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Complex conductivity of tight sandstones

André Revil1, Antoine Coperey1, Yaping Deng2, Adrian Cerepi3, and Nikita Seleznev4

ABSTRACT

Induced polarization well logging can be used to characterize
sedimentary formations and their petrophysical properties of in-
terest. That said, nothing is really known regarding the complex
conductivity of low-porosity sedimentary rocks. To fill this
gap of knowledge, we investigate the complex conductivity of
19 tight sandstones, one bioclastic turbidite, and four sand/
smectite mixes. The sandstones and the bioclastic turbidite
are characterized by low to very low porosities (in the range
of 0.8%–12.3%) and a relatively narrow range of cation ex-
change capacity (CEC — 5–15 meq∕100 g). The sand-clay
mixtures are prepared with pure smectite (Na-Montmorillonite,
porosity approximately 90%, CEC 75 meq∕100 g) and a coarse
sand (grain size approximately 500 μm). Data quality is as-
sessed by checking that the percentage frequency effect between

two frequencies separated by a decade is proportional to the
value of the phase lag measured at the geometric frequency.
We also checked that the normalized chargeability determined
between two frequencies is proportional to the quadrature con-
ductivity at the geometric mean frequency. Our experimental
results indicate that the surface conductivity, the normalized
chargeability, and the quadrature conductivity are highly corre-
lated to the ratio between the CEC and the bulk tortuosity of the
pore space. This tortuosity is obtained as the product of the (in-
trinsic) formation factor with the (connected) porosity. The
quadrature conductivity is proportional to the surface conduc-
tivity. All these observations are consistent with the predictions
of the dynamic Stern layer model, which can be used to assess
the magnitude of the polarization associated with these porous
media over the full range of porosity. The next step will be to
extend and assess this model to partially saturated sandstones.

INTRODUCTION

Complex conductivity refers to the study of electromigration and
local charge storage in porous media. It corresponds to a set of
material properties determined in a geophysical method known
as induced polarization (Schlumberger, 1920). The in-phase com-
ponent (the real part of the complex conductivity) refers to pure
electromigration processes (Waxman and Smits, 1968), i.e., the mi-
gration, in a solvent, of the charge carriers under the influence of an
external (applied) electrical field. The quadrature component
(imaginary part of the complex conductivity) refers to reversible
charge accumulations at some polarization length scales corre-
sponding to grains or pores (Vinegar and Waxman, 1984). Such

low-frequency polarization is associated with charge migration/dif-
fusion under the influence of a gradient in the chemical potential of
the charge carriers in the solvent (Fixman, 1980; Grosse and Shilov,
2000; Grosse, 2009). In absence of metallic particles, the ability of a
porous material to store reversibly electrical charges can be also
described by a normalized chargeability corresponding to the prod-
uct of the chargeability by the (high-frequency) electrical conduc-
tivity of the material (e.g., Mansoor and Slater, 2007). This
normalized chargeability is directly proportional to the cation ex-
change capacity (CEC) and therefore, in first approximation, to
the clay-mineral content of the rocks when the clay mineralogy
remains constant (for volcanic rocks, see Revil et al., 2017a,
2017b).
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Vinegar and Waxman (1984) are probably the first to recognize
that two concurrent electrochemical polarization mechanisms may
explain the low-frequency (<10 kHz) polarization of porous rocks.
The first is related to the polarization of the electrical double layer
(DL) surrounding the grains, i.e., to charge accumulation and dif-
fusion of the counterions in the Stern and diffuse layers. Leroy et al.
(2008) emphasize the role of the inner portion of the electrical DL,
called the Stern layer, in the polarization of porous media (see also
Chelidze and Guéguen, 1999). The second low-frequency polariza-
tion mechanism is called membrane polarization (e.g., Marshall and
Madden, 1959; Titov et al., 2010; Bücker and Hördt, 2013a, 2013b).
The mechanism is due to the gradient in the Hittorf numbers of the
ions through the pore network, which in turn generates charge con-
centration gradients under the application of a primary electrical field
or electrical current. These Hittorf numbers correspond to the fraction
of current carried by a given type of ion and are influenced by the
CEC of the material (e.g., Revil, 1999). Therefore, the gradient in the
Hittorf numbers is controlled by the variations in the CEC of the
material. Following these ideas, Vinegar andWaxman (1984) hypoth-
esize that the surface conductivity and the quadrature conductivity
would be influenced by the CEC of the material.
The dynamic Stern layer model developed later by Revil and

Florsch (2010) and Revil (2012, 2013a, 2013b) has shown some
promises in explaining all the aspects of complex conductivity
of porous media without the need for membrane polarization. It
is based on the tangential mobility of the counterions (forming outer
sphere complexes in the Stern layer) along the mineral/water inter-

face. This concept was developed in colloidal chemistry by Zukoski
and Saville (1986a, 1986b) and Rosen and Saville (1991). It is as-
sumed that the polarization of the Stern layer is the dominating
mechanism and that membrane polarization is vanishingly small
or occurs at very low frequencies (<10 mHz, see Leroy and Revil,
2009). It also explains the observations made by Vinegar and Wax-
man (1984) regarding the influence of the bulk tortuosity with re-
spect to the quadrature conductivity.
Currently, the dynamic Stern layer model is further tested to

check its heuristic predictions to a broader class of porous media,
including volcanic rocks (Revil et al., 2017a, 2017b), oil and gas
shales (Revil et al., 2013a, 2013b; Woodruff et al., 2014), and soils
(Revil et al., 2017c). Very few studies (e.g., Zisser and Nover, 2009;
Zisser et al., 2010) have been performed on low-porosity (tight)
sandstones, which is the subject of the present investigation. These
published works were related to the connection between permeabil-
ity and the main relaxation time of these materials and not in ex-
plaining the magnitude of the induced polarization in terms of a
physics-based model. Induced polarization can be used to assess
oil saturation in oil and gas tight reservoirs by analyzing well-
log data (either the conductivity and the phase or the dispersion
of the conductivity with the frequency). Various papers have shown
how complex conductivity can be very useful to estimate oil and gas
saturations in siliciclastic materials (Olhoeft, 1985, Kemna et al.,
2004, Davydycheva et al., 2006; Schmutz et al., 2010, 2012).
In the present paper, we are mostly interested to test the dynamic

Stern layer model of polarization to a new set of 20 saturated con-
solidated low-porosity (<12%) sedimentary core samples (19 tight
sandstones and 1 bioclastic turbidite). These core samples were ex-
tracted from an Eocene fluvial-dominated deltaic formation. We
performed complex conductivity measurements at three salinities
(approximately at 0.1, 1, and 10 Sm−1 NaCl brine, 25°C). To con-
trast these samples, we also performed measurements with four
samples made using a clean sand and a smectite. For these clay/
quartz samples, the samples are Sd100: 100% quartz, Sd95: 5%
smectite/95% quartz, Sd90: 10% smectite/90% quartz, and S100:
100% smectite sample (% in weight fraction of solid matrix grains).
In principle, the dynamic Stern layer model should be able to ex-
plain all the spectra with the same values of the fundamental param-
eters used in the model whatever the porosity. These are the key
scientific questions we want to address: (1) How predictive is
the Stern layer model for these materials? (2) What are the depend-
ences of the surface conductivity, quadrature conductivity, and nor-
malized chargeability with the CEC and with the tortuosity of the
bulk pore space? (3) Is the ratio of quadrature conductivity to sur-
face conductivity consistent with other sedimentary materials and
volcanic rocks? We will also take advantage of the present study
to reassess the value of the mobility of the counterions in the Stern
and diffuse layers. A future work will focus on the relationship be-
tween the complex conductivity spectra of tight sandstones and the
saturation and permeability.

THEORY

All porous media investigated in the present study have in
common the existence of an electrical DL coating the surface of
the mineral grains. The electrical DL is formed by the combination
of the Stern and diffuse layers (e.g., Gouy, 1910; Rosen and Saville,
1991). Usually, because of their high specific surface area (SSA),
the exposed interface between the minerals and the pore water is
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Figure 1. Relationship between SSA and CEC for clay minerals and
clay-rich porous materials. SSA as a function of CEC (in meq g−1

with 1 meq g−1 ¼ 96;320 C kg−1 in SI units). The two lines corre-
spond to a surface charge density of one to three elementary charges
per unit surface area. Modified from Revil et al. (2013a, 2013b).
Therefore, data show that the average surface charge density is ap-
proximately two elementary charges per nm2 (QS ¼ 0.32 Cm−2).
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dominated by the presence of clay minerals. Figures 1 and 2 show
the relationship between the SSA (symbol SSp) and the CEC for
clayey materials and pure clay minerals (including our data set,
which we will come back to later). The ratio between the CEC
and SSp denotes the charge per unit surface area, which is typically
two to five elementary charges per nm2. The conduction and low-
frequency polarization of a porous material with silicates and alu-
minosilicates, such as those used in the present study, is due to the
conduction and polarization of this electrical DL and the adjacent
pore water (Figure 3a). These properties are therefore strongly in-
fluenced by the CEC or alternatively by SSp. For instance, for a soil
containing a mineral such as smectite (characterized by a high CEC
and SSp), the conductivity associated with conduction in the elec-
trical DL and the polarization of the sandstones and clay-sand mixes
is expected to be very strong by comparison with a material char-
acterized by a low clay content. We will check in the present work
that smectite has indeed the highest surface conductivity and quad-
rature conductivity among clay minerals and porous media. Our
goal is also to show that the dynamic Stern layer model works
for a broad class of porous media, including very high and low-
porosity materials.

