargeability to image the porosity, CEC, smectite content, and
permeability of the clay cap. In order to derive the porosity and
the CEC tomograms, we assume that the porous material is fully
water-saturated since the clay cap is very shallow (few hundreds
meters). Starting with eqs (12) and (24), we have

1
O'OC%F(O-U) +mBQV)s (52)

1
M ~m =10y. 53
f m— Ov (53)

Combining these two equations and using A = BR (R=0.10), we
obtain the following relationship between the surface conductivity
and the normalized chargeability:

m MH N
—B ==
B9 =%
Therefore the conductivity and the normalized chargeability can
be related to each other by
Ull} MHS
Finally combining eq. (55) with Archie’s law F = ¢, the
porosity can be obtained by using the following equation

O’OO—MHS/R 1/m
¢:( o (T) ) ’

with m = 2.57 as an average value (see Fig. 8), R = 0.10 (inde-
pendent of temperature) and o, and M"S denote the measured

(54

(5%

(56)

conductivity and normalized chargeability distributions. The pore
water conductivity o,,(7') depends on temperature according to eq.
(19) in which we need the value of the pore water conductivity
0, (7o) at the reference temperature 75 = 25°C (298 K). As a side
note, 7p is the reference temperature and not the ground surface
temperature defined below as 7. From Stefansson (2014), we have
a pore water conductivity o,,(Ty = 25°C = 470 uS cm™! (0.05 S
m~!). According to Arnason et al. (2010), the pore water conduc-
tivity value is in the range o,(Ty = 25°C) = 0.15-0.30 S m~!.
Flovenz et al. (2005) used 0,,(Ty = 25°C) =780 uS cm™' (0.08 S
m~!). Finally, Lévy et al. (2018) used ,,(Ty = 25°C) = 0.03-0.10
Sm!.

Once the porosity has been determined, we need to compute the
CEC distribution. From eq. (53), we obtain the following expression
for the CEC

MHS ¢
— m " pgh(T) <1 —¢)’

where we use p, = 2900 kg m ™~ (as an average value for the volcanic
rocks in Ghorbani et al. 2018), m =2.57 (Fig. 8), AM(T') is given by eq.
(21) with A(Na*, 25 °C) = 3.0 + 0.7 x 107" m~2s~'V~!, and
MS denotes the measured normalized chargeability distribution.
The CEC is given in C kg~! (1 meq/100 g = 963.20 C kg™"). The
quantities 02 and M? are measured at the in situ temperature, so
they do not need to be corrected for the effect of the temperature.
We need to know the temperature as a function of depth in order to
compute A(7) from eq. (21). In the upper part of the investigated
system, the temperature is taken from the equilibrium temperature
as,

CEC

(57)

T(z)=Ts+Gz, (58)
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Figure 24. Porosity and CEC showing the clay cap (Site 2). The inversion is successful in underlying the clay-cap and its properties.

where z denotes the depth below the ground surface, 7s denotes
the ground surface temperature at the two sites (10 °C) and with G
defining the geothermal gradient (G = 600 °C km™!).

Once the porosity and the CEC have been determined, the other
parameters of interest can be computed. From eq. (9), neglecting the
background residual CEC due to other minerals, the mass fraction
of smectite can be obtained as,

CEC
CEC(S)’
where CEC(S) = 90 meq/100 g and denotes the CEC of smectite
(Fig. 4b). Finally, the permeability can be computed either from eq.

(27) or eq. (28). In this section, we will use eq. (28) because it
provides a good permeability prediction.

ow(S) ~ (59)

4.3 Results and interpretation

As explained above, we first start with a sensitivity analysis re-
garding the pore water conductivity taken in the range o,(7) =
25°C) = 0.05 to 0.3 S m~! at Krafla volcano. We select two points
in the investigated 3-D volume at Site 2, one being in the clay cap

(coordinates x = 900 m, y = 120 m, z = 240 m) and the second
closer to the ground surface in what is supposed to be a relatively
unaltered area (coordinates x = 1200 m, y = 120 m, z = 20 m).
Reasonable estimates for the porosity (expected range 0.30-0.50)
and CEC (expected range 2-20 meq/100 g) are only obtained with
a pore water conductivity of o,,(Ty = 25°C) ~ 0.30 & 0.05 Sm !
for Site 2, consistent with the range discussed above (see Figs 23
and 24).