Complex conductivity for the dynamic Stern layer
model

According to the dynamic Stern layer model and using harmonic
current excitations behaving as E ¼ E0 expðþiωtÞ, the complex
conductivity of a water-saturated porous material is given by
(e.g., Revil et al, 2013a, 2013b, 2017b)

σ�ðωÞ ¼ σ∞

�
1 −M

Z
∞

0

hðτÞ
1þ ðiωτÞ1∕2 dτ

�
þ iωε∞; (1)

where ω denotes the angular frequency (rad s−1), ε∞ð> 0Þ denotes
the high-frequency permittivity (in Fm−1 ¼ A sV−1 m−1 actually
the low-frequency part of the Maxwell Wagner polarization or
the high-frequency dielectric permittivity in the absence of Maxwell
Wagner polarization), τ is a time constant (also called the relaxation
time because it is corresponding to a diffusion process), hðτÞ de-
notes the (normalized) probability density associated with the dis-
tribution of the time constants of the material (in turn related to its
distribution of polarization length scales), M ¼ ðσ∞ − σ0Þ∕σ∞ is
the dimensionless chargeability, and σ0 and σ∞ denote the direct
current (DC, ω ¼ 0) and high-frequency electrical conductivities
(in Sm−1 ¼ AV−1 m−1), respectively.
Usually, we also define a normalized chargeability as Mn ¼

Mσ∞ ¼ σ∞ − σ0, which is expressed in Sm−1. This normalized
chargeability is introduced because, according to the dynamic Stern
layer model, it is proportional to the CEC of the material (e.g., Mao
et al., 2016). We will investigate the validity of this claim for tight
sandstones in this paper for which independent CEC measurements
will be obtained. Equation 1 can eventually simplify to a Cole-Cole
model for complex conductivity (Cole and Cole, 1941), which is dis-
tinct from the Cole-Cole model developed by Pelton et al. (1978) for
complex resistivity (see a detailed discussion in Tarasov and Titov,
2013). In equation 1, the function ½1þ ðiωτÞ1∕2�−1 is called the ker-
nel and corresponds here to a Warburg decomposition for the reason
described in detail in several of our previous papers (see discussions
in Revil et al., 2014a; Niu and Revil, 2016). Finally, the relaxation
time distribution hðτÞ in equation 1 is a normalized probability den-

sity function related to the pore-size or grain-size distributions (e.g.,
Revil and Florsch, 2010; Revil et al., 2014a).
The high- and low-frequency conductivities can be obtained

through a volume averaging method (see Cole-Cole model derivation
in Revil, 2013a, 2013b) in the so-called linear conductivity model:

σ0 ¼
1

F
σw þ

�
1

Fϕ

�
ρgβðþÞð1 − fÞCEC; (2)

σ∞ ¼ 1

F
σw þ

�
1

Fϕ

�
ρg½βðþÞð1 − fÞ þ βSðþÞf�CEC; (3)

where F (dimensionless) denotes the intrinsic formation factor
related to the porosity ϕ (dimensionless) by Archie’s (1942) law
F ¼ ϕ−m (m ≥ 1.0 is called the cementation or porosity exponent),
σw (in Sm−1) denotes the pore-water conductivity, f (dimensionless)
denotes the partition coefficient for the counterions between the dif-
fuse and the Stern layers (i.e., the fraction of counterions in the Stern
layer), ρg is the grain density (in kgm−3, typically ρg ¼ 2700 kgm−3

for the rocks investigated in the present study), and CEC is the cation
exchange capacity of the material (usually reported in meq/100 g but
expressed in Ckg−1 in the international system of units,
1 meq∕ð100 gÞ ¼ 963.2 C kg−1). The values of the mobility of ions
in diffuse layer of sedimentary rocks are the same as in the bulk pore
water with βðþÞðNaþ; 25°CÞ ¼ 5.2 × 10−8 m2 s−1 V−1. The value of
the mobility of the counterions in the Stern layer βSðþÞ will be dis-
cussed in detail below.

Figure 2. The SSAversus CEC for the sandstones used in the present
study (tight sandstones) and volcanic rocks (1 meq ¼ 96.32 C). The
linear trend (in a log-log plot) is used to determine the average surface
charge density of the mineral surface, which is approximately five
elementary charges per nm2 ( QS ¼ 0.81� 0.08 Cm−2). The dacite
data (CEC ¼ 0.10 meq g−1, SSA 6.4 m2 g−1) are fromShinzato et al.
(2012) (CEC obtained with the NH4-Na titration method). The data
for the extrusive volcanic rock (CEC ¼ 0.0404 meq g−1, SSA
7.0 m2 g−1) are from Lira et al. (2013), CEC measured with the am-
monium acetate method and SSA with the BET method). The tuff
data (CEC ¼ 0.98 meq g−1, SSA 63.0 m2 g−1) are from Godelitsas
et al. (2010).

Complex conductivity of tight sandstones E57



Surface conductivity and normalized chargeability

Equations 2 and 3 can be written as a linear model for the con-
ductivity (i.e., the conductivity of the sample depends linearly on
the conductivity of the brine)

σ 0 ¼ 1

F
σwð1þ FDuÞ; (4)

σ 0 ¼ 1

F
σw þ σS; (5)

where σS (in Sm−1) denotes the surface conductivity of the material
and Du ¼ σS∕σw denotes the dimensionless Dukhin number (Du-
khin and Shilov, 1974). Equation 5 connects the conductivity, the
conductivity of the pore water σw, and the surface conductivity σS
(see Figure 3).
The (high-frequency) surface conductivity (see the discussion in

Appendix A) and the normalized chargeability are given by (Revil,
2013a, 2013b)

σS ¼
�

1

Fϕ

�
ρg½βðþÞð1 − fÞ þ βSðþÞf�CEC; (6)

Mn ¼
�

1

Fϕ

�
ρgβ

S
ðþÞfCEC: (7)

A more refined model of frequency-dependent surface conduc-
tivity is discussed in Appendix A. This model explains the differ-
ence between the Vinegar and Waxman (1984) model (see
Figure 3b) and the dynamic Stern layer model (shown in Fig-
ure 3c). In our model, the Stern layer contribution is the source
for the frequency-dependent surface conductivity, whereas the
model of Vinegar and Waxman (1984) does not account for such
frequency dependence. Note that in equations 6 and 7, the surface
conductivity and the normalized chargeability are inversely pro-
portional to the product Fϕ, which corresponds to the tortuosity
of the pore space. This is a fundamental consequence of the dynamic
Stern layer model that is not explained by alternative models, such
as the membrane polarization model or the model proposed initially

by Vinegar and Waxman (1984). Equation 6 can
be also written as σS ¼ ρgBðCEC∕FϕÞ, where
B ≡ βðþÞð1 − fÞ þ βSðþÞf corresponds to an ap-
parent mobility for surface conduction as in the
empirical model proposed in the seminal paper
of Waxman and Smits (1968).
The charge density per unit surface area

(in Cm−2) QS denotes the available charge den-
sity of counterions that can be sorbed on the
mineral surface. It is therefore defined as the ratio
of the CEC by the SSA of the material SSp
(inm2 kg−1)

QS ¼
CEC

SSp
: (8)

The SSA can be measured by the so-called BET
technique using nitrogen adsorption (see the de-
tails in Lowell and Shields, 1979). For clay min-
erals, the mean charge densityQS is typically two
elementary charges per nm2 (QS ¼ 0.32 Cm−2;
see Figure 1). This charge density is an average
of the volumetric charge density related to the iso-
morphic substitutions and the charge associated
with the amphoteric sites on the edge of the clay
crystals. From equations 6–8, we can write the
surface conductivity and the normalized charge-
ability as a function of the SSA

σS¼
�

1

Fϕ

�
ρg½βðþÞð1−fÞþβSðþÞf�QSSSp;

(9)

Mn ¼
�

1

Fϕ

�
ρgβ

S
ðþÞfQSSSp: (10)

These equations show that the surface conduc-
tivity and the normalized chargeability (therefore
the quadrature conductivity) are proportional to
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Figure 3. Polarization of clayey materials. (a) Sketch of the polarization of a clay grain.
In equilibrium, there is an excess of cations (in blue) associated with the clay grains in
the diffuse layer associated with the basal planes and the amphoteric sites covering the
edges of the clay crystal and the Stern layer on the edges. In the presence of an electrical
field E, the clay particles get polarized due to the electromigration of the cations in the
direction of the electrical field (Stern layer polarization) and the formation of a salinity
gradient on each side of the grain (membrane polarization). This polarization provides a
dipole moment to the clay particles. (b) First-order approximation of the equivalent cir-
cuit of a clayey rock according to Vinegar and Waxman (1984). Conduction comprises
two contributions, one associated with the bulk pore water and the other with conduction
in the electrical DL (surface conductivity). The capacitance corresponds to the polari-
zation of the electrical DL coating the surface of the grains. (c) Equivalent circuit of a
clayey rock according to the dynamic Stern layer model. The W denotes a Warburg-type
capacitance.
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the SSA in addition to being controlled by the (bulk) tortuosity of the
bulk pore space Fϕ.
Two other quantities of interest are the charge per unit pore vol-

ume (used instead of the CEC, i.e., the charge per unit mass of
grains) and the surface per pore volume ratio (used instead of
the SSA, i.e., a surface per unit mass of grains). These parameters
are defined by

QV ¼ ρg

�
1 − ϕ

ϕ

�
CEC; (11)

Spor ¼
S
Vp

¼ ρg

�
1 − ϕ

ϕ

�
SSp; (12)

respectively. The inverse of Spor corresponds to a hydraulic radius
(i.e., for a capillary, it would be exactly the radius of the capillary).
As shown by Revil (2013a, 2013b), these two parameters can be used
to determine the surface conductivity and normalized chargeability

σS ¼
1

F
BQV; (13)

Mn ¼
1

F
λQV; (14)

with B ≡ βðþÞð1 − fÞ þ βSðþÞf being an apparent mobility for surface
conduction (and similarly λ ¼ βSðþÞf for the quadrature conductivity).
The equivalent linear circuit of a sandstone described by such a
model is sketched as in Figure 3b and can be seen as two resistances
in parallel to a capacitance. This is, however, a very simplistic view of
the problem because in this approach (corresponding to the Vinegar
and Waxman model), the conductivity itself is independent of the
frequency (in contrast to the model shown in Figure 3c). Because
the surface charge density is related to the volumetric charge density
by QS ¼ QVVp∕S, we have

σS ¼
1

F
BQSSpor; (15)

Mn ¼
1

F
λQSSpor; (16)

(and similarly for the quadrature conductivity). Equation 15 is similar
to the equations developed empirically byWaxman and Smits (1968)
and Cremers (1968). An equation similar to equation 16 for the quad-
rature conductivity can also be found in Vinegar andWaxman (1984).
Equations 15 and 16 are also similar to the equations developed by
Börner (1991, 1992) for the surface conductivity and the quadrature
conductivity.
The surface conductivity is inherently difficult to measure in the

laboratory because the linear conductivity model described above is
only valid when the surface conductivity is small. When the surface
conductivity is high, this high-salinity assumption is not valid any-
more and the relationship between the conductivity of the porous
material and the pore-water conductivity is becoming nonlinear.
The normalized chargeability may also be difficult to accurately mea-
sure because it requires very broadband measurements. In time-
domain induced polarization, the normalized chargeability can be

measured, but this requires that all the polarization-length scales have
been fully polarized, which can be achieved only through a long du-
ration (100–200 s) of the primary current injection.

Quadrature conductivity

The quadrature conductivity is easily measurable, but its value is
frequency dependent. In addition, at high frequencies, >1 kHz, the
quadrature conductivity associated with the polarization of the DL
of the grains can be masked by the Maxwell Wagner polarization
and true dielectric effects. Following our previous paper (e.g., Revil
et al., 2015), we can define a linear relationship between the quad-
rature conductivity and the normalized chargeability

σ 0 0 ≈ −
Mn

α
− ωε∞; (17)

where α has been taken equal to 1 or 5 in Revil et al. (2015). The
value of α will be determined using equations determined from the
Drake’s model, also called the constant-phase model. Following
Revil et al. (2015) and for frequencies for which the dielectric term
−ωε∞ is negligible in equation 17, we use the following definition
for the dimensionless number R:

R ≡
Mn

σS
≈ −α

�
σ 0 0

σS

�
; (18)

and −σ 0 0∕σS ¼ R∕α. Using equations 6 and 7, or alternatively
equations 15 and 16, this dimensionless number R can be related
to the partition coefficient f of the counterions between the Stern
and diffuse layers (Revil et al., 2015) by

R ¼
βSðþÞf

½βðþÞð1 − fÞ þ βSðþÞf�
¼ λ

B
: (19)

We will investigate below the value of this dimensionless number
for our new data set, and we will estimate the value of the mobility
of the counterions in the Stern layer βSðþÞ as well as the value of the
partition coefficient f.

Extension to unsaturated conditions

Although the extension of our model is not explored further in
unsaturated conditions, it may be worth expending quickly the sim-
plified model described above for such case. Extending the models
of Waxman and Smits (1968) and Vinegar and Waxman (1984) to
unsaturated conditions yields

σ 0ðswÞ ¼
1

F
snwσw þ sn−1w

�
1

Fϕ

�
ρg½βðþÞð1 − fÞ þ βSðþÞf�CEC;

(20)

σ 0 0ðswÞ ¼ −
�

1

Fϕ

�
sn−1w

λ

α
ρgCEC; (21)

MnðswÞ ¼
�

1

Fϕ

�
sn−1w λρgCEC; (22)
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where sw (0 ≤ sw ≤ 1) denotes the saturation and
n > 1 is the second Archie’s exponent (satura-
tion exponent).

MATERIAL AND METHODS

Samples

Twenty core samples were extracted from an
Eocene fluvial-dominated deltaic formation, in-
cluding 19 sandstones per se and one bioclastic
turbidite (sample #20). Some thin sections are
shown in Figure 4. The thin sections show that
the core samples exhibit very distinct microstruc-
tures. The mineralogy of the 20 core samples is
provided in Table 1. The composition of these
rocks, besides quartz, clays, and feldspars, in-
cludes a significant fraction of carbonate lithic
fragments and some small amount of pyrite. In
some samples, the fraction of carbonate can be
up to 76%. A picture of the 20 core samples with
the impedance meter is shown in Figure 5. We
can see that some of the core samples exhibit
some damage with the presence of cracks. The
axis of symmetry of the cylindrical core samples
is perpendicular to the axis of symmetry of the
borehole. The axis of symmetry is parallel to
the bedding, and therefore the four-electrode
measurement method, applied along the sym-
metry axis of the core samples, probes the hori-
zontal conductivity.
For the sand-clay mixtures, the clean sand is a

well-sorted sand with a grain size in the range of
500 − 600 μm. The smectite corresponds to the
SWy-2-smectite from the Clay Mineral Society.
It is a Na-Montmorillonite from the Cretaceous
Newcastle Formation (Wyoming, USA). Its mea-
sured CEC (using the ammonium displacement
method) is 75 meq∕100 g. For the Sd95 mixture,
the clay particles filled half of the pore space be-
tween the sand grains, whereas for the Sd90 mix-
ture, the clay particles filled all the space between
the sand grains (Appendix B). This is due to the
very high porosity of the smectite (approxi-
mately 90%).