Then, with this pore water conductivity value, we use the re-
lationships discussed in Section 4.2 to compute the 3-D tomo-
grams of porosity, CEC, smectite content and permeability (Figs 24
and 25 for Site 2). A vertical cross-section distributions of these
properties (profile at y = 120 m) is displayed in Figs 26 and
27. The clay cap is characterized by high porosity (in the range
0.40-0.50), high CEC values (3—5 meq/100 g), and therefore high
smectite content (few per cents), and low permeability (0.1-1 mil-
liDarcy). The clay cap is rather flat in this area. The perched
aquifer above the clay cap is characterized by higher resistivities,
lower porosities and CEC values. The more resistive formations
located deeper than the clay cap appear to have a smaller clay
content.
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Figure 25. The high smectite content and low permeability underline the clay cap (Site 2). The clay cap is characterized by low permeability in the range 0.1-1
mD (10~'4-1071¢ m?). The inversion is successful in underlying the clay-cap and its properties.

The same work is done at Site 1. We obtain a pore water con-
ductivity of 0.05 4 0.02 S m~! in order to get reasonable values of
porosity and CEC (as discussed above for Site 2) so substantially
smaller than at Site 2. A 2-D cross-section showing the distributions
of the porosity, CEC, smectite content and permeability are shown
in Figs 26 and 27. The values we have obtained are in agreement
with the borehole data exhibited in Lévy et al. (2018, their fig. 12).
This seems to indicate that we are successful with our approach in
imaging the porosity and CEC of volcanic rock formations.

5 CONCLUSIONS

We have developed a complete consistent theory of conductivity and
chargeability in smectite-rich volcanic rocks using the DEM theory
and this theory simplifies to the now well-established equations for
low CEC materials. The following conclusions have been reached.

(i) The new model captures the non-linear behaviour between
the rock conductivity and the pore water conductivity for smectite
rich volcanic rocks. An alternative approach based on the volume

averaging theory (which is shown to be equivalent to the three-
resistor model) requires four textural parameters to accomplish the
same task. The DEM theory is therefore more practical to use in
interpreting field data.

(i) The new model agrees with the dependence of the grain
conductivity with the excess charge per unit pore volume, which
depends in turn on the measured CEC (obtained independently
with titration experiments using for example the cobalt hexamine
method) and the (connected) porosity. The slope of the linear trend
provides the value of the effective mobility of the counterions for
surface conduction including in the interlayer pore space.

(iii) The new model agrees with the dependence of the normal-
ized chargeability with the excess charge per unit pore volume. The
slope of the linear trend provides the value of the effective mobility
of the counterions for surface polarization including in the interlayer
pore space.

(iv) The new model can be applied to time-domain induced polar-
ization data in the field in order to provide tomograms of porosity,
CEC, smectite content, and permeability with application to the
detection of smectite-rich clay caps of geothermal systems. The
permeability can be derived from the porosity and the CEC. An
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Figure 26. Porosity (dimensionless) and CEC (in meq/100 g) for a cross-section at Site 1. We can observe also the clay cap but its structure is more complicated
than at Site 2. The inversion is successful in underlying the clay-cap and its properties.

application to a clay cap in Krafla in Iceland indicates a porosity of
40-50 per cent, a CEC in the range 3—5 meq/100 g (3—5 per cent
weight per cent smectite), and a permeability in the range 0.1-1
mD.

While the present study was restricted to a depth of ~500 m,
recent technological developments such as the FullWaver equipment
from IRIS can be used to image induced polarization properties to
depths of few kilometers. We have now the ability to image induced
polarization properties of volcanoes in 3-D or 4-D. 4-D induced
polarization tomography of active volcanoes will be the subject of
a future contribution.
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