Experimental setup

To prevent electrical leakages and drying of
the sandstone core samples, we use an insulating
tape around the external side of the core samples
(Figure 6). The samples are connected to the
ZEL-SIP04-V02 impedance meter using two
voltage electrodes M and N and two current elec-
trodes A and B (Figure 6). Two electrodes are
used at the end faces as current electrodes A
and B (Figure 6). Two other electrodes are used
on the side as voltage electrodes (M and N). A
spring was used to push the current electrodes
against the core sample, always having the same

Table 1. Mineralogy (from transmission FTIR, Fourier transform infrared
spectroscopy; all data are expressed in wt%).5

Name Q F Na-P C D A I S K C M P

20161501 20 0 0 34 6 2 19 6 1 5 8 1

20161502 18 2 0 43 5 1 20 5 0 2 2 2

20161503 15 2 0 59 4 0 12 4 0 1 1 1

20161504 15 6 4 67 2 0 2 2 0 0 0 1

20161505 9 1 0 56 6 2 14 4 0 5 3 0

20161506 7 1 0 45 15 3 15 4 1 5 5 1

20161507 16 5 3 56 4 1 9 3 0 3 1 1

20161508 15 1 0 76 0 0 2 2 0 2 1 0

20161509 26 2 0 29 8 0 24 6 0 2 1 2

20161510 19 1 0 61 2 1 9 3 0 2 2 1

20161511 13 1 0 68 0 0 11 4 0 0 0 3

20161512 14 4 3 48 16 0 7 4 0 3 1 1

20161513 19 5 3 59 5 0 4 2 0 1 0 1

20161514 13 4 1 66 3 0 10 3 0 1 0 1

20161515 14 2 0 56 1 0 18 5 0 2 2 2

20161516 17. 7 4 56 6 0 6 3 0 1 0 1

20161517 17 8 5 62 2 0 4 2 0 0 0 0

20161518 17 4 1 56 10 0 7 3 0 0 0 2

20161519 12 2 0 63 1 1 12 4 0 3 1 1

20161520 14 2 0 59 1 0 16 5 0 2 1 1

5Q, Quartz; F, K-Feldspar; Na-P, Na-plagioclase; C, calcite; D, dolomite; A, ankerite; I, illite; S, smectite; K,
kaolinite; C, chlorite; M, muscovite; and P, pyrite. We see that the two main minerals are calcite and quartz and
that the clay fraction is dominated by illite.

Figure 4. Thin sections of four characteristic tight sandstones. The size of the grains
differs strongly from one sample to the other. The grain-size distribution is expected
to be quite broad explaining in turn the potential broad range of the relaxation times
for the core samples. The clay fraction of these samples is dominated by illite.
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uniaxial pressure. Great care was taken to have no surface of the
core samples exposed to air during the measurements to avoid their
drying. The electrodes are also in direct contact with the core sam-
ple to avoid water-filled spaces between them
that could create spurious resistances that are ex-
pected to vary with the salinity as in the exper-
imental setup proposed, for instance, by Vinegar
and Waxman (1984). We performed different
preliminary tests to choose the most suitable
electrodes for the current and voltage electrodes.
The geometric factor is determined as g ¼ L∕A,
where L is the separation between the two volt-
age electrodes and A denotes the surface area of a
cross section of the core sample. The result is
close to 17.7m−1, which has been checked using
a numerical test using a finite-element solver.
For the first experiment (done with the lowest

salinity), the core samples have been gently dried
in an oven and then fully saturated under vacuum
conditions. The solutions used for the saturations
are NaCl solutions that have been first degassed.
Salt solutions were made up by weight through
the addition of dry NaCl salt (from Labosi, Fisher
Scientific, ref. A4890853, 99% pure) to a certain
volume of demineralized water. The electrical
conductivity of the NaCl solutions σwðCf;TÞ
is determined from the salinity and the temper-
ature according to the formula proposed by Sen and Goode
(1992). Electrical conductivity measurements were checked with
a calibrated conductimeter (Fisher AB200 pH/conductivity meter).
The final solutions at equilibrium can be slightly different at the two
lowest salinities (typically the conductivity at equilibrium is
0.10 − 0.16 Sm−1) possibly due to the dissolution of carbonate into
the first solution.
For the soft-core samples, we used a different setup, which is

similar to the setup used recently in Revil et al. (2017c). We keep
the samples in buckets covered with a 3D printed cap to avoid de-
saturation during the course of the experiments (Figure 7). Four
equally spaced nonpolarizing Ag-AgCl2 sintered electrodes (diam-
eter 4 × 1 mm) are placed in the top of the bucket with a cap. The
distance between the electrodes is 2 cm, the height of the bucket is
2.5 cm, and its diameter is 7.0 cm (Figure 7). Such types of elec-
trode configuration have been used before for spectral-induced
polarization measurements (e.g., Van Voorhis et al., 1973; Schmutz
et al., 2010; Vaudelet et al., 2011a, 2011b), and benchmarks of these
electrode configurations can be found in those papers. This type of
electrodes configuration is very similar to the ones used in field
conditions (Wenner-α type array). It avoids issues with the approach
used in Vinegar and Waxman (1984), such as the need for comput-
ing the resistances due to the water-filled reservoirs between the
electrodes and the core sample. Also, the current lines do not need
to be homogeneous through the core sample and, as shown by Vau-
delet et al. (2011a, 2011b), the sensitivity map can be plotted for any
electrode configurations taking into account the electrode configu-
ration, the size of the electrodes, and the boundary conditions ap-
plied to the sample (insulating boundaries outside the position of the
electrodes themselves).
For the first experiment (i.e., performed at the lowest salinity), the

samples were first dried and then saturated under vacuum with a

degassed solution. For this sample holder, we use two distinct pro-
cedures to get the geometric factor. The first procedure is based on
using Comsol Multiphysics to numerically solve Laplace equation

A 

B 

M 

N 

Amplifier unit 

 
 Function 
generator 

ZEL-SIP04-V02 

Core samples

a) b)

Figure 5. Core samples, impedance meter, and position of the electrodes on the sample
holders. (a) Core samples with their insulating tape around them. The saturations are
done under vacuum (less than 1 mbar). Samples #1, 2, 9, and 16 are fractured. (b) ZEL-
SIP04-V02 impedance meter used for the laboratory experiments. This high-precision
impedance meter was built by Zimmermann et al. (2008) in Julich (Germany).

A, B Current electrodes, 
M, N Potential electrodes

A

M N

Sandstone core sample

Spring

Fixed Mobile

Tape

Current electrodes

A and B

B

M and N

Voltage electrodes

Tape

Figure 6. Sketch of the experimental setup for the consolidated
core samples. The electrodes are self-adhesive superconductive
carbon film, carbon/Ag/AgCl electrodes with biocompatible hydro-
gel commonly used in general and neonatal cardiology. Their imped-
ance is 0.9 ohm over the frequency range investigated (0.1 Hz ¼
45 kHz). We did not use metallic pieces to minimize spurious polari-
zation effects including through inductive and capacitive couplings.
The electrodes are removed from the core samples after the measure-
ments. The gel insures a uniform contact between the electrodes and
the core sample that does not vary over time or experiments. We also
avoided having the electrodes far from the sample itself to avoid the
introduction of spurious resistances for the volume of brine sand-
wiched between the core and the electrodes.
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for the electrical potential and considering the geometry of the
bucket and the position of the electrodes (Figure 7). For materials
with an electrical conductivity in the range 10−2 − 10 Sm−1, the
geometric constant was found to be g ¼ 16.6� 0.1 m−1. The sec-
ond procedure was to fill the sample holder with brines of measured
conductivity (we used four brines in the range 0.01 − 1 S m−1) and
measuring the resistance with the impedance meter. We found a
geometric factor of 16.5� 0.5 m−1 independent on the conduc-
tivity. In the following, we use a geometric factor of 16.5 m−1 in-
dependent on the conductivity of the material in the bucket to
interpret the impedance measurements.
All conductivity data reported are corrected of the effect of temper-

ature using linear relationships σwðTÞ ¼ σwðT0Þð1þ αwðT − T0ÞÞ
and σSðTÞ ¼ σSðT0Þð1þ αSðT − T0ÞÞ, and therefore the tempera-
ture dependence of the conductivity is given by σ � ðTÞ ¼
σ � ðT0Þð1þ αðT − T0ÞÞ, and the conductivities are reported at
25°C using this equation, and where T0 denotes the reference temper-
ature (T0 ¼ 25°C), T is the temperature of the solution, and
αw ≈ αS ≈ 0.02∕°C ¼ α (e.g., Vinegar and Waxman, 1984). These
equations mean that the temperature dependence of the in-phase
and quadrature conductivities are due to the temperature dependences
of the mobilities of the charge carriers, which in turn are controlled
by the temperature dependence of the viscosity of the pore water.

Because the chargeability is a ratio of conductivity, this implies that
chargeability is temperature independent, whereas the normalized
chargeability has the same linear temperature dependence as de-
scribed above.
For the other pore-water conductivities, the change of brine was

done by diffusion by letting the samples in a tank in which the sol-
ution is at the desired salinity and to minimize the dissolution of the
carbonates. Equilibrium was reached in a few weeks. The complex
conductivity spectra were repeated over time, and the batch was
considered to have reached equilibrium when the conductivity spec-
tra were not changing over time.

Complex conductivity measurements

The complex conductivity measurement was conducted using the
four-terminal method with a high-precision impedance analyzer
(Figure 5; Zimmermann et al., 2008). The frequency range used
on the ZEL-SIP04-V02 impedance meter is from 1 mHz to
45 kHz. For our measurements, we use imposed injection voltages
of 5, 1, and 0.2 V. These three voltages are used to check the lin-
earity of the response and to determine a standard deviation on the
complex conductivity at each frequency.
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Figure 8. Spectral-induced polarization data for sample #4 at a
pore-water conductivity of 0.1081 Sm−1 (NaCl, 22.4°C). (a) Ampli-
tude of the conductivity and phase in the frequency range 1 mHz–
45 kHz. The measurements are made at three voltage amplitudes
(5, 1, and 0.2 V). (b) Complex conductivity spectra at the three same
voltage amplitudes. MW stands for Maxwell-Wagner polarization
(including the contribution of the high-frequency permittivity of the
material), whereas the DL polarization corresponds to the polariza-
tion of the electrical DL.
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Figure 7. Sketch of the second experimental setup used for the
unconsolidated core samples. (a) Picture of the sample holder with
the 3D printed cover. (b and c). Picture of the cover with the encap-
sulated sintered electrodes. (d) We use Ag/AgCl sintered electrode
for the A, B, M, and N electrodes. These sintered electrodes are made
by compacting a very fine mixture of silver and silver chloride under
high pressure. Sintered electrodes are known to provide less noisy
signals by comparison with classical electrodes. Their impedance
is approximately 90 ohm. (e and f) Simulation of the current injection
and voltage distribution used to compute the geometric factor. The
current probes a large portion of the samples.
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An example of the complex conductivity spectrum is shown in
Figure 8a for the amplitude and the phase. Then, the amplitude and
the phase are used to determine the in-phase (real) conductivity and
the quadrature (imaginary) conductivity spectra (Figure 8b).

CEC and SSA measurements

The CECmeasurements were obtained with theNH4 displacement
method (Chapman, 1965). We used 4 g of material. The procedure
follows the recipe provided by Chapman and Pratt (1978). The CEC
data are provided in Table 2 and are expressed in meq/100 g (which is
the traditional unit for this parameter). The range of values is
5–15 meq∕100 g. These data can be converted in the international
system of units using the following conversion: 1 meq∕100 g ¼
963.20 C kg−1. The SSA measurements were performed using the
Micromeritics BET measurement system and interpreted with the
BET method (see the details in Brunauer et al., 1938).
To show quickly the relevance of the CEC to quadrature conduc-

tivity spectra, in Figure 9, we show quadrature conductivity spectra

of four sandstones characterized by very distinct values of the CEC.
This figure shows very clearly that the quadrature conductivity is
going to be dependent on the CEC, a point that will be discussed
further below. In Figure 10, we compare the CEC determined from
the mineralogy (reported in Table 1) and the measured CEC. For
each clay mineral (chlorite, kaolinite, illite, and smectite), we
use a mean CEC value determined from Figure 1. We see a strong
relationship between the two estimates indicating that most of the
CEC is carried out by the clay minerals (as expected).

RESULTS

Shape of the spectra

We first show a few examples of the complex conductivity spec-
tra of our samples. An example of complex conductivity spectra for
sample #10 (sandstone) is shown in Figures 11 and 12 at two differ-
ent salinities (one low and the other very high). As explained in
the previous section, the measurements are done at three distinct

Table 2. Petrophysical data for the rock samples and sand smectite mixes.6

Sample ID
Porosity
(%)

CEC
(meq/100 g)

Formation
factor F (−)

Surface conductivity
(S∕m) σ 0 0 (S/m) Ssp (m2∕g)

Grain density
(g∕cm3)

20161501 11.13 13.1 20.8� 0.4 0.088� 0.006 1.50E-03 15.750 2.68

20161502 11.96 12.5 19.0� 0.4 0.113� 0.001 1.54E-03 15.750 2.71

20161503 6.58 11.0 49.5� 0.7 0.056� 0.001 6.98E-04 12.190 2.72

20161504 1.57 4.00 1757� 63 0.0031� 0.0001 1.78E-04 6.1700 2.72

20161505 5.61 11.6 51.7� 1.4 0.055� 0.004 8.09E-04 16.790 2.72

20161506 6.28 9.90 42.9� 1.2 0.066� 0.005 1.28E-03 15.080 2.75

20161507 3.09 7.30 292� 8 0.021� 0.002 3.04E-04 9.5000 2.71

20161508 2.43 4.30 1949� 258 0.0075� 0.0006 3.84E-04 7.1800 2.70

20161509 12.25 15.5 16.1� 0.2 0.105� 0.006 2.42E-03 13.070 2.71

20161510 4.27 7.80 243� 10 0.0277� 0.0015 4.67E-04 10.110 2.71

20161511 2.38 9.70 197� 1 0.0249� 0.0002 4.57E-04 12.270 2.70

20161512 0.820 7.20 485� 55 0.0162� 0.0020 1.57E-04 9.7500 2.69

20161513 3.78 6.50 596� 3 0.0146� 0.0001 2.85E-04 7.9200 2.71

20161514 3.10 8.60 287� 9 0.0192� 0.0007 3.21E-04 9.3300 2.71

20161515 6.11 15.3 51� 2 0.0716� 0.0042 1.19E-03 14.750 2.71

20161516 5.17 6.50 169� 4 0.0229� 0.0010 5.10E-04 7.0200 2.69

20161517 2.56 5.20 1461� 143 0.0030� 0.0005 5.90E-05 6.8700 2.69

20161518 4.52 9.00 392� 12 0.0217� 0.0009 3.83E-04 9.0300 2.71

20161519 4.39 12.8 98� 4 0.0431� 0.0029 1.74E-03 13.230 2.71

20161520 3.76 10.6 92� 1 0.0563� 0.0019 6.31E-04 15.130 2.70

S100 90 75 1.7� 0.1 0.166� 0.009 4.36E-03(3) 31.8 2.65

Sd95 58 3.8(1) 4.8� 0.3 0.056� 0.007 4.36E-03(3) 1.6 2.65

Sd90 47 7.5(1) 4.0� 0.2 0.091� 0.003 6.54E-03(3) 3.2 2.65

Sd100 52 0.0027(2) 4.3� 0.1 0.0041� 0.0009 ∼1 E − 05 — 2.65

6The formation factor and the surface conductivity are determined at four salinities. Sandstones 20161501 (abbreviated as sample #1 in the main text), 20161502 (#2), and
20161508 (#9) are damaged with visible cracks. Samples (#3, #5, #9, #10, #11, #16, and #19) show some small cracks. The other samples are intact. For the sandstones,
surface conductivity is determined at 100 Hz (close to the relaxation peak). The smectite corresponds to the SWy-2-smectite from the clay mineralogical society. CEC and Ssp
denote the CEC and SSA, respectively. (1) The CEC and SSA are computed form the CEC or SSA of pure smectite and the weight fraction of smectite in the core sample.
(2) For silica grains, the equivalent CEC is given by CEC ¼ 6QS∕ðρsdÞ with a surface charge density of QS ¼ 0.64 Cm−2, d is the diameter of the sand grains, and
ρs ¼ 2650 kgm−3 denotes the mass density of the silica grains. We use a grain diameter of 550 μm and the conversion factor 1 cmol kg−1 ¼ 1 meq∕ð100 gÞ ¼ 963.2 C kg−1.
(3) Determined at a pore-water conductivity of 0.1 Sm−1 (25°C, NaCl).
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applied voltages 0.2, 1, and 5 V, which allows testing of the linearity
of the system (the amplitude response should be proportional to the
amplitude of the driving force). From such data, we can decide that
the rock samples behave linearly. Less than 0.1 Hz, the phase is
generally too small to be accurately measured. Our sandstones
are observed to display a broad relaxation peak in the frequency
range of 10–1000 Hz. At higher frequencies (greater than 10 kHz),
the increase of the magnitude of the quadrature conductivity is due
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Figure 9. Example of four quadrature conductivity spectra charac-
terized by four distinct values of the CEC. These spectra are ob-
tained at low salinity (approximately 0.1 Sm−1). We can observe
that the magnitude of the quadrature conductivity is correlated with
the CEC. Note: 1 meq∕ð100 gÞ ¼ 963.2 C kg−1. The shape of the
spectra is expected to reflect the distribution of the polarization
length scales.
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to the Maxwell Wagner effect and true dielectric effects. As ex-
pected, the spectrum of the in-phase conductivity is rather flat;
i.e., the percentage frequency effect (PFE) is rather small, as dis-
cussed below.
Figures 13, 14, and 15 correspond to the response for the sand-

clay mixtures at different salinities. The smectite polarizes at very
high frequency (10 kHz) likely due to the very small size of the
particles. We do not see a strong response of the quadrature con-
ductivity with the salinity for these mixtures. This is likely due to
the fact that smectite has essentially a surface charge density that
does not change with the salinity because it is due to isomorphic
substitutions in the crystalline framework. Oppositeli, illite has a
surface charge that is controlled by the amphoteric sites at the edges
of the crystals, and therefore the surface charge density of illite is
salinity-dependent. We will see that this is the case for the sand-
stones investigated in the present work and that are illite-rich
(Table 1).
In Figure 16, we look at the dependence with the salinity of the

quadrature conductivity of the sandstones. We observe that the
smectite-rich samples and the illite-rich samples exhibit a distinct
behavior with the salinity. Niu et al. (2016b) explain the dependence
of the magnitude of the quadrature conductivity with the salinity in
terms of electrochemical effects involving the surface speciation of
the clay-mineral surfaces. Comparing this model with the data set is
out of the scope of the present investigation, and it would require
measurements on a broader salinity range.

Normalized chargeability versus quadrature
conductivity

The FE is defined from the variation with the frequency of the
magnitude of the electrical conductivity (approximated here by the
in-phase conductivity; see Vinegar and Waxman, 1984)

FE ≈
σ 0ðAωÞ − σ 0ðωÞ

σ 0ðAωÞ ≥ 0: (23)

In other words, the FE characterizes the increase in the in-phase
conductivity between two angular frequencies ω and Aω. This FE
can be in turn related to the phase angle φ (phase lag in rad) measured
at the geometric frequency A1∕2ω (see Shuey and Johnson, 1973;
Van Voorhis et al., 1973). This relationship can be obtained using
two distinct complex resistivity models (see Appendix C for details)

FE ≈ −
2

π
φ ln A; for φ ≪ 1: (24)

We chose to check the consistency of the complex conductivity spec-
tra over one decade (i.e., A ¼ 10). In this case, the PFE is given by
PFE ¼ 100 FE ≈ 0.1467φ (Vinegar and Waxman, 1984) with the
phase directly expressed in mrad. In Figure 17, we use all of the sam-
ple data (sandstones) to study if this relationship is obeyed for the in-
phase conductivity measured between 1 and 10 Hz, 10 and 100 Hz,
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Figure 13. Sample S100 (100% smectite) at three salinities.
Although the in-phase conductivity depends a lot on the pore-water
conductivity, the quadrature conductivity seems independent on the
pore-water conductivity. Because of the small size of the clay par-
ticles, the polarization of smectite takes place at high frequencies
(greater than 1 kHz).
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Figure 14. Sample Sd90 (90% sand) at the three salinities. As for
the pure smectite, the in-phase conductivity depends on the pore-
water conductivity, whereas the quadrature conductivity seems to be
quite independent of the pore-water conductivity. The high-fre-
quency behavior is likely dominated by the smectite, whereas
the low-frequency behavior is dominated by the silica grains.
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Figure 15. Sample Sd95 (95% sand) at the three salinities. Note
that the quadrature conductivity seems to be independent of the
pore-water conductivity. The high-frequency behavior is likely do-
minated by the smectite, whereas the low-frequency behavior is do-
minated by the silica grains. The quadrature conductivity data at
high salinities are not reported because of large uncertainties in their
determination, which is in turn associated with the small value of
the phase.
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Figure 17. Relationship between the PFE and the phase ϕ (positive
for the impedance) for the low-salinity data. The theoretical predic-
tion PFE ¼ 100 FE ≈ 0.1467φ (see Vinegar and Waxman, 1984) is
also shown for comparison. The in-phase conductivity is measured
between 1 and 10 Hz, 10 and 100 Hz, and 100 Hz and 1 kHz, and
the phase is determined at the geometric mean of the two frequen-
cies (i.e., 3.2, 32, and 320 Hz, respectively). We used only the data
at the lowest salinity for each sample. The points outside the trends
are considered to be problematic. Note that the phase can reach
60 mrad in amplitude, whereas the PFE remains less than 10%.
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Figure 18. Relationship between the normalized chargeability and
the quadrature conductivity for the lowest salinity data set and for
the salinity corresponding to 1 Sm−1. The normalized chargeability
is defined as the difference in the in-phase conductivity between the
two frequencies (in the present case, 1 Hz to 1 kHz). In other words,
the normalized chargeability is computed in the frequency range
1 Hz to 1 kHz (the quadrature conductivity is determined at the geo-
metric mean, i.e., 32 Hz). The theoretical prediction Mn ≈ −4.4σ 0 0
is also shown for comparison. The points outside the trend are con-
sidered to be problematic.
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and 100 Hz and 1 kHz and the phase measured at the geometric mean
(3.2, 32, and 320 Hz, respectively). We obtain PFE ¼ 0.139φ, pretty
close to the predicted trend.
Equation 23 can be used to determine the relationship between

the quadrature conductivity and the normalized chargeability. We
assume that the conductivity itself is not a strong function of the
frequency, which is the case for porous rocks (see Vinegar andWax-
man [1984] and the magnitude of PFE in Figure 17). Then, we con-
sider that the quadrature conductivity is determined close to the
peak frequency used as the geometric mean frequency between a
low frequency for which the conductivity is close to σ0 and a high
frequency for which the conductivity is close to σ∞. In this case,
equation 23 can be written as an equation connecting the normal-
ized chargeability and the quadrature conductivity

Mn ≈ −
�
2

π
ln A

�
σ 0 0; (25)

where A is the number of decades separating the high and low
frequencies. Equation 24 provides a direct way to estimate the value
of α in equation 17. Comparing the two equations, we have indeed

α ≈ −
�
2

π
ln A

�
: (26)

We compare in Figure 18, the normalized chargeability between
1 Hz and 1 kHz and the quadrature conductivity determined at
the geometric mean frequency of 32 Hz. This normalized charge-
ability is defined as the difference in the in-phase conductivity
between 1 kHz and 1 Hz. The data shown in Fig-
ure 18 exhibit a very high linear trend with a
slope α ¼ 4.4. consistent with the theoretical pre-
diction corresponding to equation 25.
In Figure 19, we compare the normalized char-

geability now determined over the frequency
range 0.1 Hz–10 kHz (so over five decades;
i.e., A ¼ 105) with the quadrature conductivity
determined at the geometric mean frequency of
32 Hz. The data shown in Figure 19 exhibit a
linear trend with a slope of 5.2 slightly below
the theoretical prediction α ¼ 7.3. From the lin-
ear relationship between the quadrature conduc-
tivity and the normalized chargeability, we can
say that all the observations made between the
quadrature conductivity, the CEC, the SSA, or
the clay content are also valid for the normalized
chargeability.

Application of the linear conductivity
model

We plot now the conductivity data (in-phase
conductivity determined at 100 Hz) versus the
pore-water conductivities for the three or four
NaCl solutions (see Figures 20, 21, and 22).
The data are fitted with equation 5 to determine
the (intrinsic) formation factor F and the surface
conductivity σs. The results are reported in Ta-
ble 2. In Figure 23, we plot the (intrinsic) forma-
tion factors reported in Table 2 for each sample
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Figure 19. Relationship between the normalized chargeability Mn
and the quadrature conductivity (at the geometric frequency of
32 Hz) for the low and intermediate salinity data sets (0.1 and
1 Sm−1) and the frequency range 0.1 Hz to 10 kHz. The normalized
chargeability is defined as the difference in the in-phase frequencies
between the two frequencies (in the present case, 0.1 Hz to 10 kHz).
The theoretical prediction for the trend isMn ≈ −7.3σ 0 0, so slightly
above the trend shown by the data. The points outside the trend are
considered to be problematic.
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versus their corresponding porosities. We fit the data set with the
modified Archie’s (1942) law F ¼ ðϕ − ϕpÞ−m using a percolation
threshold for the porosity ϕp. We obtain an average cementation
exponent m of 1.5� 0.1 with a percolation porosity ϕp of 0.01.
We note that the value of the cementation exponent is surprisingly
small. The insert in Figure 23 shows that the samples exhibiting
cracks actually have a cementation exponent between 1.3 and
1.5, whereas the samples that look undamaged are characterized
by a cementation exponent between 1.7 and 2.1.

Surface conductivity and CEC

In Figure 24, we report the surface conductivity (at 100 Hz) ver-
sus the normalized CEC (i.e., the CEC divided by the tortuosity of
the bulk pore space, i.e., given by the product between the formation
factor and the porosity). This trend is indeed predicted by the
dynamic Stern layer model. We observe an excellent relation-
ship between the surface conductivity and the normalized CEC.
The relationship between the surface conductivity and the CEC
is σS ¼ ρgBðCEC∕FϕÞ; therefore, factor “a” given in Figure 24

is equal to ρgB (the grains density is 2700 kgm−3;
see Table 2). This yields an apparent mobility
B ¼ 1.63 × 10−8 m2 s−1 V−1 at 25°C.

Quadrature conductivity and normal-
ized chargeability versus CEC

In Figure 25, we report the quadrature conduc-
tivity (at 100 Hz) versus the normalized CEC
(i.e., the CEC divided by the tortuosity of the bulk
pore space, i.e., given by the product between
the formation factor and the porosity). The trends
are estimated at two distinct salinities. We observe
a fair linear relationship between the two param-
eters as predicted by our model, but with a
residual quadrature conductivity of approximately
−6 × 10−5 Sm−1. The sandstones are character-
ized by the presence of some pyrite (see Table 1).
Consequently, it may be possible that this residual
quadrature conductivity (also observed by Vin-
egar and Waxman, 1984) could be related to this
mineral. Indeed, pyrite is a semiconductor charac-
terized by strong polarization, as discussed, for in-
stance, by Pelton et al. (1978) and Mao et al.
(2016). In Figure 26, we show that the normalized
chargeability Mnðω; AωÞ ≈ σ 0ðAωÞ − σ 0ðωÞ is
also proportional to the normalized CEC in agree-
ment with the dynamic Stern layer model.

Quadrature versus surface
conductivities

In Figure 27, we plot the quadrature conduc-
tivity versus the surface conductivity for the 20
core samples. We can see that the data are consis-
tent with other data sets obtained in the literature
for sedimentary and volcanic rocks. The samples
are, however, characterized by much higher sur-
face and quadrature conductivities. The trend is
consistent with a value of — σ 0 0∕σS ¼ 0.018�
0.002 for the ratio between the quadrature and sur-
face conductivities; therefore, because −σ 0 0∕σS ¼
R∕α (and using α ¼ 5; see Figure 19), we obtain
R ¼ 0.09 in equations 18 and 19.
In Figures 28 and 29, we compare our data set

with respect to a broader data set looking at the
direct correlation between the surface conduc-
tivity and the CEC and the quadrature conduc-
tivity and the CEC, respectively. Looking at
these trends, it is really clear that the effect of
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Figure 21. Example of data sets between the in-phase conductivity of four sandstone
samples (at 100 Hz) and the conductivity of the pore water at three or four salinities
(NaCl solutions). The data are fitted with equation 5 (plain lines) to determine the (in-
trinsic) formation factor F and the surface conductivity σs (at 100 Hz), which are re-
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ized CEC (i.e., CEC divided by the tortuosity of the bulk pore
space). According to the dynamic Stern layer model, the normalized
chargeability should scale as the CEC divided by the tortuosity of
the bulk pore space determined as the product of the (intrinsic) for-
mation factor by the (connected) porosity. The slope is ð75� 5Þ ×
10−5 in the units used in the graph (Sm−1ðmeq∕100 gÞ−1). Note:
1 meq∕ð100 gÞ ¼ 963.2 C kg−1.

2

Q
ua

dr
at

ur
e 

co
nd

uc
ti

vi
ty

 (
S

/m
)

Ratio             (meq/100 g)
CEC

Fφ

10–5

10–4

10–3

10–2

0.010 0.10 1.0 10
10–5

10–4

10–3

10–2

0.010 0.10 1.0 10

Q
ua

dr
at

ur
e 

co
nd

uc
ti

vi
ty

 (
S

/m
)

Ratio             (meq/100 g)
CEC

Fφ

Data

Model

Data

Model

Low salinity (~0.1 S/m, NaCl) Intermediate salinity (~1 S/m, NaCl)

R = 0.76 2R = 0.34 

pyrite? pyrite?

a) b)

Figure 25. Relationship between the absolute value of the
effective quadrature conductivity (at a pore-water conductivity
of approximately 0.1 and 1 Sm−1 and taken at 100 Hz) and nor-
malized CEC (i.e., the CEC divided by the tortuosity of the bulk
pore space). Indeed, according to our model, the quadrature con-
ductivity should scale as the CEC divided by the tortuosity of the
bulk pore space determined as the product of the (intrinsic) for-
mation factor by the (connected) porosity (see equations 7 and
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Complex conductivity of tight sandstones E69



the bulk tortuosity on the quadrature and surface conductivity
cannot be overlooked. That said, the effect on the ratio of the two
quantities is null or, in other words, the surface and quadrature con-
ductivities have the same dependence with the bulk tortuosity.

Mobility of the counterions and partition coefficient

The trends shown in Figures 24 and 25 can be used to determine
the mobilities of the counterions and the partition coefficient
between the Stern and diffuse layers. Starting with the apparent
mobility for surface conductivity B ¼ βðþÞð1 − fÞ þ βSðþÞf and
equation 19, and after a few algebraic manipulations, we obtain

f ¼ 1 −
Bð1 − RÞ

βðþÞ
: (27)

Because we already determined the values of the three parameters
entering this equation 26 (B ¼ 1.63 × 10−8 m2 V−1 s−1see the “Sur-
face conductivity and CEC” section, R ¼ 0.094 from the trend shown
between surface and quadrature conductivity in Revil et al. (2017a),
and finally βðþÞðNaþ;25°CÞ¼5.2×10−8 m2s−1V−1, the mobility of
sodium in water), we obtain f ¼ 0.74. In other words, 74% of the
counterions are located or partitioned in the Stern layer. We can also
determine the value of the mobility of the cations in the Stern layer.
Starting with the same equations, we obtain

βSðþÞ ¼ βðþÞ
Rð1 − fÞ
fð1 − RÞ : (28)

Taking βðþÞðNaþ; 25°CÞ ¼ 5.2 × 10−8 m2 s−1 V−1, R ¼ 0.094, and
f ¼ 0.74, we obtain βSðþÞ ¼ 1.9 × 10−9 m2 s−1 V−1, and therefore
a ratio βðþÞ∕βSðþÞ ≈ 27. The mobility of the counterions in the Stern
layer is 27 times smaller than in the diffuse layer in agreement with
Revil et al. (2017a, 2017b) for volcanic rocks.

DISCUSSION

We discuss now the value of the concept of normalized chargeabil-
ity for porous media with no metallic particles. We first plot
the normalized chargeability versus the surface conductivity (Fig-
ure 30). For our data, the two quantities are proportional, which
means that we can use time-domain induced polarization data to com-
pute the surface conductivity required to properly interpret resistivity
tomograms or well-log data in field conditions. Interestingly, as
shown in Appendix A, the normalized chargeability for the rock de-
notes actually a normalized chargeability for the surface conductivity
itself (at least in the linear model used in this paper). So, this means
that the frequency variation for the surface conductivity is propor-
tional to the magnitude of the surface conductivity itself.
In this work, we have shown that the surface conductivity, the

quadrature conductivity, and the normalized chargeability of tight
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Figure 27. Relationship between quadrature conductivity and sur-
face conductivity over seven orders of magnitude. The soil samples
are from the Netherlands (Revil et al., 2017c). The data for the vol-
canic rocks are from Revil et al. (2017a, 2017b). All data show that
the ratio of the quadrature to surface conductivity is independent of
the bulk tortuosity of the connected pore space. For the tight sand-
stones, the quadrature conductivity data are taken at a pore-water
conductivity of approximately 1 Sm−1 and at 1 kHz. Other data
are fromWeller et al. (2013) (sands and sandstones), Woodruff et al.
(2014) (oil and gas shales), and Revil et al. (2014b) (Fontainebleau
sandstones). For the 20 sandstones investigated in the present study
(see inset), we have — σ 0 0∕σS ¼ 0.018� 0.002, i.e., R ¼ 0.094.
Note that this trend is independent of the value of the formation
factor and tortuosity of the conduction current.

Figure 28. Relationship between surface conductivity and CEC. We
clearly see the effect of tortuosity from our data set on the trend
between the surface conductivity and the CEC because the samples
with the lowest surface conductivity correspond to the samples with
the highest tortuosity in our data set. Note: 1 meq ∕ð100 gÞ ¼
963.2 C kg−1. The data from the literature are from Bolève et al.
(2007) (glass beads, NaCl), Vinegar and Waxman (1984) (shaly
sands, NaCl), Churcher et al. (1991) (CEC for the Berea sandstone),
Lorne et al. (1999) (Fontainebleau sand KCl), Kurniawan (2005)
(clean sand, sample CS-7U), Börner (1992) (sample F3 Fontaine-
bleau sandstone), and Comparon (2005) (mixtures of MX80 benton-
ite and kaolinite).
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sandstones scales with the CEC of the material divided by the bulk
tortuosity (the product of the formation factor by the porosity; see
Figure 29). Because the CEC and the SSA are proportional to each
other, this means that in our case the surface conductivity, the quad-
rature conductivity, and the normalized chargeability of tight sand-
stones scales with the SSA divided by the product of the formation
factor and the porosity. When the dominant clay type is constant,
this also means that the surface conductivity, the quadrature conduc-
tivity, and the normalized chargeability of tight sandstones scale
with the clay content. In Figure 31, we also show that there is a
critical frequency that seems to scale with the pore size. In the next
paper of this series, we plan to investigate in more detail the rela-
tionship between the pore size (and the pore-size distribution) and
the critical relaxation time (and the distribution of relaxation times).
Our goal is also to show what method is the most appropriate to
decompose the spectra in terms of their distribution of the relaxation
times given by equation 1 (see the discussion in Niu et al., 2016a).
This will be the purpose of a future paper.

CONCLUSION

We have studied a collection of 20 tight sandstones plus four
sand-clay mixtures using a sand and a smectite. The samples are
characterized by very high cation exchange capacities, surface con-
ductivities, and quadrature conductivities, which all scale with the
CEC, the SSA, or the clay content (in weight and at a constant min-
eralogy). The quadrature conductivity, normalized chargeability,
and surface conductivity are found to be sensitive to the inverse
of the product of the formation factor with the porosity. Such scal-
ing agrees with a low-frequency polarization model based on the
dynamic Stern layer model, but it cannot be found in an alternative

             Bentonite

10–7

10–6

10–5

10–4

10–3

10–2

10–1 101 102 103 104 105

Clayey materials

Sands 

CEC (C/kg)

Q
ua

dr
at

ur
e 

co
nd

uc
tiv

ity
 (

S/
m

)

             Sands wo/ clays

Sedimentary rocks

Volcanic rocks
Revil et al. (2017a)

Tight sandstones (this work)

100

Smectite (this work)

Figure 29. Relationship between quadrature conductivity (for the
tight sandstones reported at 1 Sm−1 and 1 kHz) and CEC. We
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to the CEC (the data are those discussed in Revil et al., 2015). Note:
1 meq∕ð100 gÞ ¼ 963.2 C kg−1.
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Figure 30. Relationship between the normalized chargeability and
the surface conductivity. The normalized chargeability is here de-
fined as the difference in the in-phase conductivity between two
frequencies (in the present case 1 Hz to 1 kHz).
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Figure 31. Sketch showing for different sandstones how the plateau
(blue arrows) is grossly associated with the normalized CEC (CEC
divided by the product of the intrinsic formation factor by the poros-
ity) and the characteristic frequency (red arrows) is related to the
pore size. The Fontainebleau data are from Revil et al. (2015).
The quantity ε∞ denotes the high-frequency permittivity, which
is actually the low-frequency part of the Maxwell Wagner polari-
zation. This plot also shows that depending on the value of the
CEC of the core sample, the effective quadrature conductivity
can be affected by the high-frequency dielectric effect.
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model such as the membrane polarization model. We have found
that the cementation exponent entering Archie’s law is between
1.3 and 1.5 for rocks showing damage evidenced by the presence
of cracks. For intact samples, the cementation exponent is between
1.6 and 2.1. We have determined the value of the mobility of the
counterions in the Stern layer (the inner part of the electrical DL
coating the surface of the grains), and we found that this mobility
is approximately 30 times smaller than in the bulk pore water in
agreement with a recent work done on volcanic rocks.
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APPENDIX A

NORMALIZED CHARGEABILITY: CONTROL
BY THE STERN LAYER

In the context of the dynamic Stern layer model, the dependence
of the surface conductivity with the frequency is purely related to
the contribution of the Stern layer (Figure 3c)

σ 0ðωÞ ¼ 1

F
σw þ σSðωÞ; (A-1)

where σSðωÞ (in Sm−1) denotes a frequency-dependent surface con-
ductivity. This conductivity has low- and high-frequency asymp-
totic values given by

σ0S ¼
�

1

Fϕ

�
ρgβðþÞð1 − fÞCEC; (A-2)

σ∞S ¼
�

1

Fϕ

�
ρg½βðþÞð1 − fÞ þ βSðþÞf�CEC; (A-3)

respectively. In equation A-2, the DC surface conductivity is purely
controlled by the diffuse layer. The contribution of the Stern layer is
zero because the counterions remains stuck at the boundaries of the
grains. At the opposite, at high frequencies, the contribution from
the Stern and diffuse layers contribute to the surface conductivity. In
the context of the linear conductivity model described by equa-
tion A-1, it is interesting to observe that the normalized chargeabil-
ity is exactly the difference between the high-frequency surface
conductivity and the low-frequency surface conductivity; i.e.

Mn ≡ σ∞ − σ0 ¼ σ∞S − σ0S; (A-4)

Mn ¼
�

1

Fϕ

�
ρgβ

S
ðþÞfCEC: (A-5)

APPENDIX B

SAND-CLAY MIXTURES

The goal of this appendix is to estimate the volume faction of clay
in the smectite/sand mixes. We make the assumption that the mass
density of the smectite particles (SWy-2-smectite from the Clay
Mineralogical Society) is the same than the mass density of the sand
grains (2650 kgm−3, Ellis [1987]; in our case, we measured the
mass density of totally dry smectite of 2670 kgm−3). For clay min-
erals filling gradually the pore space between the sand grains, Revil
et al. (2002) derive a formula connecting the volume fraction of clay
φV to its weight fraction φW

φV ¼
�

φW

1 − φW

��
1 − ϕSd

1 − ϕCl

�
; (B-1)

where ϕSd and ϕCl denote the porosity of the pure sand end member
(ϕSd ≈ 0.52; see Table 2) and the porosity of the pure smectite end
member (ϕCl ≈ 0.90; see Table 2), respectively. Equation B-1 is
valid as long as φV ≤ ϕSd; i.e., the clay particles are filling the space
between the sand grains (shaly sand). For the Sd95 mix, we obtain
φV ¼ 0.25 and therefore approximately half of the pore space be-
tween the sand grains is occupied by very porous smectite. For the
Sd90 mix, we obtain φV ¼ 0.53 and therefore approximately all of
the pore space between the sand grains is occupied by smectite. This
is in agreement with a visual inspection of the mixture.
When the smectite entirely filled the space between the silica

grains, the porosity and complex conductivity are given by
ϕ ¼ ϕSdϕCl and σ� ¼ ð1∕FSdÞσ�Cl, where FSd ¼ ϕ−1.5

Sd ≈ 2.7. So
it is not surprising that the spectra for the Sd95 and Sd90 are very
similar to the spectra shown for pure smectite. From equation B-3, it
implies that the phase for Sd90 should be the same as for pure
smectite.

APPENDIX C

CONSTANT-PHASE MODEL

The complex resistivity ρ� ¼ ρ 0 þ iρ 0 0 is related to the amplitude
of the complex conductivity σ� ¼ σ 0 þ iσ 0 0 by ρ� ¼ 1∕σ�. The con-
stant-phase model (also called Drake’s complex resistivity model) is
written as

ρ�ðωÞ ¼ Kðωρ þ iωÞ−b; (C-1)

where K is a constant and b is the positive exponent (generally
b ≪ 1, e.g., Börner, 1992) linearly related to the chargeability M
and ωρ (>0) a characteristic frequency. From equation C-1,

ρ�ðωÞ ¼ K exp½−b lnðωρ þ iωÞ�; (C-2)

ρ�ðωÞ ¼ K exp

�
−b ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
ρ þ ω2

q
− ib tan−1

�
ω

ωρ

��
;

(C-3)
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ρ�ðωÞ ¼ Kðω2
ρ þ ω2Þ−b

2 exp

�
−ib tan−1

�
ω

ωρ

��
: (C-4)

The complex resistivity can be expressed in terms of its amplitude
and phase as

ρ�ðωÞ ¼ jρ�ðωÞj exp½iφ�; (C-5)

ρ ¼ jρ�ðωÞj ¼ Kðω2
ρ þ ω2Þ−b

2; (C-6)

φ ¼ −b tan−1
�
ω

ωρ

�
: (C-7)

In the limit ω ≫ ωρ, the phase is given by b ≈ −2 φ∕π and the am-
plitude by ρ ¼ Kω−b. The FE between two frequencies ω and Aω is
defined by

FE ¼ ρðωÞ − ρðAωÞ
ρðωÞ : (C-8)

For small FEs (see Figure 17), equation C-8 is equivalent to equa-
tion 23 of the main text. From equation C-6, the FE between ω and
Aω is given by FE ¼ 1 − Ab in the limit ω ≫ ωρ. Using the expres-
sion b ≈ −2 φ∕π from equation C-7 in the same limit, we obtain

FE ¼ 1 − A−2
πφ; (C-9)

lnð1 − FEÞ ¼ ln A−2
πφ: (C-10)

Becaue FE ≪ 1 (see Figure 17), we have

FE ≈ −
2

π
φ ln A; (C-11)

which corresponds to equation 24 of the main text. Equation 25 is
derived by multiplying the two sides of equation C-11 by the in-
phase conductivity σ 0ðAωÞ and using equation 22 for FE.
